Вы здесь

Юмор в науке, в истории и в жизни. Из биофизики (А. И. Журавлев, 2015)

Из биофизики

Магнитное поле удава

Любуясь летними ночами луной, Андрей Михайлович Преданьев каждый раз испытывал одно и то же чувство. Ему казалось, что луна притягивает его, и томное желание взмыть вверх и парить в высоте близ холодного погасшего светила было неодолимо.

Пытливый ум биолога искал научное объяснение этого явления. Чем действует луна – магнитным полем или силой тяготения? Нечто подобное было известно. Ведь говорят же, что прыгают лягушки в пасть змеи под действием змеиного взгляда?!

Рано утром Андрей Михайлович был в зоопарке. Огромный бразильский удав, не мигая, глядел на него своими непрозрачными желто-коричневыми, удивительно напоминавшими ему луну глазами. Андрей Михайлович с ужасом признался себе, что, будь он лягушкой, немедленно бросился бы в пасть этой твари.

Дирекция зоопарка дала согласие на совместную работу по изучению физических основ воздействия змей на жертву.

Исследователи исходили из того, что, если змея действует магнетически, она, несомненно, сама должна будет притянуться к сильному магниту.

Удава не кормили целый месяц, после чего ему принесли бразильскую древесную лягушку, посаженную в центр огромного мощного магнита и прикрытую стеклянной коробкой, из которой она не могла выпрыгнуть. Удав реагировал только на лягушку и не обратил внимания на магнит. К магниту он не притянулся, т. е. взаимного притяжения между ними отмечено не было.

Опыт был видоизменен. Ничем не прикрытую лягушку посадили в центр очень тонкого и легкого магнита и опустили в клетку к удаву.

Лягушка тотчас же прыгнула и попала в подставленную на ее пути пасть.

Оказывается, жертву змея хватала сама. Магнит остался на месте. При прохождении лягушки от пасти до кончика хвоста змеи даже самые точные приборы не обнаружили никаких возмущений и бурь в магнитном поле Земли.

К этому времени с помощью наших ракет было установлено, что магнитного поля нет и у Луны. Стало ясно, что Луна действовала на Преданьева так же, как и на приливы, – силой тяготения благодаря своей большой массе.

Удав магнитного поля не имел, а для притяжения его масса была все-таки несколько маловата. Несомненно, что на исследователя он действовал своими исключительно высокими моральными качествами.

«Открытие»

Что и говорить! С годами человек теряет способность действовать решительно. Груз предвзятостей и предрассудков, которые он громогласно провозглашает знаниями и опытом, делает его очень осторожным. Мало того что он сам ни на что не решается, он при этом и других своей нерешительностью заражает, ссылаясь на авторитеты.

Возьмитесь, например, что-нибудь сделать в биологии. Сейчас же найдется убеленный сединами академик, процитирует десяток уже известных трудов и в конце концов придет к выводу, что основы этого направления следует искать в трудах Павлова, Сеченова, Мечникова, Пирогова, Введенского или Шатерникова.

Это страшно возмущало Василия Пробкина: «Неужели эти классики уже все сделали?! Э нет, не все! Они не смогли жить в наше время, потому что уже умерли. А наше время – это вторая половина двадцатого века, это атом, это кибернетика, это, наконец, космос.

Да, космос! С его расстояниями, ускорениями, безвоздушным пространством и невероятными электрическими и магнитными полями неведомых миров. Электромагнитное поле в космосе! Да! Этого не могли исследовать классики биологии. Во-первых, в то время вопрос о космосе стоял не так остро. А во-вторых, о каких магнитных и электрических полях могли говорить биологи еще полсотни лет назад?».

Василий Пробкин бегло просмотрел известную биологическую литературу. Ничего подобного нет.

«Погодите, – подумал молодой биолог. – Действие электрического и магнитного полей на организм я исследую сам. Уж этого я вам не скажу. Это я вам доложу с трибуны с печатными тезисами в руках, когда работа будет окончена».

Известно, что величина напряженности магнитного поля измеряется в особых единицах – эрстедах – и на поверхности Земли равна в среднем 0,5 эрстеда.

Фантазия Пробкина работала невероятно, и он заказал себе магнит, который создавал поле в тысячу раз более сильное, равное 500 эрстед. Увеличение в тысячу раз – это масштаб, это размах, это наше время. В ходе работы Василий установил, что магнитное поле определенным образом воздействует на живые организмы. Так, дрожжи стали быстрее почковаться, мушки-дрозофилы – быстрее размножаться, а прорастающие корешки конских бобов неизменно поворачивались к южному полюсу магнита, как будто оттуда на них дул теплый южный ветер.

Это было биологическое открытие. Пробкин еле дождался очередной научной конференции. В напечатанных тезисах он с удовлетворением увидел отображение своих мыслей. Тезисы он вручил академику Безвольному. Академик весьма внимательно просмотрел их и глубоко задумался. «Переживает. Почувствовал дух времени», – сочувственно даже подумал Василий.

Безвольный встал, достал с полки и подал Василию сборник своих трудов, а затем промямлил: «Если мне не изменяет память, вы довольно удачно повторили кое-что из того, что было проделано нами еще в 1930 году. Только, помнится, мы тогда брали более сильный электромагнит с полем в 3000 эрстед».

Пробкин быстро просмотрел оглавление, выводы и список литературы юношеского труда Безвольного. Первой в этом списке стояла работа Ушинского О. «О физиологическом действии токов высокого напряжения», написанная аж в 1897 году. И откуда только этот О. Ушинский брал токи высокого напряжения в 1897 году?

Каждая, особенно юная личность, считает открытием то, что она узнала впервые. Жаль, что за такие «открытия» не дают Нобелевские премии.

Сила юности

Для полета в космос надо иметь железное здоровье. Шутка ли – выдержать такие небывалые ускорения!

Коллектив юных добровольцев с безупречным здоровьем тренировали параллельно с коллективом отборных молодых мышей.

Добровольцы должны были лететь на ракетах, после того как в огромной центрифуге со значительно более высокими ускорениями будут испытаны мыши.

Мышей разбили на несколько групп, каждой из которых давали различную степень физической нагрузки. Говоря проще, их заставляли разное время убегать от воды во вращающемся колесе, на треть опущенном в воду. Таким образом были получены мыши с различной степенью тренировки и физической закалки.

При испытании в центрифуге шутки ради к юным мышам посадили пару пожилых.

Все юные тренированные мыши сдохли несколько раньше, чем пожилые. Оказывается, очень молодые организмы вообще хуже переносят ускорения, потому что у них нет начальных явлений склероза, при котором уплотняются стенки кровеносных сосудов и повышается кровяное давление. А при таких уплотненных стенках кровеносная система легче переносит нагрузки при сверхускорениях за счет более высокого давления крови, противостоящего действию ускорения.

Дело в том, что, когда силы, действующие при высоких ускорениях, прижимают кровь к стенкам кровеносных сосудов, она (кровь) может совсем остановиться. Чтобы ее протолкнуть от сердца к другим органам, необходимо это более высокое кровяное давление.

Теперь понятно, почему среди космонавтов пока нет юных рекордсменов до 16–18 лет, как, например, в гимнастике.

Дефектоскопия

Гамма- и рентгеновские лучи, в отличие от солнечных, проникают не только через стекло или воду, но даже через бетон и железо.

Усвоив это, физики создали для металлургов массу полезных приборов со странным и сложным названием – дефектоскопы. А науку об их применении назвали дефектоскопией.

Хороший прибор – дефектоскоп. Главное, очень он маленький, потому что радиоактивного вещества, излучающего гамма- и рентгеновские лучи, очень мало для него требуется, и лежит оно в небольшом ящичке из свинца. Подведут такой прибор к здоровенной железной трубе, стене или бетонной болванке, и все сразу видно: трещины, внутренние пустоты и другие дефекты в этих изделиях. Действительно, дефектоскоп.

А вот в медицине все сложнее. Там применяют громоздкие и дорогие рентгеновские аппараты.

Надо бы и там дефектоскоп внедрить, чтобы можно было прибор к тяжелобольному подвести, а не наоборот. Особенно если у больного кости поломаны. Такие приборы не проверишь на человеке. Он для этого является слишком деликатным объектом. Ведь известно, что за неудачные опыты на человеке даже в экономической сфере приходится отвечать в уголовном порядке. А если уж дело коснется здоровья, греха не оберешься.

Отрабатывать все приборы и методики принято на животных. Для этого и создана, кроме медицинских, масса биологических институтов и лабораторий.

Техника в наше время развилась настолько, что в большинстве даже биологических институтов ее поставили под надзор квалифицированных физиков, которые специально для этого и идут в биологические институты. Это необходимо для подтягивания биологии до уровня наиболее преуспевающих точных наук: физики, химии, астрономии и математики.

Вот Николай Неувертов – физик и в то же время сотрудник биологического института – взялся заменить рентген дефектоскопом. В качестве источника излучений был взят радиоактивный тулий, у которого лучи очень похожи на лучи рентгена и имеют энергию кванта, равную 8000 электрон/вольт. Как известно, для проведения всякой работы необходимо задумать, распланировать, сделать.

Физическая мысль заработала прямолинейно и неотвратимо, как арифмометр, однако без учета типа высшей нервной деятельности биологических объектов. Физика опирается на математику, которая требует пропорции. И пропорция была найдена, хотя и с некоторым ущемлением биологии. Пожилая мышь весит 25 г; крыса средних лет – в 10 раз больше; чтобы животное весило еще в 10 раз больше, надо брать либо мизерную собачку, либо большого кролика. Дальше пропорция прерывалась, так как животное весом в 25 кг выходило за пределы физико-математического воображения.

Сделать работу оказалось еще труднее. Мышь была слишком мала. В отличие от броневых плит и железобетонных балок, она почти не поглощала лучей тулия, и поэтому разглядеть мышь в свете этих лучей было невозможно. Первая же подопытная крыса, вместо того чтобы покорно сесть в камеру, вцепилась в палец экспериментатора, и тот убедился в правоте биологов, утверждавших, что зубы крыс длиннее, чем зубы собак.

Опыт оказался под угрозой срыва. Моральный дух физика был окончательно сломлен специфическим запахом, исходившим от подопытных животных, которые во время опытов потеряли элементарное понятие о гигиене. Самокритично разобрав положение дел, Неувертов пришел к выводу о необходимости изменить план работы. Обращение за помощью к биологам было им отвергнуто как наносящее ущерб престижу физиков.

Наконец, Николай решил достать скелет человека – это же проще, чище, надежнее и ближе к живому человеку. И за здоровье модели беспокоиться не надо.

Срочно были выделены средства, и Коля Неувертов бросился в специализированный магазин-учколлектор. Скелет был немедленно найден, оформлен в отделе снабжения и привезен в лабораторию.

Начался период творческого труда и радостных обобщений. Прямолинейность физики и пропорции математики торжествовали. Просто удивительно было, до чего применимыми к костям человека оказались закономерности поглощения лучей, выведенные ранее для различных материалов.

Через год плановая работа была закончена. В конце декабря заведующий лабораторией подписал пухлый том представленных Неувертовым протоколов и тоненькую, аккуратно напечатанную инструкцию о практическом внедрении метода обследования больных с помощью дефектоскопа.

Коля отправил материалы в главк и, удовлетворенный, опустился на стул. Скелет, неся службу, исправно стоял на месте. Теперь эта деталь была ни к чему. Через стол Коля небрежно пнул скелет ногой. Биологический объект упал со страшным грохотом.

Перегнувшись, Коля с ужасом увидел на полу вместо костей куски гипса и связывающие их массивные металлические прутья.

По недостатку опыта и биологического образования Неувертов не уточнил в заявке артикул или ГОСТ требуемого скелета и получил первосортное учебное пособие из гипса и железа.

Выяснился недостаток и у тулия. Быстро он распадается: период его полураспада равен 127 дням. Так что через год от интенсивности его излучения только одна восьмая часть остается. Не нравится все это врачам, и работают они по старинке с рентгеном. Так что, если нет другого выхода, надо идти в тот, который есть.

Кого премировать

Биофизика – это необходимость и в то же время будущее. Впрочем, философы всегда утверждали, что будущее – это и есть необходимость.

Биофизика – это древняя наука. Она особенно быстро развилась после того, как В. И. Ленин в 1920 году, подписал Указ о создании в Москве первого в мире Института биофизики и первым его директором утвердил академика П. П. Лазарева.

Теперь ее развитие будет еще более бурным, ибо эта наука должна обеспечить не только защиту жизни в космосе от злых космических лучей, но и создать комфортабельные условия при скоростях, близких к скорости света, при температурах, близких к температуре абсолютного нуля, да еще в безвоздушном пространстве и в условиях невесомости.

Однако излучения остаются, пожалуй, самым опасным врагом жизни в космосе, и проблема защиты от радиоактивных излучений является животрепещущей даже при температуре, близкой к температуре абсолютного нуля.

Быть биофизиком непросто. Для того чтобы управляться с радиоактивными источниками, надо знать физику; чтобы изучать, как эти излучения влияют на животных, нужно знать биологию и медицину, и, поскольку при облучении в организме происходят различные химические реакции, тут уж без глубоких знаний химии не обойтись.

Однако известно, что научный сотрудник, как правило, начинает самостоятельно работать через 5–6 лет после окончания института.

Если учесть, что в институте или университете он учится тоже 5–6 лет, то срок для созревания научного деятеля получается приличный.

А время не ждет. И вот для решения проблемы защиты жизни от радиоактивных излучении в одном институте создали комплексного биофизика – группу из трех человек – химика Белоносова, биолога Адовой и физика Кравича.

Распределение обязанностей было таким: Белоносов давал рабочие гипотезы и препараты, Адова проверяла их на животных, а Кравич подводил под эксперимент теоретическую базу.

Работа шла следующим образом: Белоносов, стараясь синтезировать как можно больше препаратов, день и ночь вдыхал недозволенные количества зловредных паров, старательно обходя спасательные требования техники безопасности.

Адова самоотверженно колола мышей, крыс, кошек, кроликов и собак, облучала их дозами в 100 раз большими, чем они могут получить в космосе, и, стараясь извлечь более достоверные данные о защитном действий препаратов на большем количестве животных, в несметном количестве превращала их в трупы.

Кравич спокойно сидел в теплом светлом зале, наполненном ровным гудением трансформаторов и слабым попискиванием индикаторных ламп. Он поворачивал рукоятки управления послушной электронно-вычислительной машины.

Результаты недельных трудов своих коллег он обрабатывал за 30–40 минут, а если они делали слишком много, Кравич переводил ручку регулятора скорости счета с отметки «1» на отметку «10» и тогда справлялся с этой работой за 5–6 минут.

С теорией дело обстояло сложнее. Биологическая теория билась с электронной техникой по 12 часов в сутки, как равный с равным, и перевеса ни одна из сторон не имела.

Тем не менее препарат? 201, синтезированный Белоносовым, внезапно стал защищать животных, причем лучше, чем все известные препараты. Почти половина обреченных животных выживала.

Но теоретическую базу под него подвести не удалось. Действие препарата? 201 не укладывалось ни в одну из известных теорий защиты. По всем прочим показателям, рассчитанным на электронно-счетной машине, данный препарат был достаточно инертным соединением. Приходилось прямо на ходу создавать основы для новой теории.

Несмотря на то что теория еще не созрела, препарат № 201 был единогласно принят коллегией Министерства здравоохранения на вооружение отечественной медицины.

Благодарственный приказ состоял из классических выражений. Отдавая дань пережиткам прошлого и для более полного соединения личных интересов с государственными, исследователей премировали.

Самую крупную сумму вручили физику-теоретику Кравичу. Случилось это потому, что в секретариате при перепечатывании приказа порядок авторов перепутали.

И правильно, надо сказать, сделали. Ведь теория без солидной экономической поддержки совсем зачахнуть может.

Кванты нашлись в 1961 году в печени и в сыворотке крови

Куда делись кванты в живом организме, особенно в организме животных и человека? Ведь не могут они на Земле где-нибудь вот взять и исчезнуть.

Из физики мы уже с седьмого класса знаем, что все на Земле состоит из 4 типов элементарных частиц: протонов и нейтронов в ядрах атомов; электронов, которые по Н. Бору вращаются вокруг ядра, как Земля вокруг Солнца; и квантов, которые то влетают в атом, переводя его в активное электронно-возбужденное состояние, то вылетают из него, как свет из Солнца.

Животное электричество открыл еще Гальвани в 1791 году. С тех пор потоки электронов, биотоки, и то, что они создают, биопотенциалы, так хорошо изучили, что и в практику внедрили. Теперь вам в любой клинике электрокардиограмму сразу сделают, а если захотите, и электроэнцефалограмму, и еще многое другое, что эти электроны в организме создают, например, рН, РОЭ…

А вот квантов в организме животных до 1961 года никто увидеть не мог, хотя все знали, что они есть, просто они должны были быть.

Такое положение не устраивало ни мыслителей, ни экспериментаторов. Еще Сванатан Свифт описывал мыслителя, который упорно пытался получить свет из огурца.

Размышляя на тему, куда деваются кванты, поглощенные растениями при фотосинтезе, после того как мы эти растения съедим, К. А. Тимирязев писал, что, возможно, в данный момент эти кванты «играют» в нашем мозгу.

Из мыслителей особенно удачливым оказался Александр Гурвич. Он мыслил логично и научно, правда, позже оказалось, что не биологично.

Он исходил из того, что основа жизни, белки, поглощают ультрафиолетовое (УФ) излучение при длинах волн 180, 220 и 280 нанометров (нм). И он смело объявил: раз белки, а значит, и живые клетки, поглощают УФ, они его и излучают в области 160–280 нанометров (1 нанометр = 10-9 метра).

Чтобы привлечь внимание к этому своему теоретическому заключению, он создал «Митогенетическую гипотезу», которая сводилась к следующему: живая клетка – ее белки – поглощают УФ в области 160–280 нм и за счет энергии этого УФ тут же делятся, т. е. происходит митоз. Процесс, по А. Г. Гурвичу, должен быть обратимым. В момент деления живая клетка излучает обратно УФ – митогенетическое излучение с Λ = 60–280 нм. Лучше других клеток делились, почковались дрожжи и клетки корней – проростков лука и других растений.

Гипотеза оказалась столь заманчивой, что определять УФ-митогенетическое излучение субъективным визуальным наблюдением по числу отпочковавшихся дрожжей и скорости роста корней бросились тысячи исследователей. И тут они разделились на 2 партии.

У тех, которые верили в гипотезу, дрожжи под влиянием УФ-облучения почковались быстрее. У тех, кто считал почки объективно, ускорения-почкования не было. В общем, все пришли к выводу, что УФ-излучение надо измерять объективными физическими методами, а это и не получалось: методы были недостаточно чувствительными.

Из экспериментаторов следует упомянуть А. П. Чехова, который, по описанию А. М. Горького, долго и упорно пытался поймать солнечный луч, накрывая солнечный «зайчик» шляпой.

Но тут в 1950-е годы наша промышленность начала выпускать чувствительные приемники – датчики ультрафиолетового и видимого излучения – фотоэлектронные умножители (ФЭУ). Улавливать очень слабые световые потоки ФЭУ мешали его собственные тепловые шумы. Чтобы избавиться от этих тепловых шумов, многочисленные исследователи стали охлаждать ФЭУ, помещая их в сосуды Дюара с жидким азотом, т. е. при температуре до -193 oС. Конечно, при такой низкой температуре все тепловые шумы исчезли и перестали мешать измерять внешний свет.

И тем не менее строго обнаружить излучение не удалось. Все, в том числе и группа Ю. А. Владимирова, очень старались замерить ультрафиолетовое излучение, так велик был авторитет А. Г. Гурвича. В 1959 году Ю. А. Владимиров в журнале «Биофизика» № 5 в своей классической статье написал, что от корней бобов излучение в УФ-области повышалось всего на 5–20 %, что было недостоверно. А при измерении в видимой области эффекта не наблюдали. Ю. А. Владимиров был и остается ведущим исследователем-экспериментатором, и его результаты оказали большое влияние на других исследователей. Все продолжали искать ультрафиолетовое излучение.

В 1960 г. лауреат Нобелевской премии А. Сент-Дьердьи подтвердил выводы Ю. А. Владимирова, написав: никому еще не удалось экспериментально зафиксировать свечение животных тканей.

Свою группу для исследования свечения живых организмов в 1959 году в составе проф. Тарусова Б. Н., к. б. н. Поливода А. И. и к. б. н. Журавлева А. И. создал заведующий кафедрой Биофизики МГУ им. М. В. Ломоносова проф. Б. Н. Тарусов. Он создал группу и предложил подумать, в чем дело? Куда делись кванты? Пришлось думать. Думали-думали и пришли к следующим выводам:

1. Нельзя забывать закон Стокса. Это строго физический закон, который гласит, что если тело поглощает свет в УФ-области, то излучать – хемилюминесцировать – оно будет в более длинноволновой, т. е. видимой, области за счет Стоксового сдвига. А значит, надо уйти от влияния А. Г. Гурвича и искать излучение в видимой области.

2. А. Г. Гурвич писал, что излучают белки и не излучают жиры-липиды. А Сент-Дьердьи предлагал искать излучение в жирах, в липидных фазах живых клеток.

Мы склонились к мнению А. Сент-Дьердьи.

3. Нужно было что-то делать и с установкой. Конечно, охлаждение убирало шумы. Но!!! ФЭУ находился в сосуде Дюара в жидком азоте. Свет от исследуемого организма или клетки должен был пройти две кварцевые стенки Дюара и слой кипящего жидкого азота. По пути он и отражался, и рассеивался, и ясно, что слабый световой поток мог и не дойти до ФЭУ.

Было принято, как говорят, конструктивное решение. Вместо стеклянного или кварцевого был склеен сосуд из пенопласта. ФЭУ был прижат к отверстию в пенопласте и сам «глядел» наружу. Исключались и 2 кварцевые поверхности, и слой кипящего азота. В 1960 году установка была модернизирована.

Ура! Есть кванты! Есть свет! В 1961 году группа Б. Н. Тарусова физическим объективным методом достоверно замерила, обнаружила свечение, биохемилюминесценцию, в видимой области (360–1200 нм) (свет) от органов (печень, мозг) живых животных (крыс, кроликов) и разнообразных жиров и липидов. Мы сообщили об этом в докладе на 1-м всемирном Биофизическом конгрессе в 1961 году в Стокгольме и опубликовали в статьях в журналах «Биофизика» 1961 года № 4 и «Радиобиология» 1961 года № 1.

И тут началось!!! Нам прямо указывали, ну как Галилею с его перископом, что свечение может быть только в УФ-области и только от белков и что все про это знают и другого быть не может. Потребовался целый год или два, чтобы исследователи поверили глазам своим, хотя свечение оказалось действительно сверхслабым, не более десятков квантов в секунду с 1 см.

Открытие этого эндогенного внутреннего свечения – биохемилюминесценции – и положило начало новой области биологии – «Квантовой биофизики», т. е. раздела биологии, который изучает участие в метаболизме активных соединений электронных возбужденных состояний и излучаемых ими квантов (А. И. Журавлев. Квантовая биофизика животных и человека. М., МГАВМиБ им К. И. Скрябина, 2003 год)

На основе изучения этого сверхслабого свечения уже созданы методы диагностики криза отторжения трансплантированного органа, идентификации аллергенов, дифференциальной диагностики ранних этапов воспалительных и злокачественных процессов…

Есть все основания утверждать, что открытие «животных» квантов даст не меньшие результаты, чем внедрение «животного» электричества, открытого Гальвани.