Проективная геометрия — раздел геометрии, изучающий свойства фигур и тел, которые остаются неизменными при проектировании их из определенного центра.
См. также проективный.
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999;
Проективная геометрия — раздел геометрии, изучающий проективные плоскости и пространства. Главная особенность проективной геометрии состоит в принципе двойственности, который прибавляет изящную симметрию во многие конструкции. Проективная геометрия может изучаться как с чисто геометрической точки зрения, так с аналитической (с помощью однородных координат) и с алгебраической, рассматривая проективную плоскость как структуру над полем. Часто, и исторически, вещественная проективная плоскость рассматривается как Евклидова плоскость с добавлением «прямой в бесконечности».
Тогда как свойства фигур, с которыми имеет дело Евклидова геометрия, являются метрическими (конкретные величины углов, отрезков, площадей), а эквивалентность фигур равнозначна их конгруэнтности (т.е. когда фигуры могут быть переведены одна в другую посредством движения с сохранением метрических свойств), существуют более "глубоко лежащие" свойства геометрических фигур, которые сохраняются при преобразованиях более общего типа, чем движение. Проективная геометрия занимается изучением свойств фигур, инвариатных при классе проективных преобразований, а также самих этих преобразований.
Проективная геометрия дополняет Евклидову, предоставляя красивые и простые решения для многих задач, осложнённых присутствием параллельных прямых. Особенно проста и изящна проективная теория конических сечений.
Тогда как свойства фигур, с которыми имеет дело Евклидова геометрия, являются метрическими (конкретные величины углов, отрезков, площадей), а эквивалентность фигур равнозначна их конгруэнтности (т.е. когда фигуры могут быть переведены одна в другую посредством движения с сохранением метрических свойств), существуют более "глубоко лежащие" свойства геометрических фигур, которые сохраняются при преобразованиях более общего типа, чем движение. Проективная геометрия занимается изучением свойств фигур, инвариатных при классе проективных преобразований, а также самих этих преобразований.
Проективная геометрия дополняет Евклидову, предоставляя красивые и простые решения для многих задач, осложнённых присутствием параллельных прямых. Особенно проста и изящна проективная теория конических сечений.
Источник: Wipedia.org