Вихревое движение — движение жидкости или газа, при котором мгновенная угловая скорость вращения элементарных объёмов среды не равна нулю. Количественной мерой завихренности служит псевдовектор
ω
=
rot
v
{\displaystyle {\omega =\operatorname {rot} ~v}}
, где
v
{\displaystyle \ v}
— вектор скорости жидкости;
ω
{\displaystyle \omega }
называют псевдовектором вихря или просто завихренностью. Движение называется безвихревым или потенциальным, если
ω
=
0
{\displaystyle \omega =0}
, в противном случае имеет место вихревое движение.
Векторное поле вихря удобно характеризовать некоторыми геометрическими образами. Вихревой линией называется линия, касательная к которой в каждой точке направлена по вектору вихря; совокупность вихревых линий, проходящих через замкнутую кривую, образует вихревую трубку. Поток вектора вихря через любое сечение вихревой трубки одинаков. Он называется интенсивностью вихревой трубки и равен циркуляции скорости
Γ
=
∫
C
v
d
l
{\displaystyle \Gamma =\int _{C}v\,dl}
по произвольному контуру C, однократно охватывающему вихревую трубку.
За редким исключением, движение жидкости или газа почти всегда бывает вихревым. Так, вихревым является ламинарное течение в круглой трубе, когда скорость распределяется по параболическому закону, течение в пограничном слое при плавном обтекании тела и в следе за плохо обтекаемым телом. Вихревой характер носит любое турбулентное течение. В этих условиях выделение класса «вихревое движение» оказывается осмысленным, благодаря тому, что при преобладании инерционных сил над вязкими (при очень больших числах Рейнольдса) типична локализация завихренности в обособленных массах жидкости — вихрях или вихревых зонах.
Согласно классическим теоремам Гельмгольца, в предельном случае движения невязкой жидкости, плотность которой постоянна или зависит только от давления, в потенциальном силовом поле вихревые линии вморожены в среду, то есть в процессе движения они состоят из одних и тех же частиц жидкости — являются материальными линиями. Вихревые трубки при этом оказываются вмороженными в среду, а их интенсивность сохраняется в процессе движения. Сохраняется также циркуляция скорости по любому контуру, состоящему из одних и тех же частиц жидкости (теорема Кельвина). В частности, если при движении область, охватываемая данным контуром, сужается, то интенсивность вращательного движения внутри него возрастает. Это важный механизм концентрации завихренности, реализующийся при вытекании жидкости из отверстия в дне сосуда (ванны), при образовании водоворотов вблизи нисходящих потоков в реках и определяющий образование циклонов и тайфунов в зонах пониженного атмосферного давления в которые происходит подтекание (конвергенция) воздушных масс.
В жидкости, находящейся в состоянии покоя или потенциального движения, вихри возникают либо из-за нарушения баротропности, например образование кольцевых вихрей при подъёме нагретых масс воздуха — термиков, либо из-за взаимодействия с твердыми телами.
Если обтекание тела происходит при больших числах Re, завихренность порождается в узких зонах — в пограничном слое — проявлением вязких эффектов, а затем сносится в основной поток, где формируются отчетливо видимые вихри, некоторое время эволюционирующие и сохраняющие свою индивидуальность. Особенно эффектно это проявляется в образовании за плохообтекаемым телом регулярной вихревой дорожки Кармана. Вихреобразование в следе за плохообтекаемым телом определяет основная часть лобового сопротивления тела, а образование вихрей у концов крыльев летательных аппаратов вызывает дополнительное [[Лобовое сопротивление}индуктивное сопротивление]].
При анализе динамических вихрей и их взаимодействия с внешним безвихрев
ω
=
rot
v
{\displaystyle {\omega =\operatorname {rot} ~v}}
, где
v
{\displaystyle \ v}
— вектор скорости жидкости;
ω
{\displaystyle \omega }
называют псевдовектором вихря или просто завихренностью. Движение называется безвихревым или потенциальным, если
ω
=
0
{\displaystyle \omega =0}
, в противном случае имеет место вихревое движение.
Векторное поле вихря удобно характеризовать некоторыми геометрическими образами. Вихревой линией называется линия, касательная к которой в каждой точке направлена по вектору вихря; совокупность вихревых линий, проходящих через замкнутую кривую, образует вихревую трубку. Поток вектора вихря через любое сечение вихревой трубки одинаков. Он называется интенсивностью вихревой трубки и равен циркуляции скорости
Γ
=
∫
C
v
d
l
{\displaystyle \Gamma =\int _{C}v\,dl}
по произвольному контуру C, однократно охватывающему вихревую трубку.
За редким исключением, движение жидкости или газа почти всегда бывает вихревым. Так, вихревым является ламинарное течение в круглой трубе, когда скорость распределяется по параболическому закону, течение в пограничном слое при плавном обтекании тела и в следе за плохо обтекаемым телом. Вихревой характер носит любое турбулентное течение. В этих условиях выделение класса «вихревое движение» оказывается осмысленным, благодаря тому, что при преобладании инерционных сил над вязкими (при очень больших числах Рейнольдса) типична локализация завихренности в обособленных массах жидкости — вихрях или вихревых зонах.
Согласно классическим теоремам Гельмгольца, в предельном случае движения невязкой жидкости, плотность которой постоянна или зависит только от давления, в потенциальном силовом поле вихревые линии вморожены в среду, то есть в процессе движения они состоят из одних и тех же частиц жидкости — являются материальными линиями. Вихревые трубки при этом оказываются вмороженными в среду, а их интенсивность сохраняется в процессе движения. Сохраняется также циркуляция скорости по любому контуру, состоящему из одних и тех же частиц жидкости (теорема Кельвина). В частности, если при движении область, охватываемая данным контуром, сужается, то интенсивность вращательного движения внутри него возрастает. Это важный механизм концентрации завихренности, реализующийся при вытекании жидкости из отверстия в дне сосуда (ванны), при образовании водоворотов вблизи нисходящих потоков в реках и определяющий образование циклонов и тайфунов в зонах пониженного атмосферного давления в которые происходит подтекание (конвергенция) воздушных масс.
В жидкости, находящейся в состоянии покоя или потенциального движения, вихри возникают либо из-за нарушения баротропности, например образование кольцевых вихрей при подъёме нагретых масс воздуха — термиков, либо из-за взаимодействия с твердыми телами.
Если обтекание тела происходит при больших числах Re, завихренность порождается в узких зонах — в пограничном слое — проявлением вязких эффектов, а затем сносится в основной поток, где формируются отчетливо видимые вихри, некоторое время эволюционирующие и сохраняющие свою индивидуальность. Особенно эффектно это проявляется в образовании за плохообтекаемым телом регулярной вихревой дорожки Кармана. Вихреобразование в следе за плохообтекаемым телом определяет основная часть лобового сопротивления тела, а образование вихрей у концов крыльев летательных аппаратов вызывает дополнительное [[Лобовое сопротивление}индуктивное сопротивление]].
При анализе динамических вихрей и их взаимодействия с внешним безвихрев
Источник: Wipedia.org