Натуральный ряд ( мат.) — бесконечная последовательность 1, 2, 3, 4, 5…, состоящая из всех целых положительных чисел, расположенных в порядке их возрастания.
См. также натуральный.
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999;
Натуральный ряд — числовой ряд, члены которого являются последовательными натуральными числами: 1 + 2 + 3 + 4 + …; при этом n-ая сумма ряда является треугольным числом:
∑
k
=
1
n
k
=
n
(
n
+
1
)
2
{\displaystyle \sum _{k=1}^{n}k={\frac {n(n+1)}{2}}}
,
которое неограниченно растёт при стремлении n к бесконечности. Из-за того, что последовательность частичных сумм ряда не имеет конечного предела, ряд расходится.
Несмотря на расходимость в традиционном смысле, некоторые обобщённые операции над натуральным рядом позволяют получить выводы, находящие применение в компле́ксном анализе, квантовой теории поля и теории струн.
∑
k
=
1
n
k
=
n
(
n
+
1
)
2
{\displaystyle \sum _{k=1}^{n}k={\frac {n(n+1)}{2}}}
,
которое неограниченно растёт при стремлении n к бесконечности. Из-за того, что последовательность частичных сумм ряда не имеет конечного предела, ряд расходится.
Несмотря на расходимость в традиционном смысле, некоторые обобщённые операции над натуральным рядом позволяют получить выводы, находящие применение в компле́ксном анализе, квантовой теории поля и теории струн.
Источник: Wipedia.org