В глубь планеты
Путешествие к центру Земли
В романе Жюля Верна герои спускаются в кратер вулкана, чтобы достичь глубин нашей планеты. На самом деле в ее недрах царит адская жара, а потому ученые могут совершить лишь воображаемое путешествие к центру Земли, используя результаты спутниковых наблюдений, компьютерные модели, данные сейсмических исследований. Что же нового открывается им?
Земля покрыта тонкой оболочкой – корой, которая на суше гораздо мощнее, чем под океанами. Земная кора – лишь «кожа» нашей планеты. Многие геологические феномены «коренятся» не здесь – они обусловлены процессами, протекающими глубоко в недрах Земли, в ее мантии, на долю которой приходится 82 % объема всей планеты.
Исследование мантии принесет еще немало неожиданных открытий. Лишь верхняя ее часть как будто не таит ничего особенного. Вместе с корой она образует литосферу, состоящую из отдельных фрагментов – плит. Эта область Земли хорошо изучена. Но уже в 50—100 километрах от поверхности планеты начинаются загадки. Там простирается астеносфера. Она разделяет верхнюю и нижнюю, более плотную часть мантии и заканчивается на глубине 250—350 километров от земной поверхности. При распространении сейсмических волн она ведет себя как громадный амортизатор.
Почему это происходит? Объяснение кроется в свойствах мантии. Несмотря на то что этот слой разогрет до очень больших температур, он ничуть не является жидким. Горные породы, слагающие его, находясь под чудовищным давлением, остаются твердыми, но при этом становятся пластичными, даже текучими. И именно эти их свойства – пластичность, текучесть – обусловливают процесс конвекции, движущую силу важнейших геологических событий, совершающихся на планете. Без него невозможны были бы ни землетрясения, ни извержения вулканов. Конвекция вызывается перепадами температуры в мантии Земли. Этот круговорот вещества, как принято считать, обеспечивает движение литосферных плит. Но почему тогда их скорость так заметно разнится? В рамках традиционной теории глобальной тектоники плит ответить на этот вопрос не удается.
Строение Земли
В 2010 году на страницах журнале Science появилась гипотеза американских и австралийских ученых (руководитель – Ваутер Шелларт), которая переворачивала с ног на голову прежние представления, зато объясняла, почему литосферные плиты движутся по-разному. Ее авторы обратили внимание на то, что плиты перемещаются тем медленнее, чем они меньше. Точно так же скорость субдукции зависит от размера плит, пропорциональна ему. Так, может быть, не скорость конвективных потоков в мантии, а размеры зоны субдукции задают темп движения плит? Чем шире эти разверзшиеся на дне океана проемы, тем быстрее в них исчезает земная кора. Очевидно, многие геологические процессы регулируются «сверху вниз», а вовсе не из недр Земли, как считалось прежде.
Эта гипотеза объясняет, почему Индо-Австралийская и Тихоокеанская литосферные плиты, а также плита Наска движутся заметно быстрее, чем Африканская и Евразийская плиты и плита Хуан-де-Фука. Она объясняет и движение исчезнувшей плиты Фараллон, которая почти полностью погрузилась в глубь мантии, а ее обломки продолжают пододвигаться под Северную и Южную Америку. За 50 миллионов лет скорость ее движения снизилась с 10 до 2 сантиметров в год. Очевидно, причина в том, что ширина зоны субдукции за это время уменьшилась с 14 тысяч километров до 1400.
Чем дальше мы проникаем в глубь Земли, тем больше это напоминает нисхождение в ад. Здесь царят дьявольская жара и чудовищное давление. Уже в верхнем слое мантии температура повышается до 1000 °C, а давление возрастает с одного до 24 гигапаскалей – это примерно в 240 тысяч раз выше атмосферного давления.
В этих условиях не выдерживают даже минералы и горные породы. При таком давлении они не могут расплавиться, но зато меняется их структура. Она становится все более компактной. Это удалось выяснить, анализируя движение сейсмических волн.
Например, уже на глубине 410 километров оливин – минерал, из которого по большей части и состоит мантия, – превращается в свою модификацию, вадслеит, имеющий тот же химический состав. Еще через 100 километров мы встречаем новую модификацию оливина – рингвудит.
На глубине свыше 1000 километров даже железо переходит в другое состояние. Теперь отдельные электроны его атомов образуют пары. В зависимости от того, обладают ли электроны, составившие эти пары, одинаковым спином (иными словами, вращаются ли они в одном и том же направлении), решительно меняются свойства минералов, содержащих железо, в частности их плотность, теплопроводность, а также скорость распространения в них сейсмических волн.
Железо находится в подобном состоянии, как выяснилось недавно, в обширной области, на глубине от 1000 до 2200 километров – а там уже начинается нижняя мантия. Давление постепенно возрастает с 24 до 120 гигапаскалей, а температура повышается с 1000 до 3500 °C.
На расстоянии примерно 2900 километров от поверхности Земли начинается земное ядро. Согласно расчетам, оно состоит из железа и никеля. Его внутренняя часть является твердой, а обволакивает эту сердцевину железоникелевый расплав. Он постоянно перемешивается, здесь и генерируется мощное магнитное поле – защитный экран нашей планеты. Характер течений в жидкой части ядра еще не до конца понятен ученым, а без этого невозможно исчерпывающе объяснить природу магнитного поля Земли.
Что уж там говорить! Мы только начинаем понимать, как ведут себя железо и никель в тех необычных условиях, которые царят в ядре Земли. Например, ученым давно было известно, что волны во внутренней части ядра движутся необычайно медленно – так, словно она является не твердой, как принято считать, а мягкой или, точнее, вязкой. Кроме того, скорость распространения волн выше, если они пересекают ядро с севера на юг, и ниже, если отклоняются от этой оси.
Судя по компьютерной модели, представленной в 2007 году российскими и шведскими исследователями, при тех чудовищных давлениях и температурах, что царят в глубине ядра, атомы железа принимают странную конфигурацию. Они образуют так называемую объемноцентрированную кубическую решетку. Чтобы представить, как это выглядит, надо вспомнить знаменитую скульптуру «Атомиум», установленную полвека назад в Брюсселе. Отдельные кубы этой кристаллической структуры довольно слабо связаны со своими соседями. Они могут смещаться в сторону, этим и объясняется пластичность внутренней части ядра. В то же время такая структура никак не сказывается на работе «магнитной динамо-машины».
В том же 2007 году в Science были опубликованы результаты лабораторного эксперимента другой международной группы исследователей. Ей удалось изучить поведение сплава никеля и железа в условиях, которые царят на расстоянии 4000 километров от поверхности Земли – при температуре свыше 3200 °C и давлении более 225 гигапаскалей. Рентгеновский анализ в самом деле показал изменение гексагональной структуры сплава на объемноцентрированную, благодаря чему его плотность уменьшилась на 2 %. Так было доказано, что земное ядро состоит из особой модификации железа.
Тем не менее ученые по-прежнему пока еще очень далеки от того, чтобы окончательно понять процессы, протекающие в ядре нашей планеты, а также в ее мантии. Наоборот, любое новое открытие порождает все новые вопросы. Путешествие к центру Земли продолжается, и конца ему пока не видно.
Где прячутся мантийные струи?
Никто не видел воочию, что происходит в недрах планеты. Даже удивительно, что в наши дни, когда роботы движутся по поверхности Марса, а межпланетные аппараты исследуют далекий Титан, человек не сумел углубиться в недра Земли хотя бы на полтора десятка километров. Лишь косвенные наблюдения позволяют судить о любопытнейших процессах, протекающих совсем неподалеку от нас.
Вот один из таких феноменов – мантийные струи (плюмы), потоки горячего вещества, притекающие из нижних слоев мантии. Все начинается с тонкой струйки шириной от 10 до 100 километров. Температура вещества, составляющего ее, на 100—300° выше, чем температура окружающих ее пород. Миновав вязкую мантию и достигнув твердой литосферы, она заметно расширяется, напоминая теперь шляпку гриба. Там, где подобные струи прорываются к поверхности Земли, они порождают особую форму вулканизма – так называемые «горячие точки» (Hot Spots). Такие вулканы располагаются не по краям литосферных плит, а посредине – там, где, как считалось в рамках теории глобальной тектоники, их не должно было быть.
Чаще всего эти вулканы встречаются на островах, затерянных где-нибудь в океане. Образуются целые цепочки подобных островов. Один из самых ярких примеров – Гавайские острова. Геологические исследования показывают, что в таких цепочках чем дальше острова оказываются от действующего вулкана, тем выше их возраст. Как правило, на самых древних островах находятся давно погасшие вулканы.
В 1963 году канадский геофизик Джон Тьюзо Уилсон связал это наблюдение с дрейфом литосферных плит. По его предположению, источник магмы, изливающейся при извержении подобного вулкана, скрывается в глубине мантии – гораздо глубже, чем при извержении обычных вулканов. В таком случае этот вулкан (назовем его сейчас «вулкан гавайского типа») движется вместе с литосферной плитой и извергается до тех пор, пока магма, притекающая из глубины мантии, не перестает его питать. Постепенно этот вулкан смещается в сторону от «горячей точки», и раскаленная магма, в конце концов, прожигает новый участок земной поверхности. Так образуется новый действующий вулкан, а прежний прекращает свою деятельность, гаснет. Через какое-то время все повторяется. Рождается очередной вулкан.
Нижняя мантия суперплюма
В 1971 году эту гипотезу дополнил американский геофизик Джейсон Морган. Он предположил, что восходящие потоки раскаленного вещества зарождаются в нижней части мантии. Эта догадка позволила объяснить, почему при извержении вулканов гавайского типа химический состав базальтовых лав, достигающих поверхности Земли, заметно отличается от состава базальтов, оказывающихся на поверхности при извержении обычных вулканов.
В последующие десятилетия, используя результаты сейсмических наблюдений и компьютерных моделей, ученые сумели во многом описать эти потоки вещества – мантийные струи. Обнаружено уже около полусотни подобных струй. Они располагаются под Гавайскими островами, Исландией, горами Эйфель на западе Германии и горой Этна на Сицилии.
Наблюдения показали, что есть два типа мантийных струй. Одни – в районе Азорских островов, Таити, Самоа – зарождаются на границе с ядром Земли, на глубине 2900 километров, и пересекают всю мантию. Другие – например, в Эйфеле – образуются в зоне, разделяющей верхнюю и нижнюю мантию, на глубине 410—660 километров от земной поверхности.
Возможно, помимо обычных мантийных струй земную мантию рассекают и громадные потоки раскаленного вещества – так называемые суперплюмы, суперпотоки. Только этим можно объяснить возникновение в далеком прошлом громадных базальтовых плато – таких, как плоскогорье Декан в Индии (его площадь достигает миллиона квадратных километров). Сегодня многие ученые связывают появление этого плато, образовавшегося около 66 миллионов лет назад, с «горячей точкой», которая находится теперь под островом Реюньон, хотя эта гипотеза и вызывает немало споров.
Другой пример. Около 250 миллионов лет назад свыше 2 миллионов квадратных километров территории Сибири было покрыто слоем лавы – результатом мощных вулканических извержений. Возможно, именно они стали причиной массового вымирания животных на исходе пермского периода (299—251 миллион лет назад), когда исчезли 95 % всех видов, обитавших в тогдашних морях, и две трети видов, населявших сушу. Обширные базальтовые плато имеются также в Китае (район горы Эмэйшань) и Бразилии (район реки Парана).
На рубеже 1980-х и 1990-х годов была опубликована гипотеза Роберта Шеридана из Ратгерского университета и Роджера Ларсона из университета Род-Айленда. Согласно их предположению, особую активность суперплюмы проявляли в меловом периоде, около 120 миллионов лет назад. В пользу этого свидетельствуют резкие колебания тогдашнего уровня моря, усиленное образование океанической коры, стремительное раздвижение морского дна, прекращение смены магнитных полюсов, повышение средней температуры на планете. Главный очаг активности находился в западной части Тихого океана. По оценке исследователей, эта область достигала в поперечнике нескольких тысяч километров – в десятки раз больше территории, затрагиваемой деятельностью обычных мантийных струй.
Ученые продолжают спорить о том, существуют ли на самом деле суперплюмы. В новейшей научной литературе это понятие применяется лишь к двум регионам планеты. Предполагается, что одна из этих гигантских струй находится в западной части Тихого океана – там, где выявлен аномально большой приток тепла из глубин планеты к ее поверхности и располагаются четыре «горячие точки», – а другая скрывается под Восточной Африкой.
По одной гипотезе, такие струи, словно громадный поток Амазонки, образуются за счет слияния нескольких мелких струек-«речушек», которые, устремляясь наверх, к «воздушному океану», соединяются друг с другом. Однако сейсмические наблюдения не подтвердили этой догадки.
Другую гипотезу предложили Венди Панеро и ее коллеги из университета штата Огайо. По их мнению, важную роль в зарождении гигантских восходящих потоков вещества играют многочисленные обломки древних континентальных плит, скапливающиеся в нижней части мантии, что нарушает привычный ход протекающих здесь процессов. Участки мантии, где образовались подобные потоки вещества, с самого начала незначительно отличались по своему химическому составу от соседних областей. Они содержали предположительно от 10 до 13 % железа вместо 10—12 %, как остальная часть мантии. Громадные мантийные потоки – это, вероятно, потоки вещества более плотного, нежели в остальной мантии. Обычно такое вещество погружается в глубь менее плотного – в глубь мантии – и расширяется. Но здесь они зародились там, куда в результате процесса субдукции опускаются куски литосферных плит. По этой причине суперплюмы, полагает Панеро, не могут стронуться с места на протяжении последних 200 миллионов лет – со времен распада Пангеи, хотя окружающее их вещество мантии непрестанно движется вокруг них.
Исследование мантийных струй только начинается. Пока разрешающая способность современных приборов слишком мала, чтобы увидеть во всех подробностях то, что происходит не на Марсе или Титане, а всего в сотне километров от нас. Но это лишний раз убеждает нас в том, что география – физическая география Земли – и в XXI веке останется одной из важнейших наук. Нас могут ждать новые крупные открытия!
Сдвигаются ли «горячие точки»?
Вся планета неизменно пребывает в движении. Все литосферные плиты, составляющие зримую поверхность Земли, перемещаются в разные стороны. «Горячие точки» считались единственными «твердыми опорами» в этом неустойчивом мире. Однако новые открытия заставляют усомниться в этой догме. Может быть, всю теорию глобальной тектоники плит придется переписывать заново?
«Горячими точками» называют центры вулканической активности, расположенные вдали от краев литосферных плит. Впервые об их существовании заговорил полвека назад Джон Тьюзо Уилсон. Температура участка мантии, расположенного непосредственно под «горячей точкой», заметно выше, чем соседних участков. Раскаленная струя вещества постепенно прорезает литосферную плиту и изливается на поверхность Земли. Образуется вулкан. Ну а поскольку плиты постоянно движутся, эта струя, в конце концов, оказывается в стороне от него. Плита ведь переместилась вперед. Тогда струя прорезает надвинувшуюся на нее часть плиты и снова пробивается наверх. Так появляется новый вулкан, в стороне от первого. Чаще всего подобный вулкан возникает на дне океана, поскольку здесь земная кора заметно тоньше, чем на суше. Однако он выбрасывает такое количество лавы, что вокруг него образуется целый остров. Со временем процессы эрозии разрушают и сам вулкан, и остров из отвердевшей лавы, что возник возле него. Через миллионы лет морская гладь поглощает весь этот истертый ветром и водой клочок суши. Такова, например, и судьба Гавайских островов.
Уже к концу 1970-х годов большинство геологов приняли эту гипотезу. Ведь она могла объяснить многие детали глобальной тектоники плит, остававшиеся еще непонятными. Почему, например, вулканы образуются не только по краям литосферных плит, но и посреди них?
Точное количество «горячих точек» неизвестно, поскольку геофизики пока не научились выявлять небольшие мантийные струи. Поэтому в научной литературе бытуют разные цифры. Однозначно – путем сейсмологических наблюдений – обнаружено примерно полсотни мантийных струй и соответственно «горячих точек». Они располагаются по всему земному шару – от Канарских островов до Йеллоустона, от Азорских островов до островов Галапагос.
Одна из «горячих» точек Земли– Гавайские острова. Вид из космоса
«Горячие точки» очень заинтересовали ученых, занимающихся палеогеографией. По тому, как на протяжении миллионов лет менялось расположение вулканов, вытянувшихся теперь в виде цепочки островов, можно реконструировать скорость движения литосферных плит. Так, в случае с Гавайскими островами она равняется сейчас 8,5 сантиметра в год. Около 400 тысяч лет назад прямо над «горячей точкой» находился остров Гавайи, крупнейший остров архипелага, а 3 миллиона 700 тысяч лет назад над ней располагался остров Оаху.
Сейчас «горячая точка» находится примерно в 35 километрах от острова Гавайи, в районе подводного вулкана Лоихи. Здесь еще нет острова, он только растет, его контуры лишь угадываются под водой. Пока от поверхности моря его отделяет 900 метров. Но, по расчетам геологов, уже через несколько миллионов лет вершина вулканического конуса, образовавшегося здесь, будет возвышаться над океаном на 4000 метров. В общей сложности его высота, если учесть подводную часть, достигнет 10 тысяч метров. Это больше, чем высота Джомолунгмы, величайшей горы нашей планеты, но зато примерно соответствует высоте вулкана Мауна-Кеа, лежащего на острове Гавайи (опять же отсчет надо вести от морского дна). Это полное подобие двух вулканов – реального и пока еще смоделированного, – возможно, когда-нибудь подтвердит гипотезу Уилсона, который предположил, что формирование и рост всех островов, образовавшихся возле одной и той же «горячей точки», протекает всегда по одной и той же схеме, всегда одинаково.
Различный возраст отдельных Гавайских островов проявляется еще и в том, что они пребывают на разных стадиях эрозионного разрушения. Если самый молодой из них – остров Гавайи – в результате регулярных вулканических извержений все еще продолжает расти, то острова, лежащие к северо-западу от него, уже заметно тронуты эрозией и разрушены.
Интерес вызывает и форма вулканической цепочки. По ней можно судить о том, как менялось направление движения литосферной плиты. Например, Гавайские острова изогнуты таким образом, что это позволило некоторым ученым предположить: около 43 миллионов лет назад Тихоокеанская плита столкнулась с другой плитой. Однако никаких иных видимых признаков коллизии не удалось выявить. Но, может быть, не стоит «громоздить Пелион на Оссу»? И это не плиту шатало из стороны в сторону, а перемещалась «горячая точка»?
Всякий раз, выполняя подобные расчеты, ученые делают одно принципиально важное допущение: они полагают, что передвигаются только литосферные плиты, в то время как сама мантийная струя остается на одном и том же месте. Но так ли это?
В последние годы поставлена под сомнение даже история возникновения Гавайских островов – парадный пример теории «горячих точек». Американские геофизики Джон Тардуно и Рори Коттрелл предположили, что на самом деле эта «горячая точка» перемещается с весьма внушительной скоростью 3—4 сантиметра в год. Примерно так же быстро движутся и литосферные плиты.
Прежде чем прийти к такому выводу, Тардуно и Коттрелл исследовали магнитные характеристики вулканических пород, выброшенных гавайскими вулканами. Ведь, как мы уже отмечали, некоторые минералы могут указывать, каким было направление магнитного поля Земли в момент их застывания. На экваторе силовые линии магнитного поля располагаются горизонтально, а чем дальше, к северу или югу, – тем заметнее они отклоняются от горизонтали. Это и позволило установить, что 75 миллионов лет назад «горячая точка» Гавайских островов находилась на 35° северной широты (сегодня – на 19°).
Такие же геомагнитные исследования позволили установить, что большая часть «горячих точек» когда-то находилась вовсе не на той широте, что теперь. Вполне может быть, что все эти точки перемещаются по поверхности Земли. Очевидно, мантийные потоки не устремляются ввысь, как стрела, а отклоняются в стороны, покачиваются, как языки пламени на ветру.
Но эта догадка грозит пошатнуть многие устоявшиеся теории. Ведь ученые реконструируют положение континентов в далеком прошлом, исходя из того, что «горячие точки» неизменно находятся на одном и том же месте. Они – точки отсчета, позволяющие восстановить, когда и куда переместилась та или иная плита. Однако если сами эти точки оказываются то здесь, то там, то и все расчеты летят в тартарары. В таком случае ошибочны все наши представления о далеком прошлом Земли. Это касается и истории климата, и перемещений магнитных полюсов, и много другого. Пошатнулось здание геологии, словно и под ним разверзлась твердь земная, прожженная насквозь «горячей точкой» науки…
Стоит добавить, что в общей сложности как минимум 10 % всей поверхности нашей планеты, а по некоторым предположениям, даже 40 % так или иначе подверглись воздействию излившихся на нее мантийных потоков вещества. Геологическая роль их так велика, а их проявления так разнообразны, что некоторые ученые полагают, будто сама гипотеза мантийных струй и «горячих точек» ошибочна, а значит, многие феномены, обязанные им своим происхождением, имеют совсем другую природу. Но справедливы ли сомнения этих скептиков?
Почему Америка до сих пор не утонула?
Итак, мы изучили недра Земли хуже, чем поверхность Марса или Луны. Под нашими ногами простираются сплошные белые пятна. Конечно, основной закон геофизики нам давно известен: более плотные участки земной коры, плавая в слое верхней мантии – астеносфере, глубже погружаются в нее, чем менее плотные, подобно тому как громадные военные корабли глубже оседают в волнах, чем рыбачьи фелюги. Это не что иное, как закон Архимеда, примененный к земной коре. Определенную роль в этом гидростатически равновесном состоянии играет и температура ее нижних слоев. Чем сильнее они разогреты, тем выше континент вздымается над уровнем моря. Однако до сих пор этот показатель почти не использовался для описания рельефа различных районов планеты.
Обычно специалисты, объясняя топографию континентов, учитывают лишь, как движутся литосферные плиты и из каких пород они сложены. Соответственно, чем массивнее «подземная часть» континента, тем выше на его поверхности вздымаются горы. Измерения, проводившиеся в Альпах, подтвердили это. «Корни» альпийских гор уходят в глубь Земли в два раза дальше, чем остов других частей Европы.
Но есть немало примеров, которые не укладываются в эту схему. Скажем, плато Колорадо в США (его преобладающие высоты – от 1800 до 2500 метров) и Великие равнины, простирающиеся к востоку от Скалистых гор, сложены из одних и тех же пород, но перепад высот между ними составляет около полутора тысяч метров.
Тем любопытнее работа, которую опубликовали недавно Деррик Хэстерок и Дэвид Чепмен из университета штата Юта на страницах Journal of Geophysical Research.Ее название – «Континентальная термальная изостазия. – Часть первая: методы и чувствительность». Как правило, научная статья под таким заголовком не избалована вниманием широкой публики. И даже среди геологов немногие зачитываются такого рода теоретическими рассуждениями. Поэтому, чтобы пробудить интерес к своей работе Чепмен и Хэстерок нашли любопытный ход. Они сопроводили сугубо научный материал увлекательным приложением под заголовком «Часть вторая: применительно к Северной Америке», где живописали картину далекого будущего.
Под Колорадо температура недр на глубине 30км составляет около 650°С, в то время как под Великими равнинами– 500°С
Как оказалось, земная кора под Северной Америкой разогрета сильнее, чем ожидали. В принципе, недра Земли напоминают… очень вязкую кашу, которая варится на костре. Тепло, притекающее из глубины планеты, а также выделяющееся при распаде радиоактивных элементов, не дает этому «костру» погаснуть. Благодаря конвективным потокам «варево» постоянно, хоть и очень медленно перемешивается. Этот перенос тепла из недр Земли к поверхности – основной мотор тектоники плит; кроме того, данный процесс еще и определяет облик континентов.
Ученых особенно поразило то, что картина температурных перепадов в недрах Северной Америки точно соответствует рельефу материка. Чем сильнее разогреты породы (прежде всего, за счет распада радиоактивных элементов), тем выше рельеф в этой части Америки. Так, под Колорадо температура недр на глубине 30 километров составляет около 650 °С, в то время как под Великими равнинами – 500 °С. Поэтому плотность пород, слагающих земную кору под Колорадским плато, заметно ниже, «и она, подобно пробке, всплывает», – образно поясняет Хэстерок. Слои земной коры вспучились, образовав на поверхности плоскогорье. «А вот на севере Канады ничего похожего не наблюдается. Возраст земной коры там составляет 3 миллиарда лет, и потому она давно остыла».
В принципе, геологи еще несколько десятилетий назад, изучая процессы, протекающие на дне океанов, осознали, что температура верхних слоев мантии и нижней части земной коры играет важную роль в тектонике.Для литосферных плит, слагающих дно океанов, этот эффект хорошо известен. Ведь по дну тянутся срединно-океанические хребты высотой в несколько тысяч метров. Однако, если обратиться к традиционной схеме тектонических процессов, подобный рельеф никак не мог возникнуть, поскольку при движении плит земная кора растягивается и горы могут образоваться лишь там, где две плиты сталкиваются друг с другом. Так что ученым пришлось искать другое объяснение. И они нашли его, обратив внимание на то, что в районе подводных хребтов к поверхности земли поднимаются потоки раскаленной магмы, создавая новые участки земной коры. Их плотность мала; они вспучиваются, образуя подводные горы.
Однако геология континентов гораздо сложнее, и до сих пор ученые почти не принимали во внимание температурные эффекты, анализируя особенности рельефа.Между тем, как явствует из расчетов Чепмена и Хэстерока, если бы не влияние температуры, то большая часть Северной Америки скрылась бы под водой. Например, Атланта находилась бы на глубине 430 метров, Чикаго – почти в 700 метрах ниже уровня моря, а Лас-Вегас опустился бы даже на глубину 1300 метров. Лишь Скалистые горы, Сьерра-Невада и Каскадные горы на северо-западном побережье США островками выглядывали бы над поверхностью океана.
В своей работе Чепмен и Хэстерок поделили США на «тектонические провинции», то есть районы, лежащие на слоях породы одинаковой толщины и одного и того же состава. «Такой подход позволил исключить влияние этих характеристик земной коры из наших расчетов и оценить, как влияет температура нижележащих слоев породы на высоту той или иной местности», – подчеркивает Чепмен. Очевидно, плавучая сила, удерживающая континенты, лишь на 50 % обусловлена составом пород, слагающих земную кору, и на 50 % – температурой, к такому выводу пришли ученые.
Дело осталось за малым – за научным прогнозом. Чепмен и Хэстерок обратились к справочным данным – положению крупнейших городов Америки над уровнем моря – и вычли из этих цифр влияние температуры, предположив, что всюду под Северной Америкой земная кора остыла точно так же, как и на севере Канады. Сразу же географическая карта этой части мира стала выглядеть совершенно иначе. На месте третьего по величине континента Земли отныне пролегала лишь узкая полоска суши, покрытая горами, и несколько небольших островов, омываемых водами Тихого и Атлантического океанов. Где-то на дне – тайной двух океанов – упокоились Нью-Йорк (434 метра ниже уровня моря) и Новый Орлеан (– 730 метров), Бостон (– 555 метров) и Лос-Анджелес (– 1145 метров), или что там от них осталось.
Особый случай представляет северо-западное побережье США. Здесь под континентальную Северо-Американскую плиту «подныривает» плита Хуан-де-Фука. Последняя давно мешает притоку тепла из недр к поверхности Земли, а потому земная кора здесь очень охлаждена. Так что эта часть США непременно поднимется над уровнем моря, когда температура недр на всей территории страны выравняется. Если сейчас Сиэтл лежит на уровне моря, то после мысленного эксперимента, который проделали над ним ученые, он оказался в горах – на высоте 1800 метров.
Подводим итоги: Америка до сих пор не утонула! Обетованная земля, воспарившая на гребне незримого огня…
Если же без шуток, то геологи из Юты сделали важный шаг на пути к созданию целостной картины динамических процессов, протекающих в недрах нашей планеты. Можно лишь сожалеть, что результаты, полученные ими для Северной Америки, невозможно применить к другим континентам, ведь геология каждого из них уникальна, и всякий раз ученым придется заново описывать процессы, происходящие в недрах Земли, и измерять температуру слоев, лежащих на границе мантии и земной коры.
Как возникает магнитное поле Земли?
Если бы у Земли не было магнитного поля, то и сама она, и мир живых организмов, населяющих ее, выглядели бы совсем иначе. Магнитосфера, словно громадный защитный экран, оберегает планету от космического излучения, которое беспрерывно обрушивается на нее. О мощности потока заряженных частиц, исходящего не только от Солнца, но и от других небесных тел, можно судить по тому, как деформировано магнитное поле Земли. Например, под напором солнечного ветра силовые линии поля с той его стороны, что обращена к Солнцу, прижаты к Земле, а с противоположной стороны развеваются, словно кометный хвост. Как показывают наблюдения, магнитосфера простирается на 70—80 тысяч километров в сторону Солнца и на многие миллионы километров в противоположном от него направлении.
Надежнее всего этот экран выполняет свои функции там, где он менее всего деформирован, где он располагается параллельно поверхности Земли или слегка наклонен к ней: в районе экватора или в умеренных широтах. А вот ближе к полюсам в нем обнаруживаются изъяны. Космическое излучение проникает к поверхности Земли и, сталкиваясь в ионосфере с заряженными частицами (ионами) воздушной оболочки, порождает красочный эффект – сполохи полярного сияния. Если бы этого экрана не было, космическая радиация беспрерывно бы проникала к поверхности планеты и вызывала мутации генетического наследия живых организмов. Лабораторные эксперименты показывают также, что отсутствие земного магнетизма отрицательно сказывается на формировании и росте живых тканей.
Загадки магнитного поля Земли тесно связаны с его происхождением. Наша планета вовсе не напоминает собой стержневой магнит. Ее магнитное поле устроено гораздо сложнее. Есть разные теории, объясняющие, почему Земля обладает этим полем. Ведь для того, чтобы оно существовало, необходимо, чтобы было выполнено одно из двух условий: либо внутри планеты располагается громадный «магнит» – некое намагниченное тело (долгое время ученые так и считали), либо там протекает электрический ток.
В последнее время наиболее популярна теория земной «динамо-машины». Еще в середине 1940-х годов ее предложил советский физик Я.И. Френкель. На 90 с лишним процентов магнитное поле Земли генерируется за счет работы этой «динамо-машины». Оставшуюся его часть создают намагниченные минералы, содержащиеся в земной коре.
Компьютерная модель магнитного поля Земли
Как же возникает магнитное поле Земли? На расстоянии примерно 2900 километров от ее поверхности начинается земное ядро – та область планеты, до которой никогда не удастся добраться исследователям. Ядро состоит из двух частей: твердого внутреннего ядра, спрессованного под давлением 2 миллиона атмосфер и содержащего в основном железо, а также расплавленной внешней части, которая ведет себя очень хаотично. Этот расплав железа и никеля постоянно пребывает в движении. Магнитное поле и создается за счет конвективных потоков во внешнем ядре. Эти потоки поддерживаются благодаря заметному перепаду температур между твердым внутренним ядром и мантией Земли.
Внутренняя часть ядра вращается быстрее внешней и играет роль ротора – вращающейся части электрогенератора, в то время как внешняя – роль статора (его неподвижной части). В расплавленном веществе внешнего ядра возбуждается электрический ток, который, в свою очередь, порождает мощное магнитное поле. Это и есть принцип динамо-машины. Иными словами, земное ядро представляет собой громадный электромагнит. Силовые линии созданного им магнитного поля начинаются в районе одного полюса Земли и заканчиваются в районе другого полюса. Форма и интенсивность этих линий варьируются.
Зародилось же магнитное поле Земли, как полагают ученые, еще в ту пору, когда только шло формирование планеты. Возможно, решающую роль сыграло Солнце. Оно запустило эту природную «динамо-машину», которая продолжает свою работу и теперь.
Ядро окружено мантией. Ее нижние слои находятся под большим давлением и разогреты до очень высоких температур. На границе, разделяющей мантию и ядро, протекают интенсивные процессы теплообмена. Перенос тепла играет ключевую роль. К более холодной мантии притекает тепло из раскаленного ядра Земли, и это сказывается на конвективных потоках в самом ядре, меняет их.
В зонах субдукции, например, участки морского дна опускаются в глубь Земли, почти достигая границы, разделяющей мантию и ядро. Эти куски литосферных плит, «отправленные» на переплавку в недра планеты, заметно холоднее той части мантии, где оказались. Они охлаждают окружающие их области мантии, и сюда начинает перетекать тепло со стороны ядра Земли. Процесс этот очень длительный. Расчеты показывают, что порой лишь по прошествии сотен миллионов лет температура охлажденных областей мантии выравнивается.
В свою очередь, раскаленное вещество, поднимаясь в виде громадных струй от границы, разделяющей мантию и ядро, достигает поверхности планеты. Этот круговорот вещества, эти сложные процессы перетекания вверх-вниз, на «лифте Земли» то раскаленного, то очень холодного вещества, несомненно, влияют на работу природной «динамо-машины». Рано или поздно она сбивается с привычного ритма, и тогда создаваемое ею магнитное поле начинает меняться. Компьютерные модели показывают, что время от времени все может кончиться сменой магнитных полюсов.
В этой смене полюсов нет ничего необычного. В истории нашей планеты такое происходило часто. Однако были эпохи, когда смена полюсов прекращалась. Например, в меловом периоде они не менялись местами на протяжении почти 40 миллионов лет.
Пытаясь объяснить этот феномен, французские исследователи во главе с Франсуа Петрели обратили внимание на положение континентов относительно экватора. Оказалось, чем больше континентов лежит в одном из полушарий Земли, тем чаще ее магнитное поле меняет свое направление. Если же, наоборот, континенты располагаются симметрично относительно экватора, то на протяжении многих миллионов лет магнитное поле остается стабильным.
Так, может быть, положение континентов влияет на конвективные потоки во внешней части ядра? В таком случае это влияние осуществляется через зоны субдукции. Когда почти все континенты находятся в одном из полушарий, там будет и больше зон субдукции. Массивная, холодная кора будет всё опускаться к границе, разделяющей мантию и ядро, и скапливаться там. Образовавшиеся заторы, несомненно, нарушат тепловой обмен между мантией и ядром. Компьютерная модель показывает, что конвективные потоки во внешнем ядре из-за этого тоже смещаются. Теперь уже и они асимметричны относительно экватора. Очевидно, при таком их расположении земную «динамо-машину» легче вывести из равновесия. Она, словно человек, вставший на одну ногу и готовый потерять равновесие от легкого толчка. Вот и магнитное поле внезапно «переворачивается».
Итак, весьма вероятно, что на смену магнитных полюсов влияют тектонические процессы, протекающие на нашей планете, и, прежде всего, движение континентов. Прояснить это могут дальнейшие палеомагнитные исследования, В любом случае ученые обнаруживают все больше фактов, которые свидетельствуют о том, что между движением литосферных плит на поверхности Земли и «динамо-машиной», создающей магнитное поле Земли и расположенной в самом центре планеты, есть определенная связь.
К чему приведет смена магнитных полюсов?
Мощное магнитное поле – отличительная особенность нашей планеты. Земля представляет собой один громадный магнит. Это кажется чем-то незыблемым, неизменным. Но впечатление обманчиво. Не раз в истории Земли магнитное поле необъяснимым образом ослабевало, а затем его полюса менялись местами. Лишь после этого незримый экран, защищающий планету от космического излучения, вновь восстанавливался.
Чем объяснить подобные метаморфозы? Как они сказывались на судьбах всего живого? Эти вопросы имеют не только теоретическое значение. Магнитное поле Земли постепенно становится слабее и сейчас. За последние полтора века его полюса заметно сместились. Неужели нас ждет катастрофа?
Долгое время магнитное поле Земли и впрямь считалось символом стабильности. Однако с начала 1960-х годов геологи стали обнаруживать «неправильно намагниченные минералы». Как известно, многие минералы сохраняют магнитные характеристики, приобретенные в момент своего формирования. И вот, судя по ним, в далеком прошлом магнитные полюса Земли располагались иначе. «Доисторический компас» указывал не на север, а на юг. На протяжении всей земной истории полюса менялись местами. Два с небольшим миллиарда лет Северный магнитный полюс оставался «северным» и примерно столько же времени был «южным».
Земля как магнитный диполь
То же подтверждали и исследования, проводившиеся в окрестности вулканов. Лава, застывавшая в разные эпохи, надежно передавала особенности магнитного поля Земли – служила «магнитным календарем». Чтение его страниц помогло ученым детально воссоздать картину геомагнитных инверсий.
Как же происходит смена магнитных полюсов? Чем это грозит нашей планете? И такой ли беззащитной окажется на какое-то время Земля? Или космическая радиация все же не будет проникать к ее поверхности?
Модель, которую разработали американские геофизики Гэри Глацмайер и Пол Робертс, показывает, что все начинается с того, что магнитное поле Земли понемногу ослабевает. Проходит 500—1000 лет, и его привычная двухполюсная структура внезапно меняется. Поле становится хаотичным. Если сейчас его силовые линии начинаются в районе одного полюса и заканчиваются в окрестности другого, то во время инверсии они расположатся в полном беспорядке. На какое-то время возникнет три, четыре, а то и больше магнитных полюсов. Наконец, после этой стадии «всеобщей сумятицы» поле снова стабилизируется. Восстановится его прежняя структура с двумя магнитными полюсами, но теперь Северный полюс расположится там, где был Южный, и наоборот. Геологические исследования свидетельствуют, что смена полюсов продолжается в среднем около 7000 лет, причем в районе экватора магнитное поле стабилизируется уже через 2000 лет, а в окрестности полюсов – через 11 тысяч лет.
Следует отметить, что в минувшем десятилетии появились компьютерные модели, показывающие, что при отсутствии магнитного поля, создаваемого земным ядром, в верхних слоях атмосферы нашей планеты, на расстоянии 350 километров от ее поверхности, генерируется «запасное» магнитное поле. Оно защитит жизнь на Земле так же надежно, как и обычное магнитное поле. Поэтому космическая радиация по-прежнему не будет проникать к поверхности планеты. Причиной появления этого «запасного» поля становятся сами космические лучи. Они электризуют воздушную оболочку планеты, и это приводит к возбуждению магнитного поля. Такую модель разработал, например, немецкий астрофизик Харальд Леш.
Наблюдения палеонтологов и геологов косвенно подтверждают эту гипотезу. В слоях отложений на дне Атлантического океана, соответствующих периодам смены магнитных полюсов, не замечено следов повышенной радиоактивности. У животных, населявших нашу планету в эти эпохи, не обнаружено возросшей частоты мутаций.
Теперь, когда сценарий грядущей геомагнитной инверсии хотя бы отчасти понятен, напрашивается вопрос: когда ее ждать? Что могут сказать об этом ученые?
Для начала отметим, что в последний раз смена полюсов происходила очень давно – около 750—780 тысяч лет назад. Даже по геофизическим меркам это целая вечность. Ведь за последние 100 миллионов лет магнитные полюса менялись в среднем через каждые 200—500 тысяч лет. Новая смена полюсов запаздывает. Так скоро ли она наступит?
Систематические наблюдения за магнитным полем Земли ведутся с середины XIX века. За это время положение его полюсов заметно изменилось. Так, начиная с 1841 года Северный магнитный полюс (следует отметить, что с физической точки зрения этот полюс является «южным», поскольку притягивает северный полюс стрелки компаса. – А. В.) преодолел 1100 километров, а Южный – 1300 километров. Сейчас Северный магнитный полюс все быстрее перемещается по Арктике. Большую часть ХХ века скорость его дрейфа составляла около 10 километров в год, но начиная с 1983 года он стал передвигаться быстрее. В 1983—1994 годах скорость его движения составляла 15 километров в год, а теперь достигла 50 километров в год. Сейчас он располагается менее чем в 500 километрах от географического Северного полюса, к северу от побережья Канады. Если он продолжит двигаться с той же скоростью и в том же направлении, то примерно к 2020 году достигнет географического Северного полюса, а уже к 2050 году – берегов Сибири.
Ученые пока не знают, почему полюс так стремительно перемещается из Канады в Россию. Возможно, причина кроется в изменении конвективных потоков во внешней части земного ядра. В истории планеты подобное происходило обычно перед сменой полюсов, когда магнитное поле Земли заметно ослабевало. Вот и сегодня множатся признаки близящейся инверсии, отмечалось в 2012 году на страницах журнала Nature Geoscience.
Чем беспокойнее ведут себя магнитные полюса, тем слабее становится поле. Сейчас его напряженность уменьшается примерно на 5 % за столетие. Простой расчет показывает, что через 2000 лет она станет равна нулю. Иными словами, магнитное поле исчезнет? Но эта гипотеза с научной точки зрения никак не обоснована. Мы не можем точно сказать, будет ли магнитное поле Земли в ближайшие века меняться так же стремительно, как и в последние 100 лет. В истории нашей планеты напряженность магнитного поля не раз заметно колебалась, но смены полюсов при этом не происходило.
Отнюдь не новы и странные блуждания Северного магнитного полюса. Возможно, в конце концов он вернется из Сибири в Канаду. Подобные события уже не раз повторялись за последние 2000 лет, отмечает Джозеф Стонер из Орегонского университета. Стонер и его коллеги исследовали отложения в некоторых арктических озерах. Эти отложения интересны тем, что содержат минералы, в которых имеется железо, а потому они могут поведать о том, каким было магнитное поле много веков назад. Как выяснилось, каждые 500 лет всего лишь за одно-единственное столетие Северный магнитный полюс перемещается на несколько тысяч километров. Всего с начала нашей эры он трижды предпринимал подобные спурты.
Так что причин для паники нет. Смена магнитных полюсов не станет катастрофой для нашей планеты. Только за последние 400 миллионов лет Земля уже несколько сотен раз переживала смену полюсов, но это не привело к гибели всего живого. Наоборот, жизнь на Земле становилась все сложнее и разнообразнее. Палеонтологи не нашли свидетельств массового вымирания животных в те эпохи, когда магнитные полюса менялись местами.