Логические элементы — устройства, предназначенные для обработки информации в цифровой форме (последовательности сигналов высокого — «1» и низкого — «0» уровней в двоичной логике, последовательность «0», «1» и «2» в троичной логике, последовательностями «0», «1», «2», «3», «4», «5», «6», «7», «8» и «9» в десятичной логике). Физически логические элементы могут быть выполнены механическими, электромеханическими (на электромагнитных реле), электронными (на диодах и транзисторах), пневматическими, гидравлическими, оптическими и др.
С развитием электротехники от механических логических элементов перешли к электромеханическим логическим элементам (на электромагнитных реле), а затем к электронным логическим элементам на электронных лампах, позже — на транзисторах. После доказательства в 1946 г. теоремы Джона фон Неймана об экономичности показательных позиционных систем счисления стало известно о преимуществах двоичной и троичной систем счисления по сравнению с десятичной системой счисления. От десятичных логических элементов перешли к двоичным логическим элементам. Двоичность и троичность позволяет значительно сократить количество операций и элементов, выполняющих эту обработку, по сравнению с десятичными логическими элементами.
Логические элементы выполняют логическую функцию (операцию) над входными сигналами (операндами, данными).
Всего возможно
x
(
x
n
)
∗
m
{\displaystyle \ x^{(x^{n})*m}}
логических функций и соответствующих им логических элементов, где
x
{\displaystyle \ x}
— основание системы счисления,
n
{\displaystyle \ n}
— число входов (аргументов),
m
{\displaystyle \ m}
— число выходов, то есть бесконечное число логических элементов. Поэтому в данной статье рассматриваются только простейшие и важнейшие логические элементы.
Всего возможны
2
(
2
2
)
∗
1
=
2
4
=
16
{\displaystyle 2^{(2^{2})*1}=2^{4}=16}
двоичных двухвходовых логических элементов и
2
(
2
3
)
∗
1
=
2
8
=
256
{\displaystyle 2^{(2^{3})*1}=2^{8}=256}
двоичных трёхвходовых логических элементов (Булева функция).
Кроме 16 двоичных двухвходовых логических элементов и 256 трёхвходовых двоичных логических элементов возможны 19 683 двухвходовых троичных логических элементов и 7 625 597 484 987 трёхвходовых троичных логических элементов (троичные функции).
С развитием электротехники от механических логических элементов перешли к электромеханическим логическим элементам (на электромагнитных реле), а затем к электронным логическим элементам на электронных лампах, позже — на транзисторах. После доказательства в 1946 г. теоремы Джона фон Неймана об экономичности показательных позиционных систем счисления стало известно о преимуществах двоичной и троичной систем счисления по сравнению с десятичной системой счисления. От десятичных логических элементов перешли к двоичным логическим элементам. Двоичность и троичность позволяет значительно сократить количество операций и элементов, выполняющих эту обработку, по сравнению с десятичными логическими элементами.
Логические элементы выполняют логическую функцию (операцию) над входными сигналами (операндами, данными).
Всего возможно
x
(
x
n
)
∗
m
{\displaystyle \ x^{(x^{n})*m}}
логических функций и соответствующих им логических элементов, где
x
{\displaystyle \ x}
— основание системы счисления,
n
{\displaystyle \ n}
— число входов (аргументов),
m
{\displaystyle \ m}
— число выходов, то есть бесконечное число логических элементов. Поэтому в данной статье рассматриваются только простейшие и важнейшие логические элементы.
Всего возможны
2
(
2
2
)
∗
1
=
2
4
=
16
{\displaystyle 2^{(2^{2})*1}=2^{4}=16}
двоичных двухвходовых логических элементов и
2
(
2
3
)
∗
1
=
2
8
=
256
{\displaystyle 2^{(2^{3})*1}=2^{8}=256}
двоичных трёхвходовых логических элементов (Булева функция).
Кроме 16 двоичных двухвходовых логических элементов и 256 трёхвходовых двоичных логических элементов возможны 19 683 двухвходовых троичных логических элементов и 7 625 597 484 987 трёхвходовых троичных логических элементов (троичные функции).
Источник: Wipedia.org