Вы здесь

Эта идея должна умереть. Научные теории, которые блокируют прогресс. Фальсифицируемость. Шон Кэрролл ( Сборник, 2015)

Фальсифицируемость

Шон Кэрролл

В мире, где научные теории часто выглядят странно и вступают в явное противоречие с интуицией, а абсурд в самом широком ассортименте пытается добиться признания в качестве «научной» истины, возникает проблема различения науки и не-науки – философы называют это «проблемой демаркации». Карл Поппер предложил знаменитый критерий фальсифицируемости: научной может считаться только такая теория, предсказания которой могут быть однажды опровергнуты.

Это ценная идея, но она далеко не полностью закрывает проблему. Поппера интересовали такие теории, как психоанализ Фрейда и политэкономия Маркса, которые он считал ненаучными. Вне зависимости от того, что на самом деле происходит с человеком или обществом, заявлял Поппер, подобные теории всегда смогут рассказать историю, в которой факты будут соответствовать теоретическим предположениям. Поппер противопоставлял им теорию относительности Эйнштейна, которая дала конкретные количественные предсказания, значительно опередившие свое время. (Одно из предсказаний общей теории относительности заключалось в том, что Вселенная должна расширяться или сжиматься, и это побудило Эйнштейна усовершенствовать теорию, потому что сначала он думал, что Вселенная на самом деле статична. Так что даже из этого примера видно, что критерий фальсифицируемости не так однозначен, как кажется.)

Современная теоретическая физика простирается в области, весьма далекие от повседневной жизни, и иногда ее связь с экспериментом становится, мягко говоря, неубедительной. Теория струн и другие подходы к проблеме квантовой гравитации включают феномены, которые, похоже, могут проявить себя только при энергиях, в громадной степени превосходящих те, которые доступны нам здесь, на Земле. Мультиверс в космологии и многомировая интерпретация квантовой механики постулируют существование реальностей, доступ к которым для нас невозможен. Некоторые ученые, опираясь на Поппера, предположили, что эти теории ненаучны, поскольку в принципе не опровергаемы.

Однако верно прямо противоположное. Независимо от того, можем ли мы их наблюдать непосредственно, объекты, которыми оперируют эти теории, либо реальны, либо нет. Отказ от рассмотрения самой возможности их существования – хотя они могут играть важнейшую роль в мироустройстве, – исходя из некоего априорного принципа, сам по себе совершенно ненаучен.

Критерий фальсифицируемости указывает на нечто истинное и важное в устройстве науки, но он превращается в слепое орудие в ситуации, которая требует тонкости и точности. Правильнее сделать акцент на двух главных чертах хорошей научной теории: однозначности ее предсказаний и возможности их экспериментальной проверки. Первое подразумевает, что теория сообщает нам нечто ясное и недвусмысленное о том, как функционирует реальность. Теория струн говорит, что в некоторых областях пространства ее параметров обычные частицы ведут себя как замкнутые или разомкнутые одномерные струны.

Релевантное пространство параметров может быть недоступным для нас, но оно является неотъемлемой частью теории. В мультиверсе обязательно должны быть области с отличными от нашей Вселенной свойствами – пусть даже для нас эти области и недостижимы. Вот что отличает подобные теории от концепций, которые Поппер пытался классифицировать как ненаучные. (Сам Поппер понимал, что научные теории должны быть опровергаемыми «в принципе», но об этом уточнении часто забывают в современных дискуссиях.)

Вторая черта хорошей научной теории требует более осторожного подхода. На первый взгляд, ее легко спутать с утверждением, что научная теория «делает предсказания, которые можно экспериментально опровергнуть». Но в реальном мире взаимоотношения между теорией и экспериментом совсем не так банальны. В конце концов, научная теория оценивается по ее способности объяснять факты – но путь к этому объяснению не обязан быть прямым.

Возьмем концепцию Мультивселенной, в которой часто видят потенциальное решение тонких проблем современной космологии. Например, мы верим, что в пустом пространстве присутствует малая, но не нулевая вакуумная энергия. Это ведущая теория для объяснения наблюдаемого ускоренного расширения Вселенной, за открытие которого в 2011 году была присуждена Нобелевская премия по физике. Проблема для теоретиков заключается не в том, что ненулевую энергию вакуума трудно объяснить; она в том, что предсказываемое теорией значение этой энергии значительно больше той, которую мы наблюдаем.

Если Вселенная, которую мы видим вокруг себя, – единственная, то энергия вакуума – это универсальная константа, единая для всей природы, и перед нами стоит необходимость ее объяснения. Если, с другой стороны, мы живем в Мультивселенной, то энергия вакуума может быть совершенно разной в разных ее областях (частных вселенных), и на ум сразу приходит объяснение: там, где энергия слишком велика, условия неблагоприятны для существования жизни. Срабатывает эффект отбора, и нам приходится предсказать малую величину энергии вакуума. Именно такая цепочка рассуждений привела Стивена Вайнберга к предсказанию ее величины задолго до того, как было открыто ускоренное расширение Вселенной.

Мы не можем (насколько нам известно) непосредственно наблюдать другие области Мультивселенной (частные вселенные), но их существование самым серьезным образом сказывается на том, как мы оцениваем данные в той области Мультивселенной, которую мы наблюдаем. Именно в этом смысле успех или крах теории являются абсолютно эмпирическими: ее ценность заключается не в том, что она тонко продумана или дополняет некий недостаточно ясный аргумент, а в том, что она помогает нам оценивать данные. Даже если мы никогда не посетим эти другие частные вселенные.

Наука – это не просто построение теорий бездельником, развалившимся в мягком кресле. Наука должна объяснять мир, который мы видим, создавать модели, которые согласуются с фактами. Но согласование моделей к данным – это сложный и многогранный процесс, включающий компромиссы между теорией и экспериментом, а также и постепенное развитие теоретического понимания как такового. В сложных случаях такие лозунги, как «теория должна быть опровергаема», способные уместиться на записочке из китайского печенья с предсказанием, не могут заменить ответственных размышлений о том, как работает наука. К счастью, наука идет вперед, по большей части не обращая внимания на любительское философствование. Если теория струн и теории Мультивселенной помогают нам понять мир, то их признание будет расти. Если они окажутся слишком неопределенными или появятся лучшие теории, то от них откажутся. Этот процесс может быть беспорядочным, но наш главный проводник – сама природа.