Плоская волна — волна, фронт которой имеет форму плоскости.
Фронт плоской волны неограничен по размерам, вектор фазовой скорости перпендикулярен фронту. Плоская волна является частным решением волнового уравнения и удобной моделью: такая волна в природе не существует, так как фронт плоской волны начинается в
−
1
{\displaystyle -{\mathcal {1}}}
и заканчивается в
+
1
{\displaystyle +{\mathcal {1}}}
, чего, очевидно, быть не может. Кроме того, плоская волна переносила бы бесконечную мощность, и на создание плоской волны потребовалась бы бесконечная энергия. Волну со сложным (реальным) фронтом можно представить в виде спектра плоских волн с помощью преобразования Фурье по пространственным переменным.
Квазиплоская волна - волна, фронт которой близок к плоскому в ограниченной области. Если размеры области достаточно велики для рассматривамой задачи, то квазиплоскую волну можно приближённо считать плоской. Волну со сложным фронтом можно аппроксимировать набором локальных квазиплоских волн, векторы фазовых скоростей который нормальны реальному фронту в каждой его точке. Примерами источников квазиплоских электромагнитных волн являются лазер, зеркальная и линзовая антенны: распределение фазы электромагнитного поля в плоскости, параллельной апертуре (излучающему отверстию), близко к равномерному. По мере удаления от апертуры фронт волны принимает сложную форму.
Фронт плоской волны неограничен по размерам, вектор фазовой скорости перпендикулярен фронту. Плоская волна является частным решением волнового уравнения и удобной моделью: такая волна в природе не существует, так как фронт плоской волны начинается в
−
1
{\displaystyle -{\mathcal {1}}}
и заканчивается в
+
1
{\displaystyle +{\mathcal {1}}}
, чего, очевидно, быть не может. Кроме того, плоская волна переносила бы бесконечную мощность, и на создание плоской волны потребовалась бы бесконечная энергия. Волну со сложным (реальным) фронтом можно представить в виде спектра плоских волн с помощью преобразования Фурье по пространственным переменным.
Квазиплоская волна - волна, фронт которой близок к плоскому в ограниченной области. Если размеры области достаточно велики для рассматривамой задачи, то квазиплоскую волну можно приближённо считать плоской. Волну со сложным фронтом можно аппроксимировать набором локальных квазиплоских волн, векторы фазовых скоростей который нормальны реальному фронту в каждой его точке. Примерами источников квазиплоских электромагнитных волн являются лазер, зеркальная и линзовая антенны: распределение фазы электромагнитного поля в плоскости, параллельной апертуре (излучающему отверстию), близко к равномерному. По мере удаления от апертуры фронт волны принимает сложную форму.
Источник: Wipedia.org