Натура́льные чи́сла (от лат. naturalis — естественный; естественные числа) — числа, возникающие естественным образом при счёте (например, 1, 2, 3, 4, 5…). Последовательность всех натуральных чисел, расположенных в порядке возрастания, называется натуральным рядом.
Существуют два подхода к определению натуральных чисел:
натуральные числа — числа, возникающие при подсчёте (нумерации) предметов (первый, второй, третий, четвёртый, пятый"…);
натуральные числа — числа, возникающие при обозначении количества предметов (0 предметов, 1 предмет, 2 предмета, 3 предмета, 4 предмета, 5 предметов"…).
В первом случае ряд натуральных чисел начинается с единицы, во втором — с нуля. Не существует единого для большинства математиков мнения о предпочтительности первого или второго подхода (то есть считать ли нуль натуральным числом или нет). В подавляющем большинстве российских источников традиционно принят первый подход. Второй подход, например, применяется в трудах Николя Бурбаки, где натуральные числа определяются как мощности конечных множеств.
Отрицательные и нецелые (рациональные, вещественные, …) числа к натуральным не относятся.
Множество всех натуральных чисел принято обозначать символом
N
{\displaystyle \mathbb {N} }
(от лат. naturalis — естественный). Множество натуральных чисел является бесконечным, так как для любого натурального числа
n
{\displaystyle n}
найдётся натуральное число, большее чем
n
{\displaystyle n}
.
Наличие нуля облегчает формулировку и доказательство многих теорем арифметики натуральных чисел, поэтому при первом подходе вводится полезное понятие расширенного натурального ряда, включающего нуль. Расширенный ряд обозначается
N
0
{\displaystyle \mathbb {N} _{0}}
или
Z
0
{\displaystyle \mathbb {Z} _{0}}
.
Существуют два подхода к определению натуральных чисел:
натуральные числа — числа, возникающие при подсчёте (нумерации) предметов (первый, второй, третий, четвёртый, пятый"…);
натуральные числа — числа, возникающие при обозначении количества предметов (0 предметов, 1 предмет, 2 предмета, 3 предмета, 4 предмета, 5 предметов"…).
В первом случае ряд натуральных чисел начинается с единицы, во втором — с нуля. Не существует единого для большинства математиков мнения о предпочтительности первого или второго подхода (то есть считать ли нуль натуральным числом или нет). В подавляющем большинстве российских источников традиционно принят первый подход. Второй подход, например, применяется в трудах Николя Бурбаки, где натуральные числа определяются как мощности конечных множеств.
Отрицательные и нецелые (рациональные, вещественные, …) числа к натуральным не относятся.
Множество всех натуральных чисел принято обозначать символом
N
{\displaystyle \mathbb {N} }
(от лат. naturalis — естественный). Множество натуральных чисел является бесконечным, так как для любого натурального числа
n
{\displaystyle n}
найдётся натуральное число, большее чем
n
{\displaystyle n}
.
Наличие нуля облегчает формулировку и доказательство многих теорем арифметики натуральных чисел, поэтому при первом подходе вводится полезное понятие расширенного натурального ряда, включающего нуль. Расширенный ряд обозначается
N
0
{\displaystyle \mathbb {N} _{0}}
или
Z
0
{\displaystyle \mathbb {Z} _{0}}
.
Источник: Wipedia.org
натуральное число
1. матем. целое положительное число; одно из чисел, возникающих естественным образом при счёте, подсчёте (нумерации) предметов; член арифметической прогрессии, где первый член и шаг прогрессии равны единице
Источник: Wiktionary.org