Вы здесь

Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний. Глава 2. Мера всех вещей (Джеффри Уэст, 2017)

Глава 2. Мера всех вещей

Введение в масштабирование

Прежде чем обратиться к многочисленным проблемам и вопросам, упомянутым во вступительной главе, я хотел бы посвятить эту главу общему введению в некоторые базовые концепции, которые используются во всем остальном тексте этой книги. Хотя некоторые из читателей могут быть уже знакомы с этим материалом, я хочу быть уверен в том, что все мы понимаем его одинаково.

Этот обзор составлен главным образом в историографическом ключе: он начинается с Галилея и объяснения того, почему не могут существовать гигантские насекомые, и заканчивается лордом Рэлеем и объяснением того, почему небо синее. Между этими пунктами я коснусь Супермена, ЛСД и дозировки медикаментов, индексов массы тела, кораблекрушений и истоков теории моделирования, а также связи всего этого с происхождением и природой инноваций и пределов роста. Я хочу использовать эти примеры прежде всего для того, чтобы дать представление о концептуальных возможностях математического мышления, ориентирующегося на понятие масштаба.

1. От Годзиллы до Галилея

Я, как и многие другие ученые, время от времени получаю от журналистов просьбы об интервью, обычно по каким-нибудь вопросам или проблемам, касающимся городов, урбанизации, окружающей среды, устойчивости, сложности или Института Санта-Фе, а иногда даже бозона Хиггса. Вообразите же мое удивление, когда ко мне обратилась одна журналистка из «Популярной механики» (Popular Mechanics), которая сообщила мне, что Голливуд собирается выпустить новую крупнобюджетную версию классического японского фильма «Годзилла», и поинтересовалась моим мнением по этому вопросу. Как вы, возможно, помните, Годзилла – это огромное чудовище, которое главным образом занимается тем, что слоняется по городам (в оригинале 1954 г. – по Токио), сея разрушения и хаос и наводя ужас на население.

Журналистка слышала, что я кое-что знаю о масштабировании, и просила меня «весело, простенько и по-научному рассказать о биологии Годзиллы (в связи с выходом нового фильма)… с какой скоростью такое большое животное может ходить… сколько энергии будет вырабатывать его обмен веществ, сколько оно могло бы весить и т. д.». Разумеется, этот новый американский Годзилла XXI в. был самым крупным из всех воплощений этого персонажа: его рост достигал целых 106 м, более чем вдвое превышая рост чудовища в исходном японском фильме, составлявший «всего» 50 м. Я немедленно ответил, что почти любой ученый, к которому она обратится, скажет ей, что никакое животное типа Годзиллы на самом деле существовать не может. Если бы оно состояло приблизительно из тех же базовых материалов, что и мы (то есть все живые существа), оно было бы нежизнеспособно, так как обрушилось бы под собственным весом.

Научное обоснование этого утверждения сформулировал более четырехсот лет назад, на заре современной науки, Галилей. Самую суть его составляет элегантное рассуждение о масштабировании: Галилей задался вопросом о том, что произойдет, если попытаться бесконечно увеличивать животное, дерево или здание, и выяснил, что у такого увеличения имеются пределы. Его рассуждение стало базовым шаблоном для всех последующих рассуждений о масштабировании вплоть до настоящего времени.

Галилея не зря часто называют «отцом современной науки», имея в виду его многочисленные фундаментальные вклады в физику, математику, астрономию и философию. Наверное, более всего известны его легендарные опыты, в которых он бросал предметы разных размеров, изготовленные из разных материалов, с вершины наклонной Пизанской башни, чтобы продемонстрировать, что все они достигают земли за одно и то же время. Это неочевидное наблюдение противоречило Аристотелевой догме, согласно которой тяжелые предметы падают быстрее, чем легкие, и скорость их падения прямо пропорциональна их весу. Это фундаментальное заблуждение никем не подвергалось сомнению в течение почти двух тысяч лет, пока Галилей наконец не проверил его на опыте. Задним числом кажется удивительным, что до исследований Галилея никто, по-видимому, не задумывался о справедливости этого «самоочевидного факта», не говоря уже о том, чтобы проверить его.




Галилей в возрасте тридцати пяти и шестидесяти девяти лет; он умер менее чем десятью годами позже. Старение и смертность, которые наглядно иллюстрируют эти портреты, подробно обсуждаются в главе 4


Опыт Галилея произвел революцию в нашем фундаментальном понимании движения и динамики и проложил дорогу Ньютону с его знаменитыми законами движения. Эти законы привели к появлению точной, обладающей предсказательной силой численной математической системы понимания любого движения, будь то на Земле или на другом конце Вселенной, объединив тем самым небеса и Землю под властью одних и тех же законов природы. Это не только дало новое определение места человека в мироздании, но и создало эталон для всех последующих научных исследований, в том числе подготовив почву для наступления века Просвещения и научно-технических революций двух последних столетий.

Галилей также знаменит тем, что усовершенствовал конструкцию телескопа и открыл луны Юпитера, что убедило его в справедливости Коперниковой точки зрения на строение Солнечной системы. Однако Галилею пришлось дорого заплатить за последовательное отстаивание гелиоцентрической гипотезы, вытекавшей из его наблюдений. В возрасте шестидесяти девяти лет, тяжелобольным, он предстал перед судом инквизиции, который признал его воззрения еретическими. Он был вынужден отречься от своих взглядов и после недолгого тюремного заключения провел остаток жизни (еще девять лет, в течение которых он ослеп) под домашним арестом. Его книги были запрещены и попали в печально известный ватиканский «Индекс запрещенных книг» (Index Librorum Prohibitorum). Лишь в 1835 г., более двухсот лет спустя, его работы были исключены из этого списка, и только в 1992-м – по прошествии почти четырех веков – папа Иоанн Павел II публично выразил сожаление по поводу обращения церкви с Галилеем. Мысль о том, что какие-то слова, написанные в незапамятные времена на еврейском, греческом и латинском языках, основанные на чьих-то личных мнениях, догадках и предрассудках, могли столь безапелляционно перевешивать результаты научных наблюдений и математическую логику, действует отрезвляюще. Как ни печально это признавать, мы и сегодня не можем похвастаться полной свободой от таких заблуждений.

Несмотря на ужасную трагичность того, что случилось с Галилеем, его заключение принесло человечеству огромную выгоду. Возможно, это произошло бы и в другом случае, но именно находясь под домашним арестом, он написал, вероятно, лучшую свою работу, одно из поистине великих произведений научной литературы, озаглавленное «Беседы и математические доказательства, касающиеся двух новых отраслей науки» (Discorsi e dimostrazioni matematiche intorno a due nuove scienze, 1638)[23]. Эта книга, по сути дела, подводит итоги предыдущих сорока лет работы Галилея, в течение которых он пытался разработать систематический подход к задаче логического, рационального понимания окружающего нас природного мира. Этой работой он заложил тот фундамент, на котором впоследствии возникли не менее основополагающие труды Исаака Ньютона и практически вся позднейшая наука. Эйнштейн не преувеличивал, когда, говоря об этой книге, назвал Галилея «отцом современной науки»[24].

Это великая книга. Несмотря на непривлекательное название и несколько архаичный язык и стиль изложения, ее на удивление приятно и интересно читать. Она написана в форме «бесед» трех человек (Симпличио, Сагредо и Сальвиати), которые встречаются на протяжении четырех дней и обсуждают различные вопросы, великие и малые, ответов на которые искал Галилей. Симпличио символизирует «простого» обывателя, интересующегося устройством мира и задающего ряд вопросов, кажущихся наивными. Сальвиати – ученый (Галилей!), знающий ответы на все вопросы, которые излагаются в авторитетной, но терпеливой манере, а Сагредо играет роль посредника между этими двумя, то подвергая сомнению утверждения Сальвиати, то подбадривая Симпличио.

На второй день своих бесед они переходят к несколько туманному на первый взгляд обсуждению прочности веревок и балок, и как раз в тот момент, когда читатель уже начинает недоумевать, куда приведет этот довольно нудный, перегруженный подробностями разговор, туман рассеивается, все освещается, и Сальвиати делает следующее заявление:

Из того, что было сейчас доказано, мы ясно видим невозможность не только для искусства, но и для самой природы беспредельно увеличивать размеры своих творений. Так, невозможна постройка судов, дворцов и храмов огромнейшей величины, коих весла, мачты, балки, железные скрепы, словом, все части держались бы прочно. Однако и природа не может произвести деревья несоразмерной величины, так как ветви их, отягощенные собственным чрезвычайным весом, в конце концов сломились бы. Равным образом невозможно представить себе костяк человека, лошади или другого живого существа слишком большой величины, который бы держался и соответствовал своему назначению… увеличение размеров до чрезмерной величины имело бы следствием то, что тело было бы раздавлено и сломано тяжестью своего собственного веса[25].

Вот и все: Галилей чуть ли не четыреста лет назад предугадал наши параноидальные фантазии о гигантских муравьях, жуках, пауках и тех же самых Годзиллах, столь ярко изображаемые в комиксах и фильмах, а затем самым блестящим образом продемонстрировал их физическую невозможность. Точнее говоря, он показал, что реально достижимая величина всех этих существ ограничена некими фундаментальными пределами. Так что многочисленные образы научной фантастики в области фантастики и остаются.

Рассуждение Галилея отличается элегантностью и простотой, но имеет при этом весьма глубокие следствия. Кроме того, оно служит превосходным введением во многие из тех концепций, которые мы будем рассматривать в следующих главах. Оно состоит из двух частей: геометрического доказательства, демонстрирующего, как масштабируются площадь и объем любого объекта при увеличении его размеров (рис. 5), и инженерного доказательства, показывающего, что прочность колонн, поддерживающих здания, конечностей, на которые опираются животные, или стволов деревьев пропорциональна площади их поперечного сечения (рис. 6).

В следующей рамке приведен общедоступный вариант первого из этих доказательств, показывающего, что если форма объекта неизменна, то при увеличении его размеров все его поверхности увеличиваются пропорционально квадрату, а все его объемы – пропорционально кубу линейных размеров.

Рассуждение галилея о масштабировании поверхностей и объемов

Для начала рассмотрим простейший геометрический объект, например квадратную плитку, и представим себе ее увеличение до большего размера (см. рис. 5). Например, предположим, что длина ее стороны равна 1 м, то есть ее площадь, полученная перемножением длин смежных сторон, равна 1 м × 1 м = 1 м². Если удвоить длины всех ее сторон, увеличить их с 1 до 2 м, то площадь плитки увеличится до 2 м × 2 м = 4 м². Точно так же, если длины сторон утроить (увеличить до 3 м), площадь возрастет до 9 м² – и так далее. Общее правило очевидно: площадь возрастает пропорционально квадрату длины.

Это соотношение остается справедливым не только для квадратов, а для любой двумерной геометрической фигуры, если ее форма остается неизменной при одинаковом увеличении всех линейных размеров. Простой пример дает круг: например, при удвоении его радиуса площадь круга увеличивается в 2 × 2 = 4 раза. В более общем случае удвоение всех линейных размеров вашего дома при сохранении неизменными его формы и конфигурации приведет к увеличению площадей всех поверхностей, например стен и полов, в четыре раза.

Эти же рассуждения можно простым образом перенести на объемы. Для начала рассмотрим простой куб: если длины всех его сторон увеличить в два раза, например с 1 м до 2 м, то его объем увеличится с 1 м³ до 2 × 2 × 2 = 8 м³. Аналогичным образом, если эти длины увеличить втрое, объем возрастет в 3 × 3 × 3 = 27 раз. Как и в случае площади поверхностей, это правило можно обобщить на случай любых объектов произвольной формы, если она сохраняется неизменной, и заключить, что при увеличении любого объекта его объем возрастает пропорционально кубу его линейных размеров

Рис. 5. Иллюстрация масштабирования объемов и площади поверхностей для простейшего случая квадратов и кубов

Рис. 6. Прочность балки или конечности пропорциональна площади их поперечного сечения


При удвоении всех длин

Площадь поверхности увеличивается в 2 × 2 = 4 (22) раза

Объем увеличивается в 2 × 2 × 2 = 8 (23) раз


Таким образом, при увеличении размеров объекта его объем увеличивается гораздо быстрее, чем площадь его поверхностей. Приведем простой пример: при удвоении всех линейных размеров дома с сохранением его формы объем увеличивается в 23 = 8 раз, а площадь помещений – всего в 22 = 4 раза. Если взять гораздо более радикальный случай и увеличить все линейные размеры в 10 раз, все площади поверхностей – полов, стен, потолков и так далее – увеличатся в 10 × 10 = 100 раз (то есть стократно), а объемы помещений возрастут много больше, в 10 × 10 × 10 = 1000 раз (то есть тысячекратно).

Это обстоятельство чрезвычайно важно для устройства и деятельности многого из того, что нас окружает, будь то здания, в которых мы живем и работаем, или строение животных и растений природного мира. Например, уровни отопления, охлаждения и освещения в большинстве случаев пропорциональны площади поверхности нагревателей, кондиционеров и окон. Поэтому их производительность растет гораздо медленнее, чем объем помещений, которые требуется отапливать, охлаждать или освещать, поэтому при масштабном увеличении здания его потребности в этом отношении возрастают непропорционально. Сходным образом для крупных животных может быть проблематичным обеспечение рассеяния тепла, выделяемого в результате обмена веществ и физической деятельности, так как площадь поверхности, через которую это тепло рассеивается, у них меньше относительно объема тела, чем у животных более мелких. Например, слоны решили эту проблему, отрастив себе непропорционально большие уши, которые существенно увеличивают площадь поверхности их тела и позволяют рассеивать большее количество тепла.

Весьма вероятно, что принципиальное различие между масштабным увеличением поверхностей и объемов осознавали многие и до Галилея. Его дополнительная новая идея заключалась в объединении этой геометрической истины с осознанием того, что прочность колонн, балок и членов тела определяется величиной площади их поперечного сечения, а не длиной. Так, столб с прямоугольным сечением 4 на 10 см (= 40 см²) может поддерживать вес, в четыре раза больший, чем столб из того же материала, линейные размеры поперечного сечения которого в два раза меньше, то есть 2 на 5 см (= 10 см²) независимо от длин обоих столбов. Первый из них может быть длиной 2 м, а второй – 4, это не имеет значения. Именно поэтому строители, архитекторы и инженеры, занимающиеся строительством, классифицируют пиломатериалы по площади поперечного сечения, а в строительных магазинах их снабжают этикетками типа «40 × 40», «40 × 50», «50 × 50» и так далее.

Однако при масштабном увеличении здания или животного их вес возрастает прямо пропорционально объему – если, конечно, материалы, из которых они состоят, не изменяются и, следовательно, их плотность остается той же. Таким образом, удвоение объема приводит к удвоению веса. Это означает, что вес, который поддерживает колонна или конечность, возрастает значительно быстрее, чем увеличивается прочность: вес (как и объем) масштабируется пропорционально кубу линейных размеров, а прочность увеличивается лишь пропорционально их квадрату. Чтобы проиллюстрировать это положение, представим себе дерево или здание, высота которых увеличивается в 10 раз, а форма остается неизменной. Тогда вес, который необходимо поддерживать, возрастает тысячекратно (в 103 раз), а прочность колонны или ствола, поддерживающих этот вес, – лишь стократно (в 102 раз). Таким образом, способность поддерживать дополнительный вес после такого увеличения оказывается равна всего лишь одной десятой исходной величины. Поэтому произвольное увеличение размеров конструкции, какой бы она ни была, рано или поздно приведет к ее обрушению под собственным весом. Размер и рост имеют пределы.

Иначе говоря, по мере увеличения размеров последовательно уменьшается относительная прочность. Или, если использовать яркий образ, который приводит сам Галилей, «в телах меньших замечается даже относительное увеличение [прочности], так, я думаю, что небольшая собака может нести на себе двух или даже трех таких же собак, в то время лошадь едва ли может нести на спине одну только другую лошадь, равную ей по величине»[26].

2. Ошибочные выводы и недоразумения с масштабами: Супермен

Супермен, впервые появившийся на Земле в 1938 г., до сих пор остается одним из величайших кумиров мира фантастики и фэнтези. Я привожу здесь первую страницу первого комикса о Супермене 1938 г., на которой объяснялось его происхождение[27]. Еще младенцем он прилетел с планеты Криптон, «физическое строение обитателей которой на миллионы лет опередило наше. В зрелом возрасте представители его расы приобретали титаническую силу». Действительно, повзрослевший Супермен «легко мог прыгать на ⅛ мили[28], перескакивать через двадцатиэтажные здания… поднимать огромные тяжести… бежать быстрее скоростного поезда…» – и все эти качества торжественно провозглашались в знаменитой заставке к радиопередачам и позднейшим телевизионным сериалам и фильмам: «Он быстрее летящей пули. Он сильнее локомотива. Он может перепрыгнуть через высотное здание одним прыжком. ‹…› Это Супермен!»


Исходный миф о Супермене и объяснение его сверхсилы; начальная страница первого комикса о Супермене 1938 г.


Все это, может быть, и так. Но в последнем квадрате этой же первой страницы мы находим еще одно смелое заявление, настолько важное, что его даже набрали прописными буквами: «НАУЧНОЕ ОБЪЯСНЕНИЕ ПОРАЗИТЕЛЬНОЙ СИЛЫ КЛАРКА КЕНТА… Невероятно? Нет! Ибо прямо сейчас в нашем мире есть существа, обладающие сверхсилой!» В подтверждение этому приводятся два примера: «Скромный муравей может держать вес, в сотни раз превышающий его собственный» и «Кузнечик прыгает на расстояние, которое для человека составило бы длину нескольких кварталов».

Какими бы убедительными ни казались эти примеры, в них проявляются классическое непонимание и ошибочные выводы из достоверных фактов. Муравей кажется, по меньшей мере на первый взгляд, гораздо сильнее человека. Однако, как мы узнали от Галилея, относительная прочность или сила систематически увеличивается с уменьшением размеров. Поэтому при уменьшении масштаба с размеров собаки до размеров муравья из простых правил масштабного изменения силы при изменении размеров следует, что если «небольшая собака может нести на себе двух или даже трех таких же собак», то муравей сможет нести на своей спине целую сотню муравьев такого же размера. Кроме того, поскольку человек приблизительно в 10 миллионов раз тяжелее муравья, из того же рассуждения следует, что человек может нести на себе лишь одного другого человека. Таким образом, муравей на самом деле обладает силой, нормальной для существа его размера, так же как и человек, и в том, что он способен поднять груз, вес которого в сто раз превышает его собственный, нет ничего необычного или удивительного.

Это недоразумение возникает из-за естественной склонности к линейному мышлению, которое подразумевает, что удвоение размеров животного приводит к удвоению его силы. Будь это так, мы были бы в 10 миллионов раз сильнее муравьев и смогли бы поднимать около тонны, что соответствует способности Супермена поднимать более десяти человек за раз.

3. Порядки величины, логарифмы, землетрясения и шкала Рихтера

Как мы только что видели, при увеличении линейных размеров объекта в 10 раз без изменения его формы или состава, площади его поверхностей (и, следовательно, прочность) увеличиваются в 100 раз, а объемы его частей (и, следовательно, вес) – в 1000 раз. Такие степени десяти называют порядками величины и обычно записывают в удобном сокращенном виде: 101, 102, 103 и так далее. Степенной показатель – маленькие цифры над десяткой – показывает, сколько нулей следует после единицы. Так, 106 обозначает миллион, то есть шесть порядков величины, так как это число записывается в виде единицы с шестью нулями: 1 000 000.

В этих обозначениях результат, полученный Галилеем, можно выразить следующим образом: при увеличении линейного размера на каждый порядок площадь и прочность увеличиваются на два порядка, а объем и вес – на три порядка. Из этого следует, что при увеличении площади на один порядок величины объем увеличивается на 3/2 (то есть полтора) порядка. То же соотношение существует и между прочностью и весом: при увеличении прочности на один порядок величины вес, который может поддерживать данная конструкция, увеличивается на полтора порядка. И наоборот, если вес увеличивается на один порядок величины, прочность возрастает лишь на ⅔ порядка. В этом состоит существенное проявление нелинейного соотношения между этими величинами. Если бы это соотношение было линейным, то при увеличении площади на один порядок величины объем тоже увеличивался бы на один порядок.

Хотя многие из нас могут этого и не осознавать, концепция порядков величины, в том числе и дробных, знакома всем нам из сообщений о землетрясениях, появляющихся в средствах массовой информации. Мы нередко слышим в новостях что-нибудь вроде «сегодня в Лос-Анджелесе было зарегистрировано умеренное землетрясение силой 5,7 балла по шкале Рихтера; толчок поколебал многие здания, но причинил лишь незначительные повреждения». А иногда мы узнаем о землетрясениях, подобных тому, что произошло в лос-анджелесском районе Нортридж в 1994 г. Хотя его сила по шкале Рихтера была выше всего на один балл, причиненные им разрушения были огромны. Ущерб от землетрясения в Нортридже силой 6,7 балла составил более 20 миллиардов долларов, причем погибли 60 человек, что делает его одним из самых тяжелых с экономической точки зрения стихийных бедствий в истории США. В то же время землетрясение силой 5,7 балла может причинить лишь пренебрежимо малый ущерб. Такая огромная разница в последствиях при, казалось бы, небольшом увеличении силы толчка связана с тем, что в шкале Рихтера величины выражаются в порядках величины.

Поэтому увеличение на один балл на самом деле означает увеличение на один порядок, и землетрясение силой 6,7 балла на самом деле в десять раз сильнее, чем землетрясение силой в 5,7 балла. Точно так же землетрясение силой 7,7 балла – такое произошло на Суматре в 2010 г. – в 10 раз сильнее, чем землетрясение в Нортридже, и в 100 раз сильнее, чем землетрясение силой 5,7 балла. Землетрясение на Суматре произошло в сравнительно малонаселенной местности, но и оно принесло обширные разрушения, так как вызвало цунами, которое оставило без жилья более 20 тысяч человек и убило почти пятьсот. К несчастью, пятью годами раньше Суматра перенесла еще более разрушительное землетрясение силой 8,7 балла, то есть еще в 10 раз больше. Разумеется, уровень разрушений, вызываемых землетрясением, зависит не только от его силы, но и от местных условий – например, численности и плотности населения, прочности зданий и инфраструктуры и так далее. Сила землетрясения в Нортридже 1994 г. и более недавнего землетрясения в Фукусиме 2011 г., причинивших огромные разрушения, составляла, соответственно, «всего» 6,7 и 6,6 балла.

Собственно говоря, шкала Рихтера измеряет амплитуду «тряски» при землетрясении, регистрируемую сейсмометрами. Количество выделяющейся при этом энергии масштабируется относительно этой амплитуды нелинейно: при увеличении измеренной амплитуды землетрясения на один порядок выделяющаяся энергия увеличивается на полтора (то есть 3/2) порядка величины. Это означает, что изменение амплитуды на два порядка величины эквивалентно изменению выделяющейся энергии на три порядка (в 1000 раз), а изменение всего на 1,0 балла соответствует изменению энергии в квадратный корень из тысячи, то есть в 31,6 раза[29].

Чтобы получить некоторое представление об огромной энергии землетрясений, можно рассмотреть некоторые цифры: при взрыве одного фунта (то есть около 0,5 кг) тринитротолуола высвобождается энергия, приблизительно соответствующая 1 баллу по шкале Рихтера. Сила 3 балла эквивалентна взрыву 1000 фунтов (около 500 кг) ТНТ: взрыв приблизительно такой силы произошел в 1995 г. во время теракта в Оклахома-Сити. 5,7 балла по шкале Рихтера соответствуют приблизительно 5000 т взрывчатки; 6,7 (сила землетрясений в Нортридже и Фукусиме) – приблизительно 170 000 т; 7,7 (землетрясение 2010 г. на Суматре) – приблизительно 5,4 млн т; а 8,7 (землетрясение 2005 г. на Суматре) – приблизительно 170 млн т. Самым сильным из зарегистрированных землетрясений было Великое чилийское землетрясение 1960 г. в городе Вальдивия: его сила составила 9,5 балла (почти в тысячу раз больше по амплитуде, чем в Нортридже и Фукусиме), что соответствует 2700 млн тонн ТНТ.

Отметим для сравнения, что атомная бомба «Малыш», сброшенная в 1945 г. на Хиросиму, высвободила энергию, эквивалентную приблизительно 15 000 тонн ТНТ. Средняя водородная бомба высвобождает более чем в тысячу раз больше энергии, что соответствует крупному землетрясению силой 8 баллов. Речь идет об огромных количествах энергии: 170 млн тонн ТНТ, энергии суматранского землетрясения 2005 г., достаточно для энергоснабжения города с населением 15 миллионов человек (то есть размером со всю агломерацию Большого Нью-Йорка) в течение целого года.

Масштаб, в котором приращение идет не линейно (1, 2, 3, 4, 5…), а по степеням десяти (101, 102, 103, 104, 105…), как на шкале Рихтера, называется логарифмическим. Отметим, что в этом масштабе на самом деле происходит линейное увеличение порядков величины, как видно по показателям степени десяти (верхним индексам). Одна из многочисленных особенностей логарифмического масштаба состоит в том, что она позволяет отображать на одном и том же графике величины, отличающиеся друг от друга по одной из осей во много раз, например силу землетрясения в Вальдивии, землетрясения в Нортридже и взрыва динамитной шашки, то есть значения, различающиеся более чем в миллиард (109) раз. На графике, построенном в линейном масштабе, это было бы невозможно, так как большинство точек сгрудилось бы в самом низу графика. Чтобы построить в линейном масштабе график, включающий в себя все землетрясения, сила которых различается на пять или шесть порядков величины, потребовался бы лист бумаги длиной несколько километров – потому и была изобретена шкала Рихтера.

Благодаря тому что логарифмический масштаб дает удобную возможность компактного представления величин разных порядков на одной и той же странице, он широко используется во всех научных дисциплинах. Эту методику, позволяющую охватить сразу весь диапазон сильно изменяющихся величин, широко применяют, например, для представления яркости звезд, кислотности химических растворов (величины рН), физиологических характеристик животных или ВВП разных стран мира. Именно так построены графики, приведенные на рис. 1–4 во вступительной главе.

4. Тяжелая атлетика и проверка Галилея

Важная особенность науки, часто отличающая ее от других умственных занятий, состоит в требовании подтверждения гипотез опытами и наблюдениями. Это вовсе не тривиальное обстоятельство, как можно видеть из того факта, что утверждение Аристотеля, согласно которому скорость предметов, падающих под действием силы тяжести, пропорциональна их весу, никто не удосужился проверить в течение более двух тысяч лет, а когда его наконец проверили, оно оказалось ошибочным. К сожалению, хотя многие из наших нынешних догм и убеждений, особенно в ненаучных областях, точно так же остаются непроверенными, в них безоговорочно верят, даже не пытаясь найти им каких-либо подтверждений – и это порой приводит к неприятным и даже катастрофическим последствиям.

Поэтому, завершив наше отступление, посвященное степеням десяти, я хотел бы приложить то, что мы узнали о порядках величины и логарифмах, к проверке предсказаний Галилея относительно масштабирования прочности или силы при изменении массы. Можно ли показать, что в «реальном мире» сила действительно изменяется с массой так, как предсказывает правило, гласящее, что изменение порядка ее величины должно происходить в пропорции два к трем?

В 1956 г. химик М. Г. Лицке придумал простое и элегантное подтверждение предсказания Галилея. Он осознал, что данные о том, как максимальная сила масштабируется при изменении массы тела, по меньшей мере у человека, можно найти в статистике тяжелоатлетических соревнований в разных весовых категориях. Все лучшие тяжелоатлеты стараются максимально увеличить вес, который они могут поднять, и тренируются для этого приблизительно с одинаковой интенсивностью и в течение одинакового времени, что позволяет сравнивать их силу в приблизительно одинаковых условиях. Кроме того, соревнования проводятся в трех дисциплинах – жим, рывок и толчок, – так что совокупные результаты по всем трем достаточно хорошо усредняют индивидуальные вариации склонности к той или иной из этих дисциплин. Поэтому такие суммарные результаты можно считать хорошей мерой максимальной силы.

Используя суммарные результаты по всем трем дисциплинам тяжелоатлетических соревнований на Олимпийских играх 1956 г., Лицке блестяще подтвердил, что сила масштабируется с массой тела по степенному закону с показателем, равным ⅔. Результаты всех обладателей золотых медалей были нанесены на график зависимости от веса их тела в логарифмическом масштабе, то есть по каждой оси были отложены приращения в десять раз. Если сила, отложенная по вертикальной оси, увеличивается на два порядка при каждом увеличении массы тела, отложенной по горизонтальной оси, на три порядка, то график должен представлять собой прямую, наклон[30] которой равен ⅔. Результат измерений Лицке был равен 0,675, что чрезвычайно близко к предсказанному значению (⅔ = 0,667). Его график приведен на рис. 7[31].


Рис. 7




Зависимость суммарного веса, поднятого чемпионами Олимпийских игр 1956 г. по тяжелой атлетике, от массы их тела, подтверждающая предсказанный наклон в ⅔. Кто был сильнее, а кто слабее всех?

5. Индивидуальные результаты и отклонения от масштабирования: самый сильный человек на свете

Регулярность, проявляющаяся в данных по тяжелой атлетике, и их точное соответствие предсказанному правилу масштабирования силы могут показаться удивительными, особенно с учетом простоты доказательства этого правила. В конце концов, все мы различаемся формами и параметрами тела, жизненной историей и, до некоторой степени, наследственностью и так далее: ничто из этого не учитывалось в выводе коэффициента ⅔. Использование суммы весов, поднятых олимпийскими чемпионами, которые тренировались по приблизительно одинаковым программам, позволяет усреднить некоторые из этих индивидуальных различий. Вместе с тем можно считать с достаточно высокой степенью точности, что все мы состоим из приблизительно одних и тех же веществ и имеем весьма сходную физиологию. Наши организмы действуют очень сходным образом и, как видно из рис. 7, по крайней мере с точки зрения силы, являются масштабными версиями друг друга. Более того, к концу этой книги я надеюсь доказать вам, что это общее сходство распространяется почти на все аспекты вашей физиологии и истории развития. Так что, когда я говорю, что «мы» в некотором приближении являемся масштабированными версиями друг друга, я имею в виду не только всех людей, но и всех млекопитающих, а в некоторых отношениях и вообще все живое.

Если взглянуть на законы масштабирования с несколько другой точки зрения, можно сказать, что они дают некий идеализированный стандарт, охватывающий господствующие, наиболее существенные черты, которые объединяют всех нас – не только как людей, но и как различные виды организмов и проявлений жизни. Каждый индивидуум, каждый вид и даже каждая таксономическая группа в той или иной степени отклоняются от норм, проявляющихся в законах масштабирования, и именно эти отклонения отражают конкретные характеристики, образующие индивидуальность.

Проиллюстрируем это утверждение на том же примере тяжелой атлетики. Если внимательно посмотреть на график, приведенный на рис. 7, ясно видно, что четыре точки лежат почти точно на прямой, а это означает, что эти четыре тяжелоатлета могут поднять почти тот самый вес, который соответствует массе их тела. Однако оставшиеся две точки, представляющие тяжеловеса и спортсмена средней весовой категории, несколько отходят от прямой: одна из них лежит ниже, а другая – выше ее. Таким образом, хотя тяжеловес поднял больше, чем кто-либо другой, его результат на самом деле не дотягивает до уровня, соответствующего массе его тела, а спортсмен, выступающий в среднем весе, превзошел результат, нормальный для своей массы. Другими словами, с уравнительной точки зрения физика, рассматривающего эту ситуацию с позиций равных условий игры, самым сильным человеком в мире на 1956 г. был чемпион в среднем весе, поскольку его результат был выше нормального для его собственного веса. Забавно отметить, что в аспекте такого научного масштабирования самым слабым оказался чемпион в тяжелом весе, хотя он и поднял больше, чем все остальные.

6. Другие ошибочные выводы и недоразумения с масштабами: дозировка ЛСД для слонов и тайленола для младенцев

Размеры и масштабы играют ключевую роль в медицине и здравоохранении, хотя в биологических и медицинских профессиях идеи и теоретические обоснования законов масштабирования могут быть явно не выражены. Например, все мы хорошо знакомы с концепцией стандартных таблиц или графиков, показывающих, как рост, скорость роста, количество потребляемой пищи и даже объем талии должны коррелировать с массой нашего тела и как все эти параметры должны изменяться на ранних стадиях развития ребенка. Эти таблицы – не что иное, как представление законов масштабирования, которые были признаны применимыми к «среднему человеку». Врачи даже заучивают, как эти переменные в среднем должны коррелировать с весом и возрастом пациентов.

Также хорошо известна родственная концепция инвариантных величин, к которым относятся, например, частота пульса или температура тела – они не изменяются систематически в зависимости от веса или роста среднего здорового человека. Более того, значительные отклонения от этих неизменных средних значений обычно считают признаком заболевания или расстройства здоровья. Если температура тела превышает 38 °C, или кровяное давление равно 275/154, это значит, что-то не в порядке. В наше время стандартный медицинский осмотр дает множество подобных результатов, по которым врач оценивает состояние здоровья пациента. Одна из наиболее трудных задач для отрасли медицины и здравоохранения состоит в создании измеримой базовой шкалы жизни и, на ее основе, расширенного набора параметров среднего здорового человека, а также в определении допустимых размеров колебаний или отклонений от нормальных значений.

Поэтому неудивительно. что многие из наиболее важных проблем медицины можно рассмотреть с точки зрения масштабирования. В следующих главах мы затронем, используя эту систему взглядов, несколько важных вопросов, касающихся здоровья всех и каждого, от старения и смертности до сна и рака. Однако я хотел бы сначала, на закуску, рассмотреть некоторые не менее важные медицинские вопросы, имеющие отношение к идее Галилея о противоречиях между процессами масштабирования площади и объема. Этот пример покажет, как легко подсознательное использование линейных экстраполяций порождает заблуждения, приводящие к совершенно ошибочным выводам.

При разработке новых лекарств и изучении самых разных заболеваний значительную часть исследований проводят на так называемых модельных животных – как правило, на поколениях мышей, выведенных и отобранных по определенным признакам именно для исследовательских целей. То, как результаты таких исследований следует масштабировать для их применения к человеку, чрезвычайно важно в медицинских и фармакологических исследованиях, так как именно это позволяет определять безопасную и эффективную дозировку медикаментов или делать выводы относительно диагнозов и лечебных процедур. Всеобъемлющая теория такого масштабирования все еще не разработана, хотя фармацевтическая промышленность затрачивает огромные ресурсы на решение подобных задач при разработке новых лекарств.

Классическим примером некоторых проблем и ловушек, возникающих на этом пути, является одно из первых исследований потенциального терапевтического воздействия на человека ЛСД (диэтиламида лизергиновой кислоты). Хотя термин «психоделик» был придуман еще в 1957 г., этот наркотик оставался практически неизвестным за пределами профессионального сообщества психологов в 1962 г., когда психиатр Луи Уэст (не родственник), Честер Пирс из Университета Оклахомы и Уоррен Томас, зоолог из городского зоопарка Оклахома-Сити, предложили изучить его действие на слонах.

На слонах? Да, именно на слонах, а точнее, на слонах индийских. Хотя использование слонов, а не мышей в качестве «модели» для изучения эффектов ЛСД может показаться несколько эксцентричным, основания этой идеи нельзя назвать полностью неправдоподобными. Дело в том, что у индийских слонов время от времени случаются непредсказуемые переходы из обычного для них мирного и послушного состояния в состояние, в котором они становятся чрезвычайно агрессивны и даже опасны, и длительность таких периодов доходит до двух недель. Уэст и его соавторы предположили, что это странное и зачастую опасное поведение, которое называют словом «муст», вызывается тем, что в мозгу слона вырабатывается ЛСД. Поэтому они хотели проверить, может ли ЛСД вызвать это любопытное состояние, и, если это так, получить из изучения реакции на это вещество представление о воздействии ЛСД на человека. Идея довольно странная, но, быть может, не вполне лишенная смысла.

Однако из нее немедленно вытекает интересный вопрос: сколько именно ЛСД нужно дать слону?

В то время мало что знали о безопасной дозировке ЛСД. Хотя этот наркотик еще не проник в массовую культуру, уже было известно, что даже доза менее 0,25 мг вызывает у человека типичный «кислотный трип», а безопасная доза для кошек составляет около 0,1 мг на килограмм массы тела. Именно на основе этой последней цифры исследователи решили оценить, какую дозу ЛСД следует дать ничего не подозревавшему слону Таско, жившему в зверинце Линкольн-парка в Оклахома-Сити.

Поскольку Таско весил около 3000 кг, они оценили, используя размер заведомо безопасной дозы для кошек, что подходящая для него доза должна быть равна произведению 0,1 мг на килограмм на 3000 кг, то есть около 300 мг ЛСД. На деле слону вкололи 297 мг. Вспомним, что для нас с вами хорошая доза ЛСД составляет менее 0,25 мг. Результат инъекции, введенной Таско, был эффектным и катастрофическим. Вот что было написано в статье исследователей: «Через пять минут после инъекции он [слон] затрубил, упал, тяжело перевалился на правый бок, испражнился и вошел в эпилептический статус». Бедняга Таско умер через час и сорок минут после этого. Возможно, не менее тревожным, чем этот ужасный исход, был вывод, который сделали исследователи: они заключили, что слоны «обладают весьма высокой относительной чувствительностью к ЛСД».

Проблема тут, разумеется, сводится к тому, что мы уже подчеркивали несколько раз, – к соблазнительной ловушке линейного мышления. Расчет дозы, которую следовало ввести Таско, был основан на предположении о том, что эффективная и безопасная дозировка линейно масштабируется в зависимости от массы тела, то есть предполагалось, что удельная доза на килограмм массы тела должна быть одной и той же для всех млекопитающих. Поэтому дозу для кошек, 0,1 мг на килограмм массы тела, наивно умножили на массу Таско и получили то несуразное значение – 297 мг, – которое и привело к столь катастрофическим последствиям.

Вопрос о том, как именно следует производить масштабирование дозировки между разными животными, все еще остается открытым, и ответ на него может в разной степени зависеть от свойств конкретного медикамента и медицинских показаний для его применения. Однако независимо от всех этих подробностей для получения правдоподобной оценки необходимо понимать основополагающие механизмы, которые обеспечивают перенос медикамента и его поглощение конкретными органами и тканями. В числе других факторов важную роль в этом играет уровень метаболизма. Подобно метаболитам и кислороду медикаменты обычно переносятся через поверхностные мембраны; иногда такой перенос осуществляется посредством диффузии, а иногда – через сетевые системы. Поэтому факторы, определяющие дозировку, в существенной степени определяются масштабированием площади поверхности, а не суммарного объема или массы организма, а площадь поверхности масштабируется с изменением массы нелинейно. Простой расчет с использованием правила масштабирования поверхности при изменении массы с показателем ⅔ показывает, что более подходящая для слонов доза ЛСД должна быть ближе к нескольким миллиграммам, чем к нескольким сотням, которые были введены слону. Если бы такие вычисления были произведены, Таско наверняка остался бы жив, а выводы о воздействии ЛСД были бы совершенно иными.

Вывод ясен: масштабирование дозировки лекарств – дело совсем не тривиальное, и наивный подход к ней может привести к нежелательным результатам и ошибочным выводам, если не рассчитывать дозировку корректно, с должным вниманием к основополагающим механизмам переноса и усвоения медикаментов. Этот вопрос, несомненно, чрезвычайно важен и в некоторых случаях даже может стать вопросом жизни и смерти. В этом заключается одна из основных причин, по которым выдача разрешения на широкое применение новых лекарств занимает столько времени.

Чтобы вы не подумали, что речь идет о каком-то никому не известном, маргинальном исследовании, отметим, что статья о слонах и ЛСД была опубликована в журнале Science[32], одном из самых уважаемых и престижных научных журналов мира.

С проблемой масштабирования дозировки лекарств в зависимости от массы тела хорошо знакомы многие из нас: с ними приходится сталкиваться родителям детей с повышенной температурой, простудами, отитами и другими подобными превратностями. Я помню то немалое удивление, с которым обнаружил много лет назад, когда пытался посреди ночи успокоить орущего младенца с высокой температурой, что рекомендованная для детей дозировка, напечатанная на этикетке бутылочки тайленола, увеличивалась с массой тела линейно. Поскольку мне уже была известна трагическая история слона Таско, я был несколько обеспокоен этим. На этикетке был приведен маленький график, показывавший, сколько лекарства следует давать ребенку того или иного возраста и веса. Например, для младенца весом 3 кг рекомендованная дозировка составляла четверть чайной ложки (40 мг), а для ребенка весом 18 кг (в шесть раз тяжелее) – полторы чайной ложки (240 мг), то есть ровно в шесть раз больше. Однако если следовать нелинейному закону масштабирования с показателем ⅔, то дозировка должна увеличиться всего лишь в 62/3 ≈ 3,3 раза, что соответствует 132 мг, то есть чуть больше половины рекомендованной дозы! Таким образом, если правильная доза для трехкилограммового младенца действительно равна ¼ ложки, то доза 1,5 ложки, рекомендованная для ребенка, весящего 18 кг, была завышена почти в два раза.

Хочется надеяться, что эти рекомендации не были опасны для детей, но несколько лет спустя я заметил, что этот график исчез и с этикеток, и с веб-сайта фармацевтической компании. Однако на том же сайте до сих пор имеется график, представляющий линейную шкалу рекомендованной дозировки для детей весом от 18 до 36 кг, хотя для младенцев весом менее 18 кг (младше двух лет) там теперь разумно рекомендуют посоветоваться с врачом. Тем не менее другие авторитетные сайты до сих пор используют при определении дозировок для детей младше этого возраста линейное масштабирование[33].

7. ИМТ, Кетле, средний человек и социальная физика

Еще один важный медицинский вопрос, связанный с масштабированием, – это использование индекса массы тела (ИМТ) в качестве меры содержания жира в организме и, в более широком смысле, важного параметра здоровья. В последние годы этот показатель получил широкую популярность в связи с его повсеместным использованием в диагностике ожирения и многочисленных связанных с ним нарушений здоровья, в том числе гипертонии, диабета и кардиологических заболеваний. Хотя бельгийский математик Адольф Кетле ввел ИМТ более 150 лет назад в качестве простого параметра классификации людей, ведущих малоподвижный образ жизни, этот показатель приобрел большой авторитет как у врачей, так и у широкой общественности, несмотря на свои довольно туманные теоретические обоснования.

Собственно говоря, до 1970-х гг. и роста популярности ИМТ он был известен под названием индекса Кетле. Хотя Кетле получил математическое образование, он был классическим энциклопедистом, ученым-универсалом, и внес свой вклад в множество разных научных дисциплин, в том числе в метеорологию, астрономию, математику, статистику, демографию, социологию и криминалистику. Его главным наследием оказался ИМТ, но он был лишь очень малой частью его вдохновенных трудов по внедрению статистического анализа и математического мышления в решение задач, представляющих общественный интерес.

Кетле стремился понять статистические законы, лежащие в основе таких социальных явлений, как уровни преступности, браков и самоубийств, и изучить взаимосвязи между ними. Наиболее влиятельная из его книг, «О человеке и развитии его способностей, или Опыт социальной физики» (Sur l’homme et le développement de ses facultés, ou essai de Physique sociale), была издана в 1835 г. В английском переводе это заглавие было сокращено до гораздо менее высокопарного «Трактат о человеке» (Treatise on Man). В этой книге он ввел понятие социальной физики и описал свою концепцию «среднего человека» (l’homme moyen). Эта концепция хорошо вписывается в наш разговор о рассуждениях Галилея относительно изменения силы мифического «среднего человека» в зависимости от его веса или роста, а также о существовании осмысленных средних основных значений физиологических характеристик, например температуры тела или кровяного давления.

«Средний человек» (любого пола) имеет усредненные по достаточно большой группе населения значения различных измеримых физиологических и социологических параметров. Сюда входит все, от роста и продолжительности жизни до числа браков, уровня потребления алкоголя и заболеваемости. Однако Кетле привнес в анализ такого рода нечто новое и существенное: учет статистических колебаний этих величин вокруг средних значений и оценку соответствующих им распределений вероятности. Он установил – или, в некоторых случаях, просто предположил, – что такие колебания в основном соответствуют так называемому нормальному, или Гауссову, распределению, широко известному своей колоколообразной формой. Таким образом, он не только измерял средние значения этих величин, но и анализировал распределения их отклонений от среднего. Например, здоровое состояние человека определяется в таком исследовании не просто по наличию конкретных значений этих параметров (например, температуре тела, равной 36,6 °C), но и по их нахождению в пределах четко ограниченного диапазона, определенного по отклонениям от среднего значения, характерным для здоровых людей в масштабах всего населения.

Идеи Кетле и используемый им термин «социальная физика» казались в то время довольно спорными, поскольку их восприняли как попытку загнать социальные явления в детерминистические рамки, что противоречило бы концепциям свободы воли и свободы выбора. Задним числом это кажется удивительным, учитывая одержимость Кетле статистическими вариациями, которые мы могли бы считать теперь численной мерой той самой «свободы выбора», которая позволяет нам отклоняться от нормы. Мы еще неоднократно вернемся к теме противоречия между ролью основополагающих «законов», ограничивающих структуру и развитие систем, как социальных, так и биологических, и возможностями их «нарушения». Насколько мы свободны в определении своей собственной судьбы, коллективной или индивидуальной? Хотя на детализированном уровне, «в режиме высокого разрешения», мы и обладаем большой свободой определения событий своего ближайшего будущего, на уровне более общем и менее подробном, на котором речь идет о длительных промежутках времени, жизнь может оказаться более детерминированной, чем нам представляется.

Хотя название «социальная физика» практически исчезло из научного обихода, в последнее время к нему стали возвращаться ученые разных специализаций, взявшиеся за рассмотрение проблем общественных наук с более математической, аналитической точки зрения, обычно характерной для системы парадигм традиционной физики. Значительную часть той работы, которой занимались мы с моими коллегами и которая будет описана несколько более подробно в дальнейших главах, можно отнести именно к области социальной физики, хотя никто из нас широко не использует этот термин. По иронии судьбы его в первую очередь используют специалисты по информатике, которые не имеют отношения ни к социологии, ни к физике: они описывают им большие массивы данных по социальным взаимодействиям. Вот как они характеризуют это понятие: «Социальная физика – это новый способ понимания поведения человека, основанный на анализе “больших данных”»[34]. Хотя эта область исследований весьма интересна, наверное, можно сказать, что лишь немногие физики посчитали бы ее относящейся к «физике», прежде всего потому, что эти исследования не направлены на выявление основополагающих принципов и общих законов, не сосредоточиваются на математическом анализе и получении механистических объяснений.

Предложенный Кетле индекс массы тела определяют как отношение массы тела к квадрату роста. Таким образом, он измеряется в фунтах на квадратный дюйм или килограммах на квадратный метр. Его идея сводится к предположению о том, что вес здорового человека, особенно такого, форма тела и содержание жиров в теле которого соответствуют «норме», масштабируется пропорционально квадрату роста. Тогда отношение веса к квадрату роста должно давать величину, приблизительно одинаковую для всех здоровых людей; ее значения лежат в сравнительно узком диапазоне (от 18,5 до 25,0 кг/м²). Выход значений за пределы этого диапазона считается признаком возможных проблем со здоровьем, связанных с недостаточным или избыточным для данного роста весом[35].

Таким образом, предполагается, что ИМТ остается приблизительно неизменным для всех идеализированных здоровых индивидуумов, то есть имеет более или менее одинаковое значение независимо от веса и роста человека. Однако из этого следует, что масса тела должна увеличиваться пропорционально квадрату роста, что, как кажется, резко противоречит тем выводам, которые мы сделали ранее из работ Галилея: тогда мы заключили, что масса тела должна возрастать гораздо быстрее, пропорционально кубу роста. Если это так, то ИМТ в используемой формулировке не может быть неизменной величиной, а должен линейно расти с увеличением роста. Это должно приводить к завышению числа диагнозов избыточного веса у высоких людей и его занижению у людей низкорослых. Действительно, существуют свидетельства того, что высокие люди имеют аномально высокие по сравнению с реальным содержанием жира в организме значения ИМТ.

Как же на самом деле масштабируется вес человека в зависимости от его роста? Разные статистические анализы данных дают разные результаты, колеблющиеся от подтверждения кубического закона до полученных в более недавних исследованиях показателей, равных 2,7 и даже меньшим значениям, более близким к двум[36]. Чтобы понять, как такое может быть, нужно вспомнить об одном важном допущении, сделанном при выводе кубического закона, а именно о том, что при увеличении размеров форма системы – в данном случае человеческого тела – должна оставаться неизменной. Однако форма тела изменяется с возрастом, проходя весь путь от предельного случая, новорожденного с большой головой и пухлыми конечностями, до «хорошо сложенного» взрослого, а затем и до обвислого тела человека моего возраста. Кроме того, форма тела зависит еще и от пола, культуры и других социально-экономических факторов, которые могут коррелировать или не коррелировать с состоянием здоровья и наличием или отсутствием избыточного веса.

Много лет назад я анализировал набор данных по зависимости роста мужчин и женщин от их веса и обнаружил превосходное соответствие классическому кубическому закону. По счастливой случайности те данные, которые я анализировал, относились к сравнительно узким возрастным группам – американцам в возрасте от пятидесяти до пятидесяти девяти лет и американкам в возрасте от сорока до сорока девяти. Поскольку данные для каждого пола анализировались по отдельности и в пределах довольно узких и однородных возрастных групп, эти выборки давали осмысленное представление «средних» здоровых мужчин и женщин, обладающих сходными характеристиками. Как это ни парадоксально, такое вовсе не типично для гораздо более серьезных и широкомасштабных исследований, в которых усреднение производится по всем возрастным группам с разными характеристиками, что делает интерпретацию результатов значительно менее ясной. Поэтому неудивительно, что в таких исследователях получают степенные показатели, отличные от идеализированного значения, равного трем. Из этого следует, что было бы разумнее разбивать суммарный набор данных на группы, члены которых обладают некоторыми сходными характеристиками – например, возрастными, – и определять параметры для полученных таким образом подгрупп.

В отличие от кубического закона масштабирования общепринятое определение ИМТ не имеет никакого теоретического или концептуального обоснования, и статистическое значение этого показателя сомнительно. Кубический закон, напротив, теоретически обоснован и подтверждается опытными данными – при условии контроля характеристик рассматриваемого контингента. Поэтому неудивительно, что было предложено альтернативное определение ИМТ, согласно которому ИМТ вычисляется как отношение массы тела к кубу роста. Этот показатель известен под названием индекса Рорера. Хотя он несколько более значим с точки зрения корреляции с содержанием жира в организме, чем индекс Кетле, он тем не менее обладает теми же недостатками, так как не был преобразован для отдельных групп людей, имеющих сходные характеристики.

Разумеется, хорошие врачи используют для оценки здоровья несколько разных значений ИМТ, что уменьшает вероятность грубых ошибок интерпретации, кроме, вероятно, случаев, касающихся людей, ИМТ которых близок к граничным значениям. Во всяком случае, ясно, что классический ИМТ, используемый в настоящее время, не следует воспринимать слишком серьезно без дальнейших исследований и определения более точных и конкретных показателей, учитывающих, например, возраст и культурные различия, особенно для пациентов, здоровье которых, по-видимому, может находиться в опасности.

Этими примерами я хотел проиллюстрировать тот факт, что концепция масштабирования лежит в основе применения жизненно важных параметров, используемых в здравоохранении, и выявить некоторые из возможных ловушек и ошибочных толкований. ИМТ, как и дозировка медикаментов, представляет собой сложный и очень важный элемент медицинской практики, теоретические основания которого до сих пор полностью не разработаны и не осознаны[37].

8. Инновации и ограничения роста

Обманчиво простое рассуждение Галилея о причинах существования пределов высоты деревьев, животных и строений имеет глубокие последствия для проектирования и инноваций. Выше, разъясняя его доказательство, я закончил следующим замечанием: «Произвольное увеличение размеров конструкции, какой бы она ни была, рано или поздно приведет к ее обрушению под собственным весом. Размер и рост имеют пределы». К этому следовало бы добавить одну чрезвычайно важную оговорку: «…если ничто не изменяется». Для продолжения роста и предотвращения обрушения должны произойти изменения и, следовательно, инновации. Основными движущими силами инноваций являются рост и постоянная потребность в адаптации к новым или изменяющимся условиям, часто выражающаяся в виде «усовершенствования» или увеличения эффективности.

Подобно большинству физиков Галилей не интересовался процессами адаптации. Чтобы узнать, насколько важную роль играют эти процессы в формировании окружающего нас мира, нам пришлось дожидаться Дарвина. Вообще говоря, адаптивные процессы в первую очередь относятся к областям биологии, экономики и общественных наук. Однако Галилей, рассматривая примеры, взятые из механики, ввел фундаментальную концепцию масштаба, из которой вытекает идея роста, и обе эти концепции играют основополагающую роль в сложных адаптивных системах. Противоречие между законами масштабирования, ограничивающими разные свойства системы, – например, тот факт, что прочность конструкций, поддерживающих систему, масштабируется иначе, чем тот вес, который они поддерживают, – приводит к невозможности бесконечного роста, то есть неограниченного увеличения размеров.

Если, конечно, не случается инноваций. В выводы этих законов масштабирования было заложено основополагающее предположение о сохранении неизменными физических характеристик системы – например, ее формы, плотности и химического состава – при изменении ее размеров. Следовательно, чтобы строить более крупные конструкции или развивать более крупные организмы, выходящие за пределы, установленные законами масштабирования, необходимы инновации, которые изменили бы либо материальный состав системы, либо ее конструкцию, либо и то и другое.

Простой пример инноваций первого типа дает использование более прочных материалов, например стали вместо дерева при сооружении мостов или зданий; в качестве простого примера инноваций второго типа можно вспомнить применение в строительстве арок, сводов и куполов вместо простых горизонтальных балок и вертикальных колонн. В развитии мостов мы находим превосходный пример того, как желание или необходимость решать новые задачи – в данном случае связанные с созданием безопасных и устойчивых средств пересечения более широких рек, каньонов или долин – стимулировали применение и новых материалов, и новых конструкций.

Самый примитивный мост – простой ствол, упавший поперек потока или специально положенный туда людьми, – уже представляет собой инновацию. Возможно, первым значительным шагом инженерной инновации в области мостостроения было применение специально обтесанных деревянных бревен или досок. Стремление к обеспечению безопасности, устойчивости, долговечности и удобства, а также потребность в пересечении более широких рек привели к тому, что к этой конструкции стали добавлять каменные сооружения, используемые в качестве простых опор, установленных на обоих берегах; в результате получился так называемый балочный мост. Поскольку прочность древесины на изгиб ограниченна, явно существует некоторый предел расстояния, которое такой мост может перекрыть. Эта проблема была решена при помощи простой инновации конструкции, которая заключается в использовании каменных опор – быков, – устанавливаемых посреди реки. Таким образом мост, по сути дела, превращают в последовательность из нескольких отдельных балочных мостов.

Альтернативная стратегия сводилась к использованию гораздо более сложной инновации – сооружению мостов, целиком сделанных из камня и использующих физические принципы арки, то есть внесению изменений и в материалы, и в конструкцию. Такие мосты обладают тем огромным преимуществом, что способны выдерживать условия, которые привели бы к повреждению или разрушению сооружений более старой конструкции. Примечательно, что каменные арочные мосты возникли более трех тысяч лет назад, еще в греческом бронзовом веке (XIII в. до н. э.), и некоторые из них используются до сих пор. Величайшими строителями каменных арочных мостов древности были римляне, возведшие по всей своей империи множество великолепных мостов и акведуков, многие из которых существуют и поныне.

Чтобы перекрыть еще более широкие и глубокие пропасти – например, ущелье реки Эйвон в Англии или устье залива Сан-Франциско в США, – потребовались новые технологии, новые материалы и новые конструкции. Кроме того, увеличение интенсивности движения и потребность в устойчивости к большей нагрузке, особенно после возникновения железных дорог, привели к развитию чугунных арочных мостов, сварных стержневых ферм, а затем и к применению стали и разработке современных подвесных мостов. Существует множество вариантов таких конструкций: балочно-консольные мосты, арочные мосты с затяжкой (наиболее известным из которых является Харбор-Бридж в Сиднее) и разводные мосты наподобие Тауэрского в Лондоне. Кроме того, современные мосты строят сейчас с использованием множества разных материалов, в том числе сочетаний бетона, стали и армированных волокнами полимеров. Все это – инновационные решения общих инженерных задач, в том числе и связанных с преодолением ограничений, налагаемых законами масштабирования, действующими одинаково для всех мостов, и многочисленных местных особенностей, географических, геологических, транспортных и экономических, которые определяют уникальные черты и индивидуальность каждого из мостов.

Все эти инновационные варианты, возникающие из осознания потребности в пересечении все более широких и трудных преград, рано или поздно достигают своего предела. Поэтому в этом контексте инновацию можно рассматривать как реакцию на задачу, порожденную непрерывным увеличением ширины перекрываемого пространства, от малозаметного ручейка до самых широких водных пространств и самых глубоких и просторных каньонов и долин. Залив Сан-Франциско не перекроешь длинной доской. Чтобы построить мост, пересекающий его, нужно проделать долгий эволюционный путь, пролегающий через многочисленные уровни инноваций – до открытия железа, изобретения стали и их внедрения в инженерную концепцию подвесного моста.

Такое представление инноваций, опирающееся на их связь с желанием или необходимостью увеличения размеров создаваемых конструкций, расширения горизонтов и выхода на все более обширные рынки, а также неизбежного столкновения с потенциальными пределами, создаваемыми физическими ограничениями, образует шаблон, который мы будем использовать далее в этой книге для рассмотрения сходных видов инноваций в более широком контексте биологических и социально-экономических адаптивных систем.

В следующих главах это представление будет расширено, чтобы показать, как возникла идея моделирования систем. Моделирование стало теперь настолько обычным и естественным делом, что мы, как правило, не осознаем, что оно возникло сравнительно недавно. Нам трудно представить себе то время, когда оно не было важной и неотъемлемой частью производственных процессов или научных исследований. Всякого рода модели строились в течение многих веков, особенно в архитектуре, но их назначение сводилось в основном к иллюстрации эстетических характеристик объекта, не предполагая испытаний, исследований или демонстрации динамических или физических принципов создаваемой системы на масштабной модели. Что самое важное, такие модели почти всегда изготавливались «в масштабе», как географические карты, то есть размеры каждой детали системы находились в некотором фиксированном отношении – например, 1:10 – к реальным размерам. Каждая часть такой модели была линейно масштабированным представлением соответствующей части моделируемого судна, собора или города. Такие модели вполне эстетичны и хороши в качестве игрушек, но мало что говорят о том, как работает реальная система.

В наше время любые процессы или физические объекты, какие только можно себе представить, от автомобилей, зданий, самолетов и морских судов до дорожных пробок, эпидемий, экономических процессов и погоды, «моделируются» на компьютерах. Я уже говорил выше о специально выведенных мышах, которых используют в биологических и медицинских исследованиях в качестве уменьшенной «модели» человека. Главный вопрос во всех этих случаях сводится к следующему: как можно реалистично и достоверно масштабировать результаты и наблюдения, полученные на модели, на реальный объект? Вся эта система рассуждений происходит из прискорбной неудачи, постигшей в середине XIX в. конструкцию одного корабля, и замечательных прозрений скромного инженера-любителя, придумавшего, как избежать подобных неудач в будущем.

9. «Грейт Истерн», ширококолейные железные дороги и удивительный Изамбард Кингдом Брюнель

Иногда неудачи и катастрофы дают мощный толчок развитию и создают условия для появления инноваций, новых идей и изобретений, будь то в науке, инженерном деле, финансах, политике или личной жизни человека. Именно это произошло в истории кораблестроения и привело к зарождению теории моделирования, и важнейшую роль в этой истории сыграл человек с необыкновенным именем Изамбард Кингдом Брюнель.

В 2002 г. радиостанция BBC провела по всей Британии опрос и составила список «100 величайших британцев». Первое место, наверное предсказуемо, занял Уинстон Черчилль, на третьем была принцесса Диана (с момента ее гибели к тому времени прошло всего пять лет), а за ней следовала весьма впечатляющая троица – Чарльз Дарвин, Уильям Шекспир и Исаак Ньютон. Но кто же был вторым? Не кто иной, как замечательный Изамбард Кингдом Брюнель!

Когда я упоминаю имя Брюнеля в лекциях, которые читаю за пределами Соединенного Королевства, я обычно спрашиваю слушателей, кто из них слышал о нем. В лучшем случае поднимается маленькая горстка рук, чаще всего принадлежащих выходцам из Британии. Тогда я сообщаю своей аудитории, что по опросу BBC Брюнель признан вторым в списке величайших британцев всех времен и что он обошел не только Дарвина, Шекспира и Ньютона, но даже Джона Леннона и Дэвида Бэкхема. Это заявление вызывает смех в зале, но что еще важнее, оно служит естественным переходом к некоторым острым вопросам, касающимся науки, техники, инноваций и масштабирования.

Так кто же такой Изамбард Кингдом Брюнель и чем он знаменит? Многие считают его величайшим инженером XIX столетия, человеком, идеи и изобретения которого, в особенности в области транспорта, помогли Британии стать самой могущественной и самой богатой страной мира. Он был настоящим инженером-энциклопедистом и упорно противился тенденции к специализации. Чаще всего он работал над всеми аспектами своего очередного проекта, от общей концепции до подготовки подробных чертежей, разведки на месте строительства и внимательного наблюдения за мельчайшими деталями конструирования и изготовления. Он успешно завершил множество проектов и оставил после себя необычайно богатое наследие, состоящее из замечательных конструкций, от кораблей, железных дорог и железнодорожных вокзалов до потрясающих мостов и туннелей.

Брюнель родился в 1806 г. в Портсмуте на юге Англии и умер сравнительно молодым в 1859 г. Его отец, сэр Марк Брюнель, родившийся во Франции, в Нормандии, также был чрезвычайно успешным инженером. Когда Изамбарду было всего девятнадцать лет, они работали вместе на строительстве первого в истории туннеля под судоходной рекой – туннеля под Темзой в районе Ротерхайт в Восточном Лондоне. Этот пешеходный туннель стал крупной достопримечательностью, привлекавшей ежегодно почти два миллиона туристов, каждый из которых платил за проход по нему по одному пенни. К сожалению, подобно многим таким подземным переходам он стал местом обитания бездомных, грабителей и проституток, и в 1869 г. его в конце концов преобразовали в железнодорожный туннель. Он стал частью системы лондонской подземки и используется по сей день.

В 1830 г. двадцатичетырехлетний Брюнель в чрезвычайно острой борьбе выиграл конкурс на строительство подвесного моста через ущелье реки Эйвон в Бристоле. Это была дерзкая конструкция, и после завершения строительства моста в 1864 г., через пять лет после смерти его автора, пролет этого моста стал самым длинным в мире (214 м, из которых 76 проходят над рекой). Отец Брюнеля не верил, что единый пролет такой длины физически возможно соорудить, и советовал Изамбарду сделать мост с центральной опорой – каковым советом тот благополучно пренебрег.

Позднее Брюнель стал главным инженером и проектировщиком Большой западной железной дороги (Great Western Railway), считавшейся лучшей железной дорогой своего времени: она проходила от Лондона до Бристоля и далее на запад. Работая в этой должности, он спроектировал множество прекрасных мостов, виадуков и туннелей – туннель Бокс недалеко от Бата был в то время самым длинным железнодорожным туннелем в мире – и даже вокзалов. Например, многим знаком лондонский вокзал Паддингтон и его великолепный декор из кованого железа.

Одним из самых замечательных его нововведений была уникальная широкая железнодорожная колея с расстоянием 7 футов и ¼ дюйма (2140 мм). Стандартная колея шириной 4 фута и 8½ дюйма (1435 мм), использовавшаяся в то время на всех остальных железных дорогах Великобритании, распространилась по всему миру и до сих пор применяется почти на всех железных дорогах[38]. Брюнель отмечал, что этот стандартный размер – случайно сохранившийся пережиток колей для шахтенных вагонеток, которые строили еще до появления в 1830-х гг. первых пассажирских поездов. Их ширины просто должно было хватать для того, чтобы ломовая лошадь могла поместиться между оглоблями, за которые она тянула вагонетку в шахте. Брюнель справедливо полагал, что следует серьезно обдумать вопрос оптимальной ширины колеи, и пытался внести в эту задачу рациональные соображения. Он утверждал, что, по его расчетам, подкрепленным целой серией опытов, оптимальной является более широкая колея, обеспечивающая более высокие скорости, лучшую устойчивость и большее удобство для пассажиров. Поэтому Большая западная железная дорога, единственная в своем роде, имела колею почти вдвое большей ширины, чем у всех остальных железных дорог. К сожалению, в 1892 г., после создания единой железнодорожной сети, британский парламент обязал Большую западную перейти на стандартную колею, даже несмотря на ее известные недостатки.






Изамбард Кингдом Брюнель позирует с щегольским видом на фоне цепей, сконструированных им для спуска на воду корабля «Грейт Истерн» в 1858 г. На других иллюстрациях – процесс постройки этого гигантского судна и Клифтонский подвесной мост через реку Эйвон, который Брюнель спроектировал в 1830 г., всего двадцати четырех лет от роду


Здесь ясно видны параллели с аналогичными проблемами, с которыми мы сталкиваемся и сегодня, касающимися неизбежных противоречий и компромиссов между оптимизацией, единообразием и исправлением стандартов, сложившихся исторически, особенно в стремительно развивающейся области высоких технологий. Битва за ширину железнодорожной колеи дает поучительный пример того, что инновационные изменения не всегда приводят к оптимальному решению.

Хотя проекты Брюнеля не всегда бывали полностью успешными, в них обычно содержались изобретательные инновационные решения давно существовавших инженерных задач. Вероятно, самые значительные его достижения – как и крупнейшие неудачи – были связаны с судостроением. По мере развития торговли во всемирном масштабе и установления конкурирующих друг с другом империй становилась все более насущной потребность в быстрых и эффективных перевозках на большие расстояния. Брюнель создал грандиозную концепцию непосредственного перехода с поездов Большой западной железной дороги на суда недавно созданной им Большой западной пароходной компании: чтобы пассажир, купивший билет на лондонском вокзале Паддингтон, мог проделать по нему весь путь до Нью-Йорка, перемещаясь исключительно на паровой тяге. Брюнель дал этой системе причудливое название – Океанская железная дорога. Однако тогда считалось, что судно, движущееся только на паровой тяге, не способно перевозить топливо, необходимое для такого путешествия, сохраняя при этом достаточно места для коммерческих грузов, чтобы сделать рейс экономически целесообразным.

Брюнель думал иначе. Его выводы основывались на простом рассуждении о масштабировании. Он понял, что объем груза, который может перевозить судно, увеличивается пропорционально кубу его размеров (как и его вес), а сопротивление, которое оно испытывает при движении в воде, возрастает пропорционально площади поперечного сечения корпуса и, следовательно, лишь квадрату размеров. Это очень похоже на вывод Галилея относительно масштабирования прочности балок и конечностей с увеличением веса. В обоих случаях прочность или сила возрастает медленнее, чем соответствующий вес, в соответствии с законом масштабирования с показателем ⅔. Таким образом, сила гидродинамического сопротивления, воздействующего на единицу веса груза судна, уменьшается прямо пропорционально длине корабля. Или, если взглянуть на эту ситуацию с другой стороны, возможный вес груза на единицу силы сопротивления, которую должны преодолевать двигатели судна, систематически возрастает с увеличением его размеров. Другими словами, более крупному судну требуется для перевозки каждой тонны груза пропорционально меньшее количество топлива, чем судну меньшего размера. Поэтому бо́льшие суда более производительны и более выгодны экономически, чем мелкие, – еще один замечательный пример экономии на масштабе, оказавший огромное влияние на развитие мировой торговли[39].

Хотя эти выводы не казались очевидными и в них мало кто верил, Брюнель и Большая западная пароходная компания были убеждены в их правоте. Брюнель отважно взялся за проектирование первого судна компании, «Грейт Вестерн», которое стало первым пароходом, построенным специально для трансатлантических переходов. Это был колесный пароход, построенный из дерева (и имевший про запас четыре паруса – просто на всякий случай); на момент окончания постройки в 1837 г. он был самым крупным и самым быстрым судном в мире.

Воодушевленный успехом «Грейт Вестерн» и полученным подтверждением справедливости принципа масштабирования – согласно которому крупные суда обладают большей производительностью, чем мелкие, – Брюнель построил еще более крупный корабль, разработанный со смелым использованием новых технологий и материалов, никогда ранее не совмещавшихся в одной конструкции. «Великобритания», спущенная на воду в 1843 г., была построена не из дерева, а из железа, и приводилась в движение не боковыми гребными колесами, а винтом, установленным на корме. Тем самым «Великобритания» была прототипом всех современных кораблей. Она была длиннее всех ранее построенных судов и стала первым винтовым кораблем с железным корпусом, пересекшим Атлантику. Еще и сегодня ее можно видеть полностью отреставрированной и законсервированной в сухом доке в Бристоле, созданном Брюнелем специально для ее постройки.

Покорив Атлантику, Брюнель обратил свое внимание на самую трудную задачу – соединение дальних концов разрастающейся Британской империи для укрепления ее положения в качестве господствующей мировой державы. Он хотел построить судно, которое смогло бы пройти без остановок от Лондона до Сиднея и обратно без дозаправки, на одной-единственной загрузке угля (причем дело было еще до открытия Суэцкого канала). Это означало, что такой корабль должен быть свыше 200 м длиной, более чем в два раза длиннее «Великобритании» и иметь почти в десять раз большее водоизмещение (то есть, по сути, вес). Судно, названное «Грейт Истерн», было спущено на воду в 1858 г. Следующее судно сравнимых размеров появилось почти пятьдесят лет спустя, уже в ХХ в. Чтобы почувствовать масштаб, о котором идет речь, можно отметить, что даже длина гигантских нефтяных супертанкеров, бороздящих океаны сегодня, более 150 лет спустя, превышает длину «Грейт Истерн» лишь немногим более чем в два раза.

Однако, как ни печально, «Грейт Истерн» оказался неудачным проектом. Хотя это судно было замечательным достижением инженерной мысли, поднявшим ее уровень до высоты, вновь достигнутой лишь через долгое время после начала ХХ в., его сооружение, как и многие другие проекты Брюнеля, сопровождалось многочисленными нарушениями сроков изготовления и превышениями бюджета. Но еще более явной была техническая неудача «Грейт Истерн». Судно оказалось тяжеловесным и неуклюжим, испытывало чрезмерную бортовую качку даже при умеренно сильном волнении и, что особенно важно, с трудом перемещало свою гигантскую массу даже на умеренной скорости. Как ни удивительно, не давало оно и большой экономической выгоды, в результате чего так и не было поставлено на службу империи для решения исходно поставленной перед ним грандиозной задачи – перевозки крупных грузов и многочисленных пассажиров в Индию и Австралию и обратно. Корабль совершил несколько трансатлантических переходов, после чего был бесславно преобразован в кабелеукладочное судно. Первый надежный трансатлантический телеграфный кабель, который обеспечил надежную связь между Европой и Северной Америкой и произвел тем самым революцию в области всемирной связи, был уложен в 1866 г. именно с борта «Грейт Истерн».

В конце концов «Грейт Истерн» использовался в Ливерпуле в качестве плавучего мюзик-холла и для установки рекламных плакатов, а в 1889 г. был отправлен на слом. Таков был печальный финал этого прекрасного замысла. В качестве курьезного примечания к этой истории, вероятно интересного только для страстных любителей футбола, можно упомянуть, что в 1891 г., когда был основан знаменитый британский футбольный клуб «Ливерпуль», в качестве флагштока для его нового стадиона была приобретена стеньга «Грейт Истерн». Она гордо возвышается там и по сей день.

Как же это случилось? Как мог столь великолепный замысел, воплощенный под руководством одного из самых блестящих и изобретательных инженеров всех времен, закончиться таким конфузом? «Грейт Истерн» был далеко не первым неудачно спроектированным судном, но сами его размеры, его новаторский замысел и огромная стоимость в сочетании со столь неблестящим результатом сделали его провал особенно впечатляющим.

10. Уильям Фруд и истоки теории моделирования

Когда система не работает или конструкция не соответствует ожиданиям, у такой неудачи обычно бывает множество разнообразных причин. В их число входят недостатки планирования и исполнения, низкое качество работы или материалов, ошибки руководства и даже концептуальные заблуждения. Однако есть ключевые примеры – и именно к ним относится история «Грейт Истерн», – в которых главной причиной неудачи является разработка конструкции без глубокого понимания лежащих в ее основе научных законов и базовых принципов масштабирования. Дело в том, что вплоть до второй половины XIX в. ни наука, ни масштабы не играли сколько-нибудь заметной роли в изготовлении большинства вещей, не говоря уже о морских судах.

Из этого утверждения есть некоторые существенные исключения, и наиболее заметное из них – это развитие паровых двигателей. Понимание взаимосвязей между давлением, температурой и объемом пара помогло создать чрезвычайно большие и производительные паровые котлы, которые и дали инженерам возможность строить гигантские суда вроде «Грейт Истерн», способные ходить по всему миру. Еще важнее то, что стремление разобраться в фундаментальных принципах и характеристиках эффективных двигателей, а также природе и разных формах энергии – тепловой, химической и кинетической – привело к развитию теоретических основ термодинамики. Что еще более существенно, законы термодинамики и концепции энергии и энтропии действуют далеко за пределами узкой области паровых двигателей и затрагивают любые системы, в которых происходит обмен энергией, будь то корабль, самолет, город, экономическая система, человеческий организм или вся Вселенная.

Даже во времена постройки «Грейт Истерн» такая «настоящая наука» почти или вовсе не использовалась в судостроении. Успешное проектирование и постройка кораблей основывались на постепенном накоплении знаний и технологий методом проб и ошибок, которое привело к образованию глубоко укоренившихся традиционных правил и приемов, передававшихся в основном в процессе обучения ремеслу. Как правило, каждый следующий корабль был своего рода вариацией на тему предыдущего, с небольшими изменениями в тех или иных аспектах, соответствующих предполагаемым потребностям и особенностям применения судна. Небольшие ошибки, порожденные простой экстраполяцией решений, работавших раньше, на новые обстоятельства, обычно имели сравнительно небольшой эффект. Например, при увеличении длины судна на 5 % мог получиться корабль, не вполне соответствующий проектным требованиям или ведущий себя несколько неожиданным образом, но от таких «ошибок» легко было избавиться в последующих вариантах при помощи соответствующих исправлений или изобретательных нововведений – иногда это даже приводило к усовершенствованию конструкции. Таким образом, судостроение, подобно почти всем другим отраслям материального производства, развивалось практически органическим путем, имитируя процесс, родственный естественному отбору.

На этот постепенный и, по существу, линейный процесс развития накладывались время от времени случающиеся нелинейные скачки, изобретения и инновации, приводившие к значительным изменениям используемых конструкций и материалов – например, введение парусов или гребного винта, использование пара или железа. Хотя такие инновационные скачки тоже основывались на прежних конструкциях, они требовали переосмысления и зачастую значительной перестройки производства до того, как мог появиться новый работоспособный прототип.

Испытанный на практике процесс простой экстраполяции предыдущих конструкций хорошо работал при проектировании и строительстве новых судов, постольку-поскольку изменения были постепенными. Глубокого научного понимания того, почему что-то работало именно так, как оно работало, не требовалось, потому что длинная последовательность созданных ранее успешных судов обеспечивала наличие решений для большинства возникающих задач. Сущность этой системы была ясно выражена в замечании о корабелах, задолго до того создавших катастрофически неудачное судно, шведский боевой корабль «Ваза»: «Проблема состояла в том, что наука кораблестроения не была в то время полностью освоена. Проектные чертежи не использовались, и корабли проектировали “методом тыка”, в основном опираясь на предыдущий опыт»[40]. Корабелы получали общие размеры судна и должны были создать корабль с высокими мореходными качествами на основе собственного опыта. Задача, казалось бы, довольно простая, и все могло бы быть в порядке, если бы «Ваза» предполагал лишь небольшое увеличение размеров по сравнению с другими судами, построенными на стокгольмской верфи.

Однако король Густав II Адольф потребовал построить судно, которое на 30 % превосходило по длине предыдущие и имело дополнительную палубу для установки необычайно тяжелых пушек. При таких радикальных требованиях малая ошибка проекта уже не могла привести лишь к небольшим отклонениям в поведении готовой конструкции. Судно такого размера – это сложная конструкция, и его динамика, особенно касающаяся его устойчивости, принципиально нелинейна. Малая ошибка проектирования может привести – и приводит – к макроскопическим нарушениям в поведении конструкции, которые заканчиваются катастрофой. К сожалению, у корабелов не было никаких научных знаний, позволяющих правильно масштабировать судно на столь значительную величину. Собственно говоря, никаких научных знаний, позволяющих правильно масштабировать судно на малую величину, у них тоже не было, но это не имело большого значения. В результате корабль получился слишком узким, а его центр тяжести оказался расположен слишком высоко, так что его могло опрокинуть даже легким порывом ветра. Так и случилось еще до того, как судно, отправлявшееся в свой первый рейс, вышло из стокгольмской гавани. Корабль затонул, причем погибло множество людей[41].

То же можно сказать и о «Грейт Истерн»: увеличение размеров в его случае было еще больше, так как длина судна была увеличена в два раза, а его вес – почти в десять раз. Брюнель и его коллеги просто не обладали научными знаниями, необходимыми для правильного масштабирования корабля при таком большом увеличении размеров. К счастью, эта ошибка привела не к потерям человеческих жизней, а лишь к экономической катастрофе. В условиях столь яростной рыночной конкуренции недостаточная эффективность равносильна смерти.

Научная теория, определяющая основы движения судов, была разработана лишь в течение десятилетия, предшествовавшего постройке «Грейт Истерн». Формализованное описание гидродинамики предложили независимо друг от друга французский инженер Клод-Луи Навье и великий ирландский физик и математик Джордж Стокс. Основополагающее уравнение, общеизвестное под названием уравнения Навье – Стокса, было получено в результате применения законов Ньютона к движению текучих сред и, в более широком смысле, к динамике физических объектов, движущихся в таких средах, – например, кораблей в воде или самолетов в воздухе.

Все это звучит весьма запутанно, и вполне возможно, что вы никогда не слыхали об уравнении Навье – Стокса, но оно играло и до сих пор играет важнейшую роль почти во всех аспектах вашей жизни. Помимо многого другого, именно оно лежит в основе конструкции самолетов, автомобилей, гидроэлектростанций и искусственных сердец, определяет понимание течения крови в сосудах и гидрологии рек и систем водоснабжения. Именно на нем основываются понимание и прогнозирование погоды, поведения океанских течений и загрязнения окружающей среды, а потому оно является ключевым элементом теории изменений климата и предсказаний глобального потепления.

Мне неизвестно, знал ли Брюнель об открытии этих уравнений, управляющих движением судов, которые он проектировал, но он точно обладал прозорливостью и чутьем, позволившими ему привлечь к сотрудничеству человека, знакомого с ними. Этим человеком был Уильям Фруд, изучавший математику в Оксфорде и работавший за несколько лет до того на Большой западной железной дороге в качестве начинающего инженера.

Во время постройки «Грейт Истерн» Брюнель поручил Фруду исследовать задачу о бортовой качке и устойчивости судов. Эта работа в конце концов привела его к ответу на важнейший вопрос об оптимальной форме корабельного корпуса, минимизирующей воздействие вязкой силы сопротивления воды. Ее результаты оказали огромное влияние на экономические аспекты судоходства и мировой торговли. Так родилась современная наука о проектировании судов. Однако еще более важными были влияние и долгосрочное значение разработанной Фрудом революционной концепции моделирования систем, позволявшего определить, как будет работать реальное воплощение модели.

Хотя уравнение Навье – Стокса описывает движение текучих сред практически в любых условиях, получить его точное решение чрезвычайно трудно, а в большинстве случаев и вовсе невозможно, в связи с его фундаментальной нелинейностью. Грубо говоря, эта нелинейность порождается механизмами обратной связи, через которые вода взаимодействует сама с собой. Это взаимодействие проявляется в самых разнообразных интересных эффектах и картинах, которые мы видим, например, в завихрениях и водоворотах рек и ручьев, в кильватерной струе проходящих кораблей, в завораживающем величии ураганов и торнадо или в красоте и бесконечном разнообразии морских волн. Все это богатство проявлений турбулентности спрятано в уравнении Навье – Стокса.

Именно изучение турбулентности дало нам первые существенные математические представления о концепции сложности и ее взаимосвязи с нелинейностью. Сложные системы часто проявляют хаотическое поведение, в котором малые изменения или возмущения в одной части системы порождают экспоненциально усиленную реакцию какой-либо другой ее части. Как мы уже говорили, в соответствии с традиционным линейным мышлением малое возмущение должно вызывать соизмеримо малые последствия. Резко противоречащее нашим подсознательным представлением усиление, свойственное нелинейным системам, часто иллюстрируют так называемым эффектом бабочки – когда взмах крыльев бабочки в Бразилии якобы вызывает ураган во Флориде. Несмотря на 150 лет интенсивных теоретических и экспериментальных исследований, общее понимание турбулентности все еще остается нерешенной физической задачей, хотя мы успели узнать о ней чрезвычайно много. По словам знаменитого физика Ричарда Фейнмана, турбулентность – это «самая важная из нерешенных задач классической физики»[42].

Хотя Фруд, возможно, не вполне осознавал, насколько огромная задача перед ним стоит, он хорошо понимал, что судостроению необходима новая прикладная стратегия. Именно исходя из этого он изобрел новую методику моделирования и, таким образом, концепцию теории моделирования, определяющей, как численные результаты исследований на уменьшенном масштабе можно использовать для предсказания поведения корабля реальных размеров. Следуя по стопам Галилея, Фруд понял, что почти любое масштабирование нелинейно, так что традиционные модели, основанные на точном воспроизведении объекта («один к одному»), не помогают понять, как работает реальная система. Его эпохальный вклад состоял в предложении стратегии вычислений, позволяющих провести корректное масштабирование малоразмерной модели до полноразмерного объекта.

Как это часто бывает с новыми идеями, грозящими изменить наши представления о давно известных задачах, знатоки того времени поначалу посчитали достижения Фруда несущественными. Джон Рассел, который в 1860 г. основал в Англии Королевский институт кораблестроения, чтобы позволить проектировщикам судов получать официальное образование, высмеивал Фруда: «Мы получим целый набор прекрасных, увлекательных экспериментиков в уменьшенном масштабе, и мистеру Фруду, несомненно, доставит бесконечное удовольствие их создание… а нам доставят бесконечное удовольствие рассказы о них, но от каких бы то ни было практических результатов в крупном масштабе они будут весьма далеки».

Многим из нас знакома риторика такого типа, которую часто можно услышать в отношении научных исследований, якобы утративших связь с «реальностью». Несомненно, во многих случаях эта связь действительно бывает утрачена. Но во многих других случаях это не так, и, что особенно важно, зачастую бывает трудно сразу оценить потенциальный эффект очередной научной работы, кажущейся невразумительной. Все наше основанное на технологических достижениях общество и необычайно высокий уровень жизни, которого повезло достичь многим из нас, во многом основываются на результатах именно таких исследований. В обществе постоянно возникают противоречия между поддержкой фундаментальных исследований, которые кажутся отвлеченными и не обещают немедленных практических выгод, и исследованиями более узкими, сосредоточенными на «практических, реальных» задачах.

К чести Рассела, нужно сказать, что в 1874 г., после того как Фруд произвел революцию в проектировании кораблей, тот пошел на попятную и стал горячим сторонником методов и идей Фруда. При этом, однако, он довольно неубедительно утверждал, что сам независимо пришел к тем же выводам и провел те же опыты много лет назад. Собственно говоря, Рассел был основным партнером Брюнеля в постройке «Грейт Истерн» и действительно пытался работать с моделями, но, к сожалению, не осознавал ни их значения, ни теории, лежавшей в их основе.

Фруд строил уменьшенные модели кораблей от метра до трех длиной, протягивал их через вытянутые бассейны, наполненные водой, и измерял их сопротивление потоку воды и характеристики их устойчивости. Благодаря своему математическому образованию он обладал техническим аппаратом, позволявшим ему масштабировать полученные результаты на случай крупноразмерных судов.

Он выяснил, что основная величина, определяющая характер относительного движения модели, – это параметр, который назвали впоследствии числом Фруда. Он определяется как отношение квадрата скорости судна к произведению его длины на гравитационное ускорение. Такое труднопроизносимое определение может показаться несколько устрашающим, но на самом деле в нем нет ничего сложного: упоминаемое в нем «гравитационное ускорение» одинаково для всех предметов независимо от их размеров, формы и состава. Последнее утверждение попросту повторяет другими словами утверждение Галилея о том, что падающие предметы разной массы достигают земли за одно и то же время. Таким образом, в том, что касается действительно изменяющихся величин, число Фруда просто пропорционально отношению квадрата скорости к длине судна. Это отношение играет ключевую роль во всех задачах, касающихся движения чего бы то ни было, от летящей пули и бегущего динозавра до летящего самолета и плывущего корабля.

Основная суть открытия Фруда состояла в том, что, поскольку основные физические свойства остаются неизменными, объекты разных размеров, движущиеся с разными скоростями, ведут себя одинаково, если соответствующие им числа Фруда имеют одинаковое значение. Таким образом, подобрав длину и скорость модели так, чтобы ее число Фруда было тем же, что и у реального судна, можно изучать динамическое поведение полноразмерного корабля еще до его постройки.

Приведем простую иллюстрацию этого принципа на примере следующей задачи: с какой скоростью должна двигаться трехметровая модель, чтобы отражать движение корабля «Грейт Истерн» длиной 210 м со скоростью 20 узлов (чуть более 37 км/ч)? Чтобы числа Фруда (то есть отношения квадрата скорости к длине) корабля и модели были одинаковыми, скорость должна быть пропорциональна квадратному корню из длины. Отношение квадратных корней из длин этих объектов равна √(210 м / 3 м), то есть √70 = 8,4. Тогда скорость трехметровой модели, имитирующей движение «Грейт Истерн», должна быть приблизительно равна 20 / 8,4 = 2,5 узла, то есть около скорости пешехода. Другими словами, динамика модели корабля длиной 3 м, движущейся со скоростью всего 2,5 узла, соответствует поведению корабля «Грейт Истерн» длиной 210 м на скорости 20 узлов.

Я привел упрощенное описание этой методики: на самом деле в задачу обычно входят и другие параметры, аналогичные числу Фруда, которые позволяют прямо учесть другие динамические эффекты, например вязкость воды. Тем не менее этот пример иллюстрирует суть метода Фруда и дает общий шаблон для теории моделирования и масштабирования. Он знаменует переход от примитивного метода проб и ошибок, использования кустарных способов, которые верой и правдой служили нам в течение тысячелетий, к более аналитической, научно обоснованной стратегии решения проблем и конструирования самых разнообразных современных изделий, от компьютеров и кораблей до самолетов, зданий и даже компаний. Бассейны, подобные созданным Фрудом, до сих пор применяются для изучения поведения судов, а разработанные на их основе аэродинамические трубы, оказавшие сильное влияние на братьев Райт, играют аналогичную роль в проектировании самолетов и автомобилей. В центре процесса проектирования находятся теперь замысловатые процедуры компьютерного анализа, в которых для оптимизации работы той или иной конструкции используются принципы все той же теории масштабирования. Выражение «компьютерная модель» прочно вошло в наш словарь. Благодаря им мы сейчас можем «решать» уравнения Навье – Стокса или аналогичные им задачи – или моделировать их решения, – что повышает точность наших предсказаний.

Одно из забавных и непреднамеренных последствий этого прогресса состоит в том, что, например, почти все современные автомобили стали похожи друг на друга, потому что их производители, оптимизируя сходные рабочие параметры, решают одни и те же уравнения. Лет пятьдесят назад, когда такие большие вычислительные мощности еще не были доступны и, следовательно, точность прогнозирования была ниже, а мы меньше заботились об экономии топлива и уровне выброса отработанных газов, конструкции автомобилей были гораздо более разнообразными – и потому гораздо более интересными. Сравнить хотя бы «студебекер-хоук» 1957 г. или «роллс-ройс» 1927 г. с относительно скучной на вид «хондой-сивик» 2006 г. или «теслой» 2014 г., хотя последние машины и обладают гораздо лучшими рабочими характеристиками.

11. Сходство и подобие: безразмерные и масштабно-инвариантные числа

Развитие методики масштабирования, предложенной Фрудом, превратило ее к настоящему времени в мощный и сложный элемент инструментария науки и техники, в высшей степени эффективно используемый для решения широчайшего спектра задач. В общем виде эта методика была формализована лишь в начале ХХ в., когда выдающийся специалист по математической физике лорд Рэлей опубликовал в журнале Nature важную статью под названием «Принцип подобия» (The Principle of Similitude)[43]. Этим термином он обозначал то, что мы называем теорией масштабирования. Главным образом он подчеркивал ту важнейшую роль, которую играют в любой физической системе особые величины, обладающие свойством безразмерности. Речь идет о сочетаниях переменных, подобных числу Фруда, значение которых остается неизменным независимо от используемой системы единиц измерения. Позвольте мне рассказать о них поподробнее.

Большинство величин, которые мы привыкли измерять в повседневной жизни, – например, расстояние, время или давление – зависит от того, в каких единицах их измеряют: например, в метрах, секундах, паскалях и так далее. Однако одну и ту же величину можно измерить в разных единицах: например, расстояние от Нью-Йорка до Лос-Анджелеса равно 3210 милям, но его же можно выразить в виде 5871 км. Эти разные числа выражают одно и то же. Точно так же расстояние от Лондона до Манчестера можно выразить в виде 278 миль или 456 км. Однако отношение расстояний между Нью-Йорком и Лос-Анджелесом и между Лондоном и Манчестером (будь то 3210 миль / 278 миль или 5871 км / 456 км) остается неизменным (и равным 14,89) независимо от того, какие используются единицы измерения.

Это дает нам простейший пример безразмерной величины: это «чистое» число, не изменяющееся, когда для его измерения используется другая система единиц. Такая масштабная инвариантность отражает некое абсолютное качество тех величин, которые представляют такие числа: они не зависят от произвольно выбранных человеком единиц и методов измерения. Конкретные единицы измерения придуманы человеком для удобства выражения мер стандартизованным языком, в особенности когда речь идет о строительстве, торговле и обмене товарами и услугами. Более того, введение стандартизованных мер отмечает важнейший этап развития цивилизации и возникновения городов, так как они были абсолютно необходимы для создания надежной политической системы, подчиняющейся верховенству законов.

Вероятно, самое знаменитое безразмерное число – это число пи (π), отношение длины окружности к ее диаметру. Оно не имеет размерности, потому что это отношение двух длин, и имеет одно и то же значение для всех окружностей, где бы и когда бы они ни существовали, какими бы большими или малыми они ни были. Поэтому в нем воплощается универсальное качество «круглости».

Именно в связи с концепцией «универсальности» в определение числа Фруда было включено гравитационное ускорение, хотя оно и не играет явной роли в масштабировании модели корабля до его реальных размеров. Оказывается, что отношение квадрата скорости к длине не безразмерно и, следовательно, зависит от используемых единиц измерения. Разделив его на ускорение свободного падения, его можно сделать безразмерным и, таким образом, масштабно-инвариантным.

Но почему было выбрано именно гравитационное, а не какое-нибудь другое ускорение? Потому что гравитация влияет на любое движение повсюду на Земле. Это явно чувствуется, когда мы идем или бежим и вынуждены постоянно бороться с гравитацией, поднимая ногу при каждом следующем шаге, – особенно если дорога идет в гору. Ее влияние на движение кораблей не столь очевидно, поскольку силу тяжести уравновешивает выталкивающая сила воды (вспомним закон Архимеда). Однако, когда судно движется в воде, оно постоянно создает кильватерный след и поверхностные волны, поведение которых определяется воздействием гравитации. Собственно говоря, техническое название знакомых нам волн на поверхности морей и озер – гравитационные волны. Поэтому гравитация играет, хоть и не напрямую, важную роль в движении кораблей. Таким образом, число Фруда олицетворяет «универсальное» качество, присущее любому движению на Земле, независимо от конкретных особенностей объекта, совершающего это движение. Поэтому его значение определяет характеристики движения не только кораблей, но и автомобилей, самолетов и нас самих. Более того, по нему можно определить, как именно движение на других планетах, на которых действует отличная от земной сила тяжести, отличается от аналогичного движения на Земле.

Поскольку сущность любой измеримой величины не может зависеть от произвольного выбора единиц измерения, сделанного человеком, не могут от него зависеть и законы физики. Следовательно, все они – и вообще все научные законы – должны быть выражаемы в виде соотношений между масштабно-инвариантными безразмерными величинами, даже если обычно мы записываем их в другой форме для собственного удобства. В этом состоял основной посыл эпохальной статьи Рэлея.

В его работе приводятся изящные иллюстрации применения этой методики на многочисленных, тщательно подобранных примерах, в том числе и научное объяснение одной из величайших загадок жизни, о которой в тот или иной момент задумывался каждый из нас: почему небо синее? Используя изящное рассуждение, основывающееся исключительно на безразмерных величинах, Рэлей показывает, что интенсивность рассеяния световых волн на мелких частицах должна спадать пропорционально четвертой степени длины волны. Поэтому, когда солнечный свет, представляющий собой сочетание всех цветов радуги, рассеивается на микроскопических частицах, взвешенных в атмосфере, наиболее интенсивным оказывается свет с самой короткой длиной волны, то есть синий.

Собственно говоря, Рэлей вывел этот потрясающий результат гораздо раньше, в блестящей работе, основанной на мастерском математическом анализе этой задачи, давшем подробное механистическое объяснение происхождения сдвига к синему краю спектра. Он привел простой вывод этого решения в статье, посвященной подобию, чтобы продемонстрировать, что тот же самый результат можно было получить, по его словам, «всего за несколько минут размышлений» и без применения подробных и замысловатых математических построений, если использовать логику масштабирования, которую он называет «великим принципом подобия». Его рассуждение о масштабировании показывает, что сдвиг в сторону коротких волн является неизбежным результатом любого анализа, проведенного с правильным выбором существенных переменных. Чего в этом выводе недостает, так это более глубокого понимания того механизма, который обеспечивает получение результата. Это характерно для многих рассуждений, касающихся масштабирования: в них можно получить общие результаты, но подробности причин их возникновения иногда остаются неясными.

Проведенный Рэлеем математический анализ рассеяния волн заложил основы так называемой теории рассеяния. Ее приложения ко многим задачам, от волн в воде до волн электромагнитных, в особенности радиолокационных, а в более недавнее время – в области компьютерной связи, имели чрезвычайно большое значение, но не менее важной была и роль, которую она сыграла в развитии квантовой механики. Именно на основе этой теории был построен аппарат, позволяющий извлекать информацию из «экспериментов по рассеянию», которые проводятся на крупных ускорителях элементарных частиц, например в Европейском центре ядерных исследований (CERN) в Женеве, в котором недавно был открыт знаменитый бозон Хиггса.

Если посмотреть на исходную статью, которую он опубликовал в 1870 г., в возрасте всего двадцати восьми лет, можно увидеть, что имя ее автора – вовсе не лорд Рэлей. Тогда он носил гораздо более прозаическое имя Джона Стретта, больше подходящее персонажу из романа Томаса Харди, чем заслуженному профессору физики из Кембриджа. Так звали Рэлея до того, как в 1873 г. он унаследовал свой титул от отца; после этого он и стал называться лорд Рэлей. Фамилия Стретт более всего известна общественности по его младшему брату Эдварду, основавшему знаменитую фирму по торговле недвижимостью под названием Strutt & Parker: сейчас эта компания является одним из крупнейших коллективных собственников недвижимости в Великобритании. В следующий раз, когда будете в Лондоне, обратите внимание на ее фирменные знаки на дорогих зданиях в центре города.

Рэлей был замечательным ученым-универсалом. В число множества его великих достижений входят разработка теории звука и открытие аргона, за которое он получил в 1904 г. одну из первых в истории Нобелевских премий (точнее говоря, четвертую).