Автоморфизм алгебраической системы — изоморфизм, отображающий алгебраическую систему на себя.
Совокупность всех автоморфизмов некоторой алгебраической системы с операцией композиции и тождественным отображением в качестве нейтрального элемента образует группу. Группа автоморфизмов алгебраической системы
K
{\displaystyle K}
обозначается
Aut
K
{\displaystyle \operatorname {Aut} K}
.
Наиболее простой пример автоморфизма — это автоморфизм множества, то есть перестановка элементов этого множества.
Понятие автоморфизма можно обобщить на более абстрактные объекты, не являющиеся «множествами с дополнительной структурой». Так, в теории категорий автоморфизм определяется как эндоморфизм, являющийся также изоморфизмом (в категорном смысле этого слова).
Совокупность всех автоморфизмов некоторой алгебраической системы с операцией композиции и тождественным отображением в качестве нейтрального элемента образует группу. Группа автоморфизмов алгебраической системы
K
{\displaystyle K}
обозначается
Aut
K
{\displaystyle \operatorname {Aut} K}
.
Наиболее простой пример автоморфизма — это автоморфизм множества, то есть перестановка элементов этого множества.
Понятие автоморфизма можно обобщить на более абстрактные объекты, не являющиеся «множествами с дополнительной структурой». Так, в теории категорий автоморфизм определяется как эндоморфизм, являющийся также изоморфизмом (в категорном смысле этого слова).
Источник: Wikipedia.org
автоморфизм
1. матем. (в алгебре) изоморфизм, отображающий алгебраическую систему на себя
Источник: Wiktionary.org