Логарифмический масштаб (шкала) — шкала, длина отрезка которой пропорциональна логарифму отношения величин, отмеченных на концах этого отрезка, в то время как на шкале в линейном масштабе длина отрезка пропорциональна разности величин на его концах.
Наглядный пример употребления и полезности логарифмического масштаба — логарифмическая линейка, которая позволяет проводить довольно сложные вычисления с точностью два-три десятичных знака.
Логарифмическая шкала исключительно удобна для отображения очень больших диапазонов значений величин. Кроме того, для многих органов чувств величина ощущения пропорциональна логарифму воздействия. Например, в музыке ноты, различающиеся по частоте в два раза, воспринимаются как одна и та же нота на октаву выше, а интервал между нотами в полтона соответствует отношению их частот 21/12. Поэтому нотная шкала — логарифмическая. Кроме того, согласно закону Вебера — Фехнера, воспринимаемая громкость звука также пропорциональна логарифму его интенсивности (в частности, логарифму мощности колонок). Поэтому на амплитудно-частотных характеристиках звуковоспроизводящих устройств применяют логарифмический масштаб по обеим осям.
Примеры применения логарифмического масштаба:
Шкала Рихтера интенсивности землетрясений
Шкала экспозиций в фотографии
Звёздные величины — шкала яркости звезд
Шкала pH
Шкала интенсивности звука — децибелы
Шкала частоты звука — нотная шкала
↑ ThinkQuest
Наглядный пример употребления и полезности логарифмического масштаба — логарифмическая линейка, которая позволяет проводить довольно сложные вычисления с точностью два-три десятичных знака.
Логарифмическая шкала исключительно удобна для отображения очень больших диапазонов значений величин. Кроме того, для многих органов чувств величина ощущения пропорциональна логарифму воздействия. Например, в музыке ноты, различающиеся по частоте в два раза, воспринимаются как одна и та же нота на октаву выше, а интервал между нотами в полтона соответствует отношению их частот 21/12. Поэтому нотная шкала — логарифмическая. Кроме того, согласно закону Вебера — Фехнера, воспринимаемая громкость звука также пропорциональна логарифму его интенсивности (в частности, логарифму мощности колонок). Поэтому на амплитудно-частотных характеристиках звуковоспроизводящих устройств применяют логарифмический масштаб по обеим осям.
Примеры применения логарифмического масштаба:
Шкала Рихтера интенсивности землетрясений
Шкала экспозиций в фотографии
Звёздные величины — шкала яркости звезд
Шкала pH
Шкала интенсивности звука — децибелы
Шкала частоты звука — нотная шкала
↑ ThinkQuest
Источник: Wipedia.org