В
ВАГÓН, происходит от английского waggon; так называлась небольшая повозка в виде ящика на колёсах, которая передвигалась по деревянным желобам-рельсам на шахтах и рудниках в Средние века.
Вагоны для пассажиров впервые появились в кон. 1780-х гг. в Англии с открытием первой конно-чугунной дороги близ Лондона. В России вагонетки с канатной, а позднее с конной тягой использовались на рудничных и внутризаводских рельсовых дорогах на Алтае (с 1764 г.), на Александровском заводе в Петрозаводске (с 1788 г.), на Змеиногорском руднике (с 1810 г.). Первые пассажирские вагоны были изготовлены для Царскосельской железной дороги, открытой в 1837 г. В зависимости от конструкции и удобств для пассажиров они именовались каретами, шарабанами, дилижансами. Первоначально эти экипажи не входили в состав поезда, а устанавливались на специальных платформах, из которых составлялись поезда. В те же поезда входили платформы и открытые вагоны для грузов. В 1846 г. на Александровском заводе начали выпускать вагоны для железной дороги между Санкт-Петербургом и Москвой. Основные узлы этих вагонов (кузов, рама, колёсные пары, ходовые тележки, буксы, рессоры, тормоза), а также их внутренняя планировка сохранились до наших дней, совершенствуясь со временем в соответствии с развитием производства и появлением новых материалов и технологий.
Первые грузовые (товарные) вагоны – крытые и открытые (полувагоны, платформы) – в России были построены в 1855 г., с 1862 г. стали выпускать вагоны-ледники, с 1868 г. – вагоны с опрокидывающимся кузовом (вагон-самосвал, или думпкар), а с 1872 г. – вагоны-цистерны (для перевозки гл. обр. нефти, а также молока, живой рыбы, сыпучих продуктов и т. п.). Вагоны нового поколения, созданные в сер. 20 в., могли перевозить 50–60 т груза, вместимость кузова универсальных крытых вагонов достигала 120 мі. Выпускаются цельнометаллические полувагоны – основной тип грузового вагона, в котором можно перевозить грузы широкого ассортимента; платформы с металлическими бортами для сыпучих грузов; рефрижераторные вагоны; саморазгружающиеся бункерные вагоны-хопперы и хоппер-дозаторы, специализированные вагоны для грузов, требующих особых условий перевозки (для горячего агломерата, шлаков, чугуновозы миксерного типа, цистерны для кислот, сжиженных газов и пр.).
Грузовые вагоны
Первые пассажирские вагоны в России строились по образцу заграничных, поступавших из Германии, Бельгии и других стран. В 1850-е гг. были созданы отечественные пассажирские вагоны, отличающиеся внутренним оборудованием и отделкой; в 1866 г. в скорых поездах Санкт-Петербург – Москва введены впервые спальные вагоны (в США такие вагоны называют пульманами). Особое внимание уделялось отоплению вагонов с учётом климатических условий страны. В 1-й пол. 20 в. отечественное вагоностроение освоило выпуск купейных, жёстких, мягких, багажных, почтовых, а также вагонов для пригородного сообщения. К кон. 20 в. на железных дорогах страны использовались пассажирские вагоны практически всех типов: несамоходные с локомотивной тягой и самоходные (моторвагонные секции) для электропоездов и метрополитена; спальные, купейные, плацкартные и только с местами для сидения (креслами самолётного типа); специализированные вагоны для монорельсовых дорог, фуникулёра, трамвая и высокоскоростного железнодорожного транспорта.
Пассажирские вагоны
ВАГОНООПРОКИ́ДЫВАТЕЛЬ, установка для поворота (опрокидывания) вагона (иногда двух) и самопроизвольной разгрузки сыпучих грузов (зерно, руда, уголь, песок и т. п.). Вагоноопрокидыватели оборудуются системами автоматизации, виброустройствами для разрыхления слежавшихся и смёрзшихся грузов или удаления их остатков из вагона. Выгрузка может осуществляться через торцовые стенки вагона или через боковые (вагоноопрокидыватели роторного типа). Вагоноопрокидыватели устанавливают на грузовых площадках крупных металлургических, химических комбинатов, на электростанциях, предприятиях машиностроения и строительной индустрии, в морских и речных портах и т. п. В России первое такое сооружение с выгрузкой из торцовых дверей вагона построено в кон. 19 в. в Мариупольском порту (с 1991 г. на Украине).
Вагоноопрокидыватель
ВАГРÁНКА, печь, применяемая в литейном производстве для плавки чугуна. Прототипом вагранки послужили доменные печи, в которых переплавляли литейный чугун и лом до сер. 18 в. Появление вагранки способствовало выделению чугунолитейных цехов в особое производство. Вагранка имеет вертикальную шахту, в нижней части которой расположен горн, служащий для накопления жидкого чугуна. Средняя часть шахты полностью загружается шихтовыми материалами – смесью металла, топлива (кокса) и флюсов (специальных добавок), обеспечивающих жидкотекучесть и другие свойства расплава. Из горна чугун перетекает в копильник, откуда выпускается в разливочный ковш через нижнюю лётку (специальное отверстие, заделываемое после окончания плавки и выпуска металла). Металлическая шихта состоит из получаемого в домне литейного чугуна (в чушках), чугунного лома, возврата металла литейного цеха (брак отливок, лом литников, прибылей и т. п.), стальных отходов металлургического производства (т. н. скрапа), ферросплавов для улучшения свойств (легирования) получаемого чугуна. Для ускорения розжига печи и интенсификации плавки металла в печь подают обогащённый кислородом воздух. Производительность вагранки зависит от её размеров, состава шихты, вида и расхода топлива.
Схема вагранки:
1 – жёлоб для выпуска чугуна из копильника; 2 – лётка; 3 – копильник; 4 – фурмы для дутья; 5 – воздушный коллектор; 6 – шахта; 7 – загрузочное окно; 8 – искроуловитель; 9 – труба; 10 – загрузочная бадья; 11 – разливочный ковш
ВАКУУММÉТР (вакуумный манометр), прибор для измерения давления разреженного газа. Давление (разрежение) в вакуумметре определяется с помощью какой-либо физической величины, связанной с давлением (напр., деформации чувствительного элемента, вязкости, теплопроводности газа). Основные части вакуумметра: измерительный преобразователь давления в физическую величину (напр., в перемещение или электрический сигнал) и измерительный блок, непосредственно измеряющий этот сигнал. Результат измерения определяют по отсчётному устройству в виде шкалы, проградуированной в единицах давления (разрежения). В зависимости от устройства и принципа действия вакуумметры разделяются на жидкостные, механические, тепловые и др. В жидкостных вакуумметрах преобразователем давления служит столб жидкости (ртути или масла). Газ давит на жидкость, находящуюся в U-образной трубке. В одном из колен находится газ при измеряемом давлении Рх, а в другом – при известном (опорном) давлении Роп. Жидкостные вакуумметры бывают с закрытым и открытым коленом и др. Их недостатком является небольшой диапазон измерения давлений с нижним пределом до 10–3 мм рт. ст. В механических вакуумметрах давление газа воспринимает упругий чувствительный элемент – сильфон или мембрана, деформация которых передаётся стрелочному указателю. В мембранном вакуумметре мембрана герметически отделяет вакуумную систему от объёма, в котором поддерживается постоянное опорное давление. Деформация мембраны передаётся стрелке, передвигающейся по шкале. При измерении малых давлений для повышения чувствительности мембрану соединяют с электрическим датчиком. Принцип действия тепловых вакуумметров основан на зависимости теплопроводности разреженных газов от давления. Датчиком прибора служит герметичный баллон с проволокой, нагреваемой электрическим током. При изменении давления в системе изменяются отвод тепла от нити датчика и, следовательно, её температура (при постоянной мощности). Различают термопарные вакуумметры, температура нити которых измеряется присоединённой к ней термопарой, и теплоэлектрические вакуумметры сопротивления, температуру нити которых определяют по её электрическому сопротивлению.
ВÁКУУМНАЯ МЕТАЛЛУ́РГИ́Я, металлургические процессы, при проведении которых используется вакуумное оборудование. Идея помещения расплавленного металла в вакуум для удаления из него газов высказывалась неоднократно ещё в 19 в., однако тогда невозможно было построить необходимое оборудование. Быстрое развитие вакуумной металлургии началось во 2-й пол. 20 в. В вакуумной металлургии различают операцию вакуумной обработки выплавленного металла и собственно процесс плавки в вакууме. Выплавленный обычным способом металл подвергают вакуумной обработке во время выпуска из печи или в разливочном ковше и таким образом очищают его от газов – дегазируют. Во втором случае и плавку, и разливку металла проводят в условиях вакуума. В вакуумной металлургии применяются индукционные печи, дуговые и электронно-лучевые печи. Электронно-лучевой способ вакуумной плавки обладает рядом преимуществ по сравнению с другими: плавка проводится в медном тигле, охлаждаемом водой, что позволяет избежать реакций расплава со стенками тигля. В электронно-лучевой печи можно переплавлять все без исключения металлы и сплавы, в т. ч. тугоплавкие и быстро окисляющиеся.
ВÁКУУМНЫЙ МАНÓМЕТР, то же, что вакуумметр.
ВÁКУУМНЫЙ НАСÓС, устройство, предназначенное для удаления (откачки) газов или паров из замкнутого объёма (системы) с целью получения в нём вакуума. Основные характеристики вакуумных насосов: предельное давление (остаточное давление или предельный вакуум); быстрота откачки – объём газа, откачиваемый при данном давлении в единицу времени. Различают следующие вакуумные насосы: механические, пароструйные, сорбционные, криогенные. В свою очередь, механические вакуумные насосы делятся на вращательные, двухроторные и турбомолекулярные. Среди вращательных вакуумных насосов наибольшее распространение получил пластинчато-роторный насос с масляным уплотнением. Всасывание и выталкивание газа в таком насосе осуществляется при изменении объёма ячеек, образованных эксцентрично расположенным ротором, в прорезях которого помещены подвижные пластины. Уплотнение зазоров между деталями насоса обеспечивается маслом. Двухроторный вакуумный насос состоит из двух фигурных роторов, которые при вращении создают в камере насоса направленное движение газа. Работа турбомолекулярного вакуумного насоса основана на использовании движения молекул газа в направлении его откачки при вращении ротора, состоящего из дисков. Принцип действия пароструйных насосов основан на захвате откачиваемого газа струёй пара.
Двухроторный вакуумный насос
В сорбционных вакуумных насосах используется способность сорбентов (напр., титана, молибдена) поглощать газ. Действие криогенных вакуумных насосов основано на поглощении газа поверхностью, охлаждённой до низкой (криогенной) температуры. В зависимости от обеспечиваемого диапазона давлений различают низковакуумные, средневакуумные, высоковакуумные и сверхвысоковакуумные насосы. Для получения сверхвысокого вакуума применяются криосорбционные вакуумные насосы, которые представляют собой криогенные насосы с тонкой плёнкой сорбента на внутренней поверхности камеры.
ВÁЛИК малярный, предназначен для огрунтовки и окраски различными красящими составами стен, потолков и других гладких поверхностей. Используется вместо кистей, которые он значительно превосходит по производительности и качеству окраски. Валики чаще всего делают из меха или поролона. Они выпускаются промышленностью, но их несложно изготовить и самому. Диаметр валика от 40 до 70 мм, длина от 100 до 250 мм. Он крепится на оси специальной ручки с помощью гайки с шайбой или проволочной шпильки. Перед началом работы валики следует подержать в воде в течение нескольких часов, чтобы ворс приобрёл одинаковую жёсткость. Для работы с валиком окрасочный состав наливают в ведро или ванночку, в которые вставляют сетку на рамке или стальной лист с отверстиями для отжима излишков краски.
Валик малярный
ВÁЛОЧНАЯ МАШИ́НА, см. в ст. Лесозаготовительные машины.
ВÁНКЕЛЯ ДВИ́ГАТЕЛЬ, роторно-поршневой двигатель внутреннего сгорания, разработанный в 1957 г. немецким учёным Ф. Ванкелем. В двигателе Ванкеля трёхгранный ротор (поршень) вращается в цилиндре специального профиля. Грани ротора отсекают переменные объёмы камер, в которых происходят обычные для двигателей внутреннего сгорания процессы. Вал ротора жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй. Ротор с зубчатым колесом обкатывается вокруг шестерни. Его грани скользят по внутренней поверхности корпуса, отсекая переменные объёмы камер. Такая конструкция позволяет осуществить четырёхтактный цикл без специального механизма газораспределения (с клапанами и кулачками). Другое его преимущество – постоянное вращение ротора, а не возвратно-поступательное движение поршней обычного двигателя внутреннего сгорания. Смесеобразование, зажигание, смазка, охлаждение, пуск у двигателя Ванкеля – такие же, как у обычных поршневых двигателей внутреннего сгорания. При одинаковой мощности имеют в 2–3 раза меньшие размеры, чем обычные поршневые двигатели. Двигатели Ванкеля применяются на автомобилях, вертолётах, моторных лодках.
а)
б)
Ванкеля двигатель:
а – схема двигателя; б – зубчатое зацепление;
1 – ротор; 2 – вал; 3 – водяное охлаждение; 4 – корпус; 5 – свеча зажигания; 6 – неподвижная шестерня; 7 – зубчатое колесо;
I – впуск; II – сжатие; III – расширение; IV – выпуск
ВÁНТОВЫЕ КОНСТРУ́КЦИИ, геометрически неизменяемый тип висячей конструкции. Выполнены только из прямолинейных элементов (вантов) и часто называются вантовыми фермами. Как и в висячих конструкциях, все элементы вантовой фермы работают на растяжение, что позволяет использовать в качестве несущих частей фермы канаты из стальной проволоки. Вантовые фермы применяют в конструкциях мостов, где проезжая часть подвешивается на множестве косых тросов, крепящих её к высоким пилонам. При этом тросы натянуты от верхней точки пилона или от разных его уровней и расходятся веерообразно или параллельно, подобно струнам арфы. В вантовых мостах тросы делают предварительно напряжёнными, поэтому они предельно натянуты, не провисают и делают всё сооружение геометрически неизменяемым. При такой конструкции балка моста под проезжей частью может быть непривычно тонкой, поэтому вантовый мост является одним из самых экономичных и изящных мостов.
Вантовый мост в г. Севилья, Испания
ВÁНТУЗ, приспособление для прочистки канализационных стоков. Представляет собой полую резиновую полусферу (чашу) на рукоятке. Для прочистки стоков вантуз устанавливается над выпуском раковины (или ванны) так, чтобы края чаши были плотно прижаты к поверхности. В раковину наливают воду, пока она не накроет чашу. Затем резкими толчками рукоятки несколько раз продавливают чашу. Если засор удалён, вода беспрепятственно уходит из раковины с образованием воронки над выпуском.
Вантуз: а – внешний вид; б – положение вантуза при прочистке стоков
ВАРИÁТОР, отдельный агрегат или встроенный узел, служащий для плавного изменения частоты вращения ведущего вала относительно частоты вращения ведомого вала механизма. Состоит из одной или нескольких бесступенчатых передач и устройств, обеспечивающих их функционирование. Бесступенчатые передачи вариаторов выполняются с жёсткими звеньями, при соприкосновении которых усилие передаётся за счёт силы трения. Такие вариаторы (фрикционные) способны передавать мощности от нескольких ватт (в механизмах ручного регулирования приборов) до нескольких десятков киловатт (в транспортных машинах, прессах, металлорежущих станках). Посредством вариатора достигается оптимальный скоростной режим машины при различных условиях её работы. На металлорежущих станках, напр., с помощью вариатора можно поддерживать наивыгоднейшую скорость резания на различных участках заготовки при обработке поверхностей вращения переменного радиуса. На эскалаторах метрополитена вариаторы служат для согласования скоростей движения поручней и лестницы.
ВÁТМАН, бытующее название чертёжно-рисовальной бумаги хорошего качества. Отличается высокой плотностью, однородной структурой, иногда имеет незначительный желтоватый оттенок. Используется для выполнения ответственных чертежей, архитектурных разработок, схем и эскизов, для рисования и т. п.
ВАТТМÉТР, прибор для измерения активной электрической мощности (в ваттах). Ваттметры имеют две электрические цепи: тока (включается в цепь нагрузки последовательно) и напряжения (включается параллельно с нагрузкой). Шкала ваттметра градуируется в ваттах. Применяются электродинамические, электронные ваттметры (для измерений на постоянном и переменном токе) и ферродинамические ваттметры для измерений на переменном токе. Наиболее распространены электродинамические ваттметры (см. рис.), механизм которых состоит из неподвижной катушки 1, включённой последовательно с нагрузкой Н (цепь тока), и подвижной катушки 2, включённой через большое добавочное сопротивление R параллельно нагрузке (цепь напряжения). Работа ваттметра такого типа основана на взаимодействии магнитных полей подвижной и неподвижной катушек при прохождении по ним электрического тока. При этом вращающий момент, вызывающий отклонение подвижной части прибора и соединённой с ней стрелки (указателя), при постоянном токе пропорционален произведению силы тока на напряжение, а при переменном токе – ещё косинусу угла сдвига фаз между током и напряжением. Расширение пределов измерений достигается с помощью трансформаторов тока и добавочных резисторов, а в цепях высокого напряжения – с помощью трансформаторов тока и напряжения.
Схема устройства и включения электродинамического ваттметра
ВЕЗДЕХÓД, автомобиль высокой проходимости, пригодный для эксплуатации на любых дорогах и по бездорожью. Массовое производство вездеходов, используемых как артиллерийские тягачи и шасси для броневиков, началось в нач. 20 в. В кон. 1930-х гг. в США и СССР практически одновременно были разработаны и созданы лёгкие армейские многоцелевые вездеходы: американский джип и советский ГАЗ-64, затем – ГАЗ-67. В 1950-е гг. в таких странах, как Канада, СССР и США, имеющих большую территорию, развернулись работы по созданию джипов, многоцелевых и тяжёлых вездеходов, предназначенных, напр., для экспедиций, ведущих разведку полезных ископаемых. Типы и размеры современных вездеходов занимают практически весь диапазон транспортных средств – от небольших спортивных и прогулочных до тяжёлых многоосных машин. Вездеходы снабжены гусеничным, реже колёсным со специальными шинами движителем.
В силовую передачу вводят дополнительные механизмы, позволяющие увеличивать тяговое усилие. Многие вездеходы являются амфибиями.
Вездеход ГАЗ-3937, по прозвищу «Водник»
ВЕЛОСИПÉД. История создания велосипеда носит весьма разноречивый характер. Не случайно фраза «Изобрести велосипед…» стала нарицательной. Среди изобретателей велосипеда числятся и российский крепостной крестьянин Артамонов, и русский изобретатель Л. Л. Шамшуренков, построивший и продемонстрировавший комиссии Сената «самобеглую коляску», о чём свидетельствует официальный протокол от 2 ноября 1752 г. Но общепризнанным изобретателем велосипеда считается немецкий инженер К. фон Дрейс. Велосипед, построенный им в 1817 г., представлял собой двухколёсную машину, приводимую в движение отталкиванием ног от земли. В 1858 г. к переднему колесу добавили педали, а в 1871 г. – цепной привод на заднее колесо. Наконец, 1889 г. можно считать годом рождения современного велосипеда.
Деревянный велосипед-«бегунок»
Велосипеды по назначению и конструкции делятся на детские, подростковые, дорожные, горные, спортивные и специальные. К последним относятся трёх – и четырёхколёсные грузовые велосипеды, цирковые, трюковые и т. п. Наиболее распространены дорожные велосипеды. Чаще всего они одноместные, реже многоместные, тандемы. Большое распространение получили также складные велосипеды, удобные для перевозки на транспорте. Устройство велосипедов в основном одинаковое. Рама – стальная, алюминиевая или карбоновая. Колесо состоит из обода, втулки, спиц и покрышки. То, что у автомобиля называется трансмиссией, на велосипеде – система, состоящая из двух или трёх зубчатых колёс – звёзд, соединённых с педалями, цепной передачи и набора малых зубчатых колёс (звёздочек), укреплённых на втулке заднего колеса. Цепь передаёт усилие от ведущих звёзд на ведомые звёзды. Перекидыванием цепи на разные комбинации звёзд при помощи переключателей меняется передаточное число привода. Тормоза имеют раздельный привод на переднее и заднее колёса. Конструкции велосипедов продолжают непрерывно совершенствоваться в направлении снижения веса, повышения безопасности и удобства езды, применения новейших материалов.
Современный спортивный велосипед
ВЕЛЬБÓТ, четырёх – или восьмивёсельная мореходная шлюпка с заострёнными образованиями оконечностей, снабжённая мачтой с парусом. Бывают разъездные и спасательные. В 17–19 вв. использовались для охоты на морских зверей.
ВÉНТИЛЬ, 1) трубопроводный – запорное устройство в трубопроводах для перекрытия и регулирования потоков жидкости, пара или газа. Широко применяется в промышленных трубопроводах и в санитарно-технических устройствах. К трубам, насосам и другому оборудованию присоединяется посредством фланцев или резьбового соединения.
2) В электротехнике – электрический прибор, проводимость которого в значительной степени зависит от направления электрического тока (в прямом направлении она существенно выше, чем в обратном). В электрическом вентиле используется эффект односторонней проводимости тока на границе металл – полупроводник или между двумя полупроводниками с различными примесями (полупроводниковые вентили), металл – вакуум (электронные или электровакуумные вентили), металл – газ (газоразрядные вентили), металл – электролит (электролитические вентили). В качестве вентилей применяют полупроводниковые, электровакуумные или газоразрядные диоды (в электро – и радиоаппаратуре – гл. обр. для выпрямления электрического тока), тиристоры (напр., в силовых устройствах преобразовательной техники и в системах автоматического управления в качестве переключающих приборов), тиратроны (напр., для создания коротких и мощных электрических импульсов в радиолокационных станциях) и др.
ВЕНТИЛЯ́ТОР БЫТОВÓЙ, прибор для создания потока воздуха при проветривании помещений. Вентиляторы бывают настольные, настенные, потолочные, торшерные, ручные, оконные, автомобильные и др., мощность от нескольких десятков до нескольких сотен ватт. Вентиляторы выпускаются с резиновой или пластмассовой крыльчаткой с защитной сеткой, имеют электродвигатель и стойку с основанием. Некоторые вентиляторы могут автоматически изменять направление создаваемого воздушного потока за счёт периодического разворота корпуса в пределах порядка 120°. Крыльчатки имеют 3 или 4 лопасти.
Вентилятор бытовой
ВЕНТИЛЯ́ЦИЯ, регулируемый воздухообмен в помещениях. Человек в зависимости от рода деятельности выделяет в окружающий воздух тепло (100 ккал/ч и больше), углекислоту (23–45 л/ч), водяные пары (40–70 г/ч); выбросами тепла, водяных паров, газов и пыли сопровождаются производственные процессы. В результате воздух в непроветриваемых помещениях со временем становится по своим гигиеническим качествам неблагоприятным для здоровья человека. Целью вентиляции является обеспечение необходимой чистоты, температуры и влажности воздуха. Вентиляция может быть естественной и принудительной, приточной, вытяжной, приточно-вытяжной и механической (осуществляется вентиляторами). При естественной вентиляции воздухообмен происходит вследствие разности температур или под воздействием ветра. Приточная вентиляция обеспечивает только подачу воздуха в помещения; вытяжная вентиляция обеспечивает удаление загрязнённого воздуха, создавая тем самым разрежения, за счёт которых в это помещение поступает воздух снаружи или из соседних помещений. Если параметры воздуха в помещении должны постоянно отвечать строго определённым условиям (кондициям), применяют кондиционирование воздуха.
ВЕРСТÁК, рабочий стол с приспособлениями для закрепления обрабатываемых деталей, а в ряде случаев с механизированным инструментом и др. оснасткой. Верстак бывает столярный и слесарный. Верстак столярный служит для обработки вручную изделий из дерева. Состоит из крышки (верстачной доски) и основания (подверстачья). Верстачная доска имеет продольную (заднюю) и боковую (переднюю) зажимные коробки. Обрабатываемые детали зажимают в боковой или задней коробке при помощи винтов либо закрепляют на поверхности доски верстачными клиньями (упорами) или гребёнками (деревянными, реже металлическими), вставляемыми в квадратные отверстия. Вдоль края доски нередко устраивают прямоугольную выемку-лоток, куда во время работы можно положить инструменты или мелкие детали. Подверстачье состоит из двух стоек, скреплённых продольными брусками при помощи клиньев или винтов. Нередко в подверстачье оборудуют шкафчик для хранения инструментов. Верстак слесарный служит для обработки металлических заготовок, изготовления и ремонта деталей, сборки изделий из металла и других материалов. Состоит из металлического стола с ящиками для инструмента, на поверхности стола крепятся тиски и другие приспособления.
Столярный верстак:
1– верстачная доска; 2– подверстачье; 3– передняя боковая коробка; 4– боковой винт; 5– задняя (продольная) коробка; 6– задний винт; 7– квадратные отверстия для упоров и клиньев; 8– выемка-лоток
ВЕРТЛЮ́Г, шарнирное соединительное звено двух частей механизма (или звеньев цепи), позволяющее каждой из них вращаться вокруг своей оси, напр. звено между подъёмным механизмом и буровым инструментом при бурении скважины.
Вертлюг
ВЕРТОЛЁТ, летательный аппарат тяжелее воздуха, у которого подъёмная сила и тяга для горизонтального полёта создаются одним или двумя т. н. несущими винтами. Вертолёт может взлетать вертикально с места без разбега и садиться без пробежки, он может неподвижно висеть в воздухе, разворачиваться на месте и перемещаться в любом направлении. При отказе двигателя вертолёт продолжает полёт со снижением по наклонной траектории, а энергия, необходимая для вращения несущего винта, отбирается от набегающего на винт встречного воздушного потока. Вертолёты имеют фюзеляж с шасси и хвостовой балкой, иногда небольшое крыло, несущие винты, силовую установку (двигатель), электро-, радио – и навигационное оборудование; на конце хвостовой балки расположен рулевой винт.
Вертолёт взлетает и удерживается в воздухе за счёт подъёмной силы, которую создают вращающиеся лопасти несущего винта. Крыло вертолёта (если оно есть) при достаточно большой скорости полёта создаёт дополнительную подъёмную силу (как и крыло самолёта) и таким образом частично разгружает несущие винты. Большинство вертолётов имеют один несущий винт либо два винта, расположенных соосно (вал верхнего винта проходит через полый вал нижнего) или разнесённых по концам фюзеляжа. Сила тяги, необходимая для горизонтального движения вертолёта, также создаётся несущим винтом. При вращении лопастей несущего винта в горизонтальной плоскости создаваемая ими аэродинамическая сила направлена вертикально вверх и удерживает вертолёт в воздухе. Если плоскость вращения лопастей винта наклонить, у аэродинамической силы появляются две составляющие: одна – вертикальная (подъёмная сила) и другая – горизонтальная (сила тяги), обеспечивающая горизонтальный полёт аппарата. Чем больше наклон оси несущего винта, тем больше сила тяги и выше скорость полёта. Чаще, однако, сила тяги создаётся не за счёт наклона оси несущего винта, а за счёт поворота его лопастей на некоторый угол, называемый углом установки лопасти. Такой способ создания тяги энергетически выгоднее применения дополнительного воздушного винта типа пропеллера. Управляют вертолётом с помощью несущего и рулевого винтов. При одновременном увеличении угла установки всех лопастей несущего винта вертолёт поднимается, при уменьшении – опускается. Боковое и путевое управление вертолётом осуществляется также поворотом лопастей несущего винта, но не всех одновременно, а поочерёдно; кроме того, для путевого управления используется рулевой винт с поворотными лопастями.
Вертолёты широко применяются для перевозки грузов, почты, пассажиров, при разведке и разработке газовых и нефтяных месторождений в труднодоступных районах, для проведения ледовой разведки, монтажа крупногабаритного оборудования, при спасательных работах и тушении пожаров и т. д. Вертолёты входят в состав вооружённых сил всех крупных государств и применяются для перевозки и десантирования войск и грузов, уничтожения танков и другой техники противника, для огневой поддержки войск, разведки, связи и выполнения других заданий. Кроме того, вертолёты применяют для траления мин, борьбы с подводными лодками, постановки минных заграждений, осуществления спасательных операций на море и т. д.
Первый вертикальный подъём летательного аппарата с человеком на борту при помощи винтов состоялся 29 сентября 1907 г. во Франции. Вертолёт, созданный братьями Л. и Ж. Брегге и профессором Ш. Рише, поднимался вертикально четырьмя винтами на высоту 1.5 м. Первый вертолёт, способный двигаться поступательно, был построен В. Корню (Франция) в ноябре 1907 г. В 1912 г. русский изобретатель Б. Н. Юрьев впервые создал вертолёт с одним несущим винтом; он же изобрёл автомат перекоса – устройство, автоматически изменяющее углы установки лопастей несущего винта для поддержания заданного направления и режима полёта вертолёта. Автомат перекоса Юрьева стал основным органом управления вертолётом. В 20—30-х гг. 20 в. в России построено несколько работоспособных вертолётов, в т. ч. вертолёты серии ЦАГИ (1-ЭА, 3-ЭА, 5-ЭА, 11-ЭА). Вертолёты создавались также в США и Германии. Серийный выпуск вертолётов впервые организован в 1942 г. американской фирмой «Сикорский аэро энджиниринг» (R-4), в России – в 1952 г. (Ми-4). Наиболее известны в России вертолёты, созданные конструкторскими бюро М. Л. Миля (Ми-12, Ми-26, Ми-34 и др.) и Н. И. Камова (Ка-15, Ка-18, Ка-25 и др.). За рубежом вертолёты выпускают фирмы «Сикорский», «Каман» (США), «Агуста» (Италия), «Уэстленд» (Великобритания), «Аэроспасьяль» (Франция) и др.
Схема устройства вертолёта Ми-1:
1 – несущий винт; 2 – автомат перекоса; 3 – ось несущего винта; 4 – бачок для противообледенительной жидкости; 5 – рулевой винт; 6 – редуктор; 7 – стабилизаторы; 8 – бак для горючего; 9 – основное колесо; 10 – вентилятор; 11 – двигатель; 12 – главный вал; 13 – места пассажиров; 14 – место пилота; 15 – рычаг для одновременного регулирования газа и установки лопастей; 16 – носовое колесо; 17 – рация
ВЕРФЬ, предприятие для постройки судов, которое, в отличие от судостроительных заводов, не имеет цехов по изготовлению изделий машиностроения и получает эти изделия в виде поставок с других предприятий. По характеру выполняемых работ верфи подразделяют на судостроительные и судосборочные. Судостроительные верфи выполняют полный цикл работ по постройке судна. Судосборочные верфи, в отличие от судостроительных, осуществляют только сборку судов, получая с других верфей или заводов готовые к сборке насыщенные блоки корпуса и агрегаты механизмов и энергетических установок. Основными цехами судостроительной верфи, строящей суда из стали, являются: корпусообрабатывающий цех, изготавливающий детали корпуса судна (в этот цех включается также склад стали, участок первичной обработки металла и плаз – специальное помещение, где на полу вычерчивают обводы судна и отдельные детали); сборочно-сварочный цех, в котором собирают и сваривают из деталей узлы, секции и блоки корпуса; стапельный цех, где формируется корпус судна и осуществляется его спуск на воду; механомонтажный цех, выполняющий монтаж главных двигателей, механизмов машинного отделения и гребных валов; слесарно-корпусной цех, изготавливающий и монтирующий вентиляцию, мелкие устройства, кожухи; деревообрабатывающий цех, изготавливающий и монтирующий обшивку помещений, мебель и т. п.; малярно-заготовительный цех, выполняющий работы по изготовлению и монтажу изоляции и защитных покрытий; такелажно-корпусной цех, изготавливающий такелаж, тенты и т. п.; цех гальванопокрытия, обеспечивающий цинкование, хромирование, никелирование, омеднение, кадмирование труб, крепежа и других изделий; достроечный цех, выполняющий работы по достройке судов на плаву с их испытаниями и сдачей. Судно – наиболее сложное инженерное сооружение, и для его постройки верфи оснащают уникальным оборудованием и применяют наиболее современные высокопроизводительные технологии.
При постройке судна на верфи выделяются три этапа: предстапельный, стапельный и достроечный. На предстапельном этапе после изготовления деталей проводится поточно-позиционная сборка плоских и полуобъёмных секций корпуса, сборка объёмных блоков, укрупнение массы секций и блоков, их насыщение трубопроводами, механизмами, изоляцией и окраска. В отдельные агрегаты собираются механизмы машинного отделения для последующего монтажа на стапеле. На стапельном этапе производится формирование судна из отдельных сборочных блоков, обстройка корпуса, проводятся механические испытания, окраска; этап заканчивается спуском остова судна на воду. На достроечном этапе завершаются работы по достройке судна, его испытания и сдача в эксплуатацию. Стапельный этап в зависимости от размеров судна может выполняться на наклонном стапеле с продольным спуском, горизонтальном стапеле с поперечным механизированным спуском по наклонным путям (на слипе), на горизонтальном стапеле в сухом доке (со всплытием построенного судна). Помещение, в котором производится стапельная сборка, называется эллингом. В цехах постройки блоков и в эллингах ширина пролётов достигает 60—120 м при высоте 60 м. Крановое оборудование может иметь грузоподъёмность более 1000 т. Сухие доки имеют размеры в плане до 950 5 92 м, в них могут строиться суда дедвейтом до 1 000 000 т.
Верфь
ВЕСЫ́ БЫТОВЫ́Е, предназначены преимущественно для домашнего пользования – взвешивать пищевые продукты, дозировать удобрения, измерять вес собственного тела и т. п. Весы бывают ручные, настольные, настенные и напольные. Наиболее распространены пружинные и рычажные бытовые весы. Они просты в пользовании, занимают мало места (особенно ручные) и при взвешивании обеспечивают достаточно точные показания. Главная деталь пружинных бытовых весов – спиральная или цилиндрическая пружина. Их действие основано на уравновешивании веса предмета силой сжатой или растянутой пружины. Показания весов отсчитывают по шкале, вдоль которой перемещается соединённый с пружиной указатель (стрелка). Взвешивание на рычажных весах основано на законе равновесия рычага; сила тяжести взвешиваемого тела, действующая на одно плечо рычага, уравновешивается силой тяжести гирь, приложенной к другому плечу. Наибольшую точность обеспечивают равноплечные рычажные весы, в момент достижения равновесия рычаг принимает строго горизонтальное положение. К таким весам относятся, в частности, аптекарские весы. Существуют также электронные весы с цифровым отсчётом на специальном табло, имеющие наибольшую точность взвешивания. Так, напольные электронные весы взвешивают вес тела до 120 кг с точностью 100–200 г.
а)
б)
в)
г)
д)
е)
ж)
Бытовые весы:
а – безмен; б – ручные пружинные; в – настольные пружинные; г – рычажные дозировочные; д – ручные равноплечные; е – напольные малогабаритные; ж – настольные рычажные
ВЕТРОДВИ́ГАТЕЛЬ, машина, преобразующая кинетическую энергию ветра в механическую энергию. Рабочим органом ветродвигателя является ветроколесо, воспринимающее напор воздушного потока и преобразующее его в механическую энергию вращения вала. Различают ветродвигатели карусельные (с вертикальными лопастями и вертикальной осью вращения), барабанного типа (с горизонтальными лопастями и горизонтальной осью вращения) и крыльчатые (с горизонтальной осью вращения, параллельной направлению ветрового потока). В зависимости от числа лопастей различают быстроходные (менее 4 лопастей), средней быстроходности (4–8) и тихоходные (более 8). На крыльчатых ветродвигателях лопасти крепят обычно к поворотной головке, внутри которой располагают также остальные узлы. Головку ветродвигателя помещают в гондолу и устанавливают на вершине опорной мачты; при изменении направления ветра гондола с помощью хвостового оперения или специального колеса (виндрозы), расположенного на хвостовом оперении, разворачивается до тех пор, пока плоскость вращения ветроколеса не займёт положение, перпендикулярное направлению ветра, при этом ветродвигатель развивает наибольшую мощность. Лопасти ветроколеса выполняются обычно из древесно-слоистого материала или из стеклопластика. Для поддержания расчётной частоты вращения используется центробежно-пружинный регулятор, исполнительный механизм которого изменяет угол поворота лопастей вокруг своей оси. Эта же система в комплексе со специальным устройством позволяет осуществить дистанционно или автоматически пуск ветродвигателя или его остановку. Серийные отечественные ветродвигатели имеют диаметр ветроколеса 10.12 и 18 м и расчётную мощность от 7.4 до 29.5 кВт. Кроме того, выпускаются ветродвигатели мощностью 30–50 кВт.
Крыльчатый многолопастный ветродвигатель
ВЕТРОЭНЕРГÉТИКА, отрасль энергетики, в которой для получения механической, электрической или тепловой энергии используется энергия ветра. Наряду с солнечной и гидравлической ветровая энергия относится к природным возобновляемым энергоресурсам. К её достоинствам относится доступность, повсеместное распространение и практическая неиссякаемость. Особое значение это приобретает для районов с благоприятным ветровым режимом, удалённых от сетей централизованного электроснабжения, и для сравнительно мелких потребителей (до 100 кВт), рассредоточенных на большой территории в труднодоступной местности (вахтовые посёлки, геологические базы и т. п.). Общий ветроэнергетический потенциал Земли оценивается в 1.2 млн. МВт, общая установленная мощность ветроэнергетических станций к 2000 г. составила ок. 17.8 тыс. МВт; прогноз на 2006 г. – 36 тыс. МВт. Наибольшее распространение в мире получили ветроэнергетические установки (ВЭУ) относительно небольшой мощности – от 0.1 до 6 кВт, применение которых экономически оправдывается при среднегодовой скорости ветра более 5 м/с в районах с высокой стоимостью доставки топлива. Основное препятствие для использования ветроэнергетического потенциала – непостоянство скорости (напора) ветра и, как следствие, большие колебания мощности ВЭУ и необходимость аккумулирования получаемой энергии.
Энергия ветра использовалась людьми с давних времён для вращения колёс ветряных мельниц, в парусном флоте, позже – для привода колёс ветроэлектрогенераторов. Первая ветровая электроустановка построена в Дании в 1901 г. После большого перерыва, обусловленного стремительным развитием тепловых и электрических двигателей, снова возник интерес к ВЭУ. В 1979 г. в США и Канаде были введены в эксплуатацию ветроэлектростанции мощностью по 200 кВт с диаметром рабочего колеса ок. 40 м, а в Дании – ВЭУ с диаметром колеса 60 м, рассчитанная на производство 4 млн. кВт·ч электроэнергии в год. Наиболее мощная ВЭУ (1.25 МВт) действует в США. Первая в России ВЭУ мощностью 8 кВт была построена в 1929—30 гг. в Курске. В 1931 г. вступила в строй ВЭУ мощностью 100 кВт – под Севастополем. В 50—60-е гг. был налажен выпуск серийных ветродвигателей мощностью 0.7—11 кВт, а в кон. 90-х гг. – мощностью 30—100 кВт. Однако пока ещё ВЭУ не могут конкурировать с традиционными производителями электроэнергии; необходимо повышать коэффициент полезного использования энергии ветра с 0.2–0.25 до 0.5–0.7 и решать проблему аккумулирования ветровой энергии.
ВЕТРОЭНЕРГЕТИ́ЧЕСКАЯ УСТАНÓВКА (ВЭУ), комплекс устройств и оборудования, предназначенный для преобразования энергии ветрового потока в другой вид энергии, удобный для практического использования. Обычно ВЭУ представляет собой высокую мачту, на вершине которой установлен ветродвигатель, соединённый передачей с рабочей машиной (напр., насосом или электрогенератором), преобразующей энергию ветра в определённый вид практической работы: перекачивание воды, получение тепла, электроосвещение и т. п. Кроме того, в составе установки предусматривается размещение устройств, запасающих энергию, напр. водосборники, аккумуляторы и др. Для обеспечения потребителей электроэнергией во время безветрия обычно используют резервный двигатель внутреннего сгорания. Различают ВЭУ специального назначения (насосные, опреснительные, зарядные и т. п.) и универсальные (ветросиловые и ветроэлектрические). Силовые ВЭУ преобразуют ветровую энергию в механическую, которая с помощью трансмиссии передаётся на рабочую машину. На электрических ВЭУ (ветроэлектростанциях) вырабатывается электрический ток, который передаётся на электродвигатели исполнительных машин. Установленная мощность ВЭУ зависит гл. обр. от диаметра рабочего колеса ветродвигателя и скорости ветра.
Ветроэнергетическая установка
ВЗЛЁТНО-ПОСÁДОЧНАЯ ПОЛОСÁ, см. в ст. Аэродром.
ВЗРЫВНÁЯ ШТАМПÓВКА, см. в ст. Листовая штамповка.
ВИАДУ́К, сооружение мостового типа на пересечении дороги с глубоким оврагом, горным ущельем, лощиной, суходолом и т. д. Виадуком также принято называть мост над широкой долиной реки, когда по экономическим, эстетическим или иным соображениям нецелесообразно возведение земляной насыпи на подходах к водной преграде. Виадуки известны со времён Древнего Рима. Они строились из камня и, как правило, представляли собой несколько рядов арочных мостов – аркад, возведённых один над другим. Этот приём позволял поднять дорогу на высоту, необходимую для «прыжка» через ущелье. Спустя два тысячелетия, в сер. 19 в., в Саксонии немецкие инженеры использовали ту же схему при строительстве и ныне действующих кирпичных виадуков через реки Гельцш и Эльзен. В своё время они считались самыми высокими в мире. Современные материалы (высокопрочные стали, предварительно напряжённый железобетон) позволяют создавать высокие многопролётные конструкции виадуков, придавая им лёгкую, простую форму, хорошо читаемую на фоне просторных долин или живописных гор.
Виадук
ВИБРÁТОР, 1) в широком смысле – любая система, в которой могут возбуждаться колебания (механические, электромагнитные и др.), напр. камертон, маятник, колебательный контур. Механические вибраторы (вибровозбудители) используются как самостоятельные устройства или в составе вибрационных машин и оборудования. Вибраторы применяют в вибрационных машинах для уплотнения грунтов, дорожных покрытий, бетонных смесей при возведении зданий, сооружений и изготовлении железобетонных изделий; для механизации выгрузки материалов из бункеров, транспортирования сыпучих и кусковых материалов в конвейерах; при испытании конструкций, приборов и аппаратов на прочность и устойчивость на вибрационных стендах и т. д. Наиболее распространены центробежные вибраторы с приводом от встроенного электродвигателя и вибраторы, в которых колебания создаются в результате вращения неуравновешенных элементов (дебалансов).
2) В радиотехнике вибратор – отрезок металлического провода, штырь из токопроводящего материала или диэлектрика, который может служить возбудителем (источником) электромагнитных колебаний; применяют как простейшую антенну или как элемент сложных антенн.
ВИБРАЦИÓННАЯ МАШИ́НА, машина, рабочему органу которой сообщается колебательное движение для осуществления или интенсификации выполняемого процесса. Применяется в строительстве для уплотнения бетона или грунта (вибратор погружают в бетон или устанавливают прямо на землю, и он, сообщая колебательные движения грунту или бетонной смеси, способствует их уплотнению), погружения в грунт свай, труб и т. д. Название этого класса строительных машин произошло от латинского слова vibro – колеблюсь. Явление вибрации широко используется во многих строительных машинах. Так, в виброкатках вибратор, расположенный в вальцах катка, улучшает их уплотняющее действие; вибратор, которым оснащается ковш экскаватора, стряхивает налипший на стенки вязкий грунт; используют виброударный способ погружения свай вибромолотами и т. д. В горном деле широко используются вибрационные конвейеры и виброгрохоты, применяемые для транспортировки и сортировки горных пород.
Самопередвигающаяся виброплита
ВИДЕОДВÓЙКА, то же, что моноблок.
ВИДЕОЗÁПИСЬ,запись изображения и звука на магнитную ленту с помощью съёмочной видеокамеры (магнитная видеозапись) для последующего воспроизведения на экране телевизора при помощи видеомагнитофона. При видеозаписи изображение преобразуется съёмочной видеокамерой в последовательность электрических сигналов (видеосигналы), которые и фиксируются на магнитной ленте. Качественная запись звука осуществляется в диапазоне от 20 до 20 000 Гц. Для записи и воспроизведения видеоизображения требуются гораздо более высокие частоты – св. 6 МГц. Для этого магнитные головки в видеокамере и видеомагнитофоне закреплены на вращающемся с высокой скоростью барабане, а сигналы записываются не вдоль, а поперёк ленты. Ось вращения барабана расположена под углом к направлению движения ленты, а его магнитная головка при каждом обороте записывает на ленте наклонную строчку. При этом плотность записи вдоль ленты значительно увеличивается, а магнитная лента должна двигаться сравнительно медленно – со скоростью всего 2.34—4.84 мм/с.
Конструкцию видеомагнитофона с вращающимися магнитными головками первыми разработали В. Сэлстед, А. Понятов и М. Столяров (США) в 1951 г. Съёмочная видеокамера и видеомагнитофон не только стали непременным атрибутом телевизионных студий, но и широко вошли в быт. Видеокамеры практически вытеснили любительские кинокамеры. Они записывают цветное изображение и звук (с помощью встроенного микрофона), обладают высокой чувствительностью. Измерение яркости изображения, установка диафрагмы и наводка на резкость полностью автоматизированы. Результат видеосъёмки можно просмотреть сразу же, ведь никакого проявления плёнки (как при киносъёмке) уже не требуется. В видеофильме изображение и звук записываются на один и тот же носитель информации – магнитную плёнку. Наиболее распространённый бытовой стандарт видеозаписи – VHS (Video Home System – домашняя видеосистема). Ширина магнитной плёнки в этом стандарте – 12.5 мм. Для портативных видеокамер применяется уменьшенная кассета с плёнкой той же ширины – VHS Compact. Для воспроизведения в видеомагнитофоне её помещают в специальный адаптер, имеющий внешние размеры стандартной видеокассеты VHS. Выпускаются стандартные видеокассеты VHS с временем записи 120.180.195 и 240 мин. Запись на эти кассеты (в отличие от звуковых или аудиокассет) – односторонняя. Выпускаются и миниатюрные видеокассеты стандарта Video-8 (Hi8). Ширина плёнки в них – 8 мм. Это позволило уменьшить габариты портативных бытовых видеокамер. Переход на цифровой метод записи, осуществлённый в наиболее современных видеокамерах, позволяет избежать потери качества даже при многократной перезаписи.
ВИДЕОИ́МПУЛЬС, см. в ст. Импульс электрический.
ВИДЕОКÁМЕРА, портативная телевизионная передающая камера, конструктивно объединённая с кассетным видеомагнитофоном; для записи сигналов изображения и звука (видеозаписи) используются магнитные ленты шириной 12.7 и 8 мм. Видеокамеры снабжаются высококачественными объективами с переменным фокусным расстоянием (т. н. трансфокаторы или ZОOM-объективы), обеспечивающими оптическое 10-кратное увеличение. Это позволяет при видеосъёмке, не сходя с места, плавно приблизить или отдалить снимаемый объект. Видеокамеры снабжены электронным видоискателем, который может использоваться как для контроля изображения во время съёмки, так и для просмотра записанного сюжета в целом. Наиболее совершенные видеокамеры, кроме видоискателя, снабжены миниатюрным цветным дисплеем на жидких кристаллах. С его помощью можно просмотреть только что отснятый видеофильм непосредственно на видеокамере.
Видеокамера
Схема видеокамеры:
1 – объектив; 2 – фильтр; 3 – микродвигатель; 4 – миниатюрный кинескоп; 5 – микрофон; 6 – усилитель звука; 7 – электронные блоки
ВИДЕОКАССÉТА, закрытая пластмассовая коробка, внутри которой размещается магнитная лента, применяемая в видеомагнитофонах и видеокамерах. Магнитная лента в видеокассете содержится в виде бобин, намотанных на двух свободно вращающихся сердечниках. При установке видеокассеты в видеомагнитофон (видеокамеру) сердечники бобин соединяются с электроприводом и кассета фактически становится составной частью ленто-протяжного механизма видеомагнитофона. Контакт магнитной головки с магнитной лентой при записи или воспроизведении видеоинформации осуществляется через специальное окно в корпусе видеокассеты. Наибольшее распространение получили видеокассеты, обозначенные буквами VHS (Video Home System – домашняя видеосистема). Они предназначены для использования практически во всех выпускаемых в мире видеомагнитофонах.
В этих видеокассетах с габаритами 18.8 5 10.4 5 2.5 мм и массой ок. 280 г используется магнитная лента шириной 12.7 мм. Длительность записи (воспроизведения) на кассетах VHS – 60.120.180.195.240 мин ограничивается длиной ленты, которая может разместиться в кассете, и зависит от толщины ленты. При наличии в видеомагнитофоне, кроме основной скорости (SP), замедленной скорости (LР) длительность записи (воспроизведения) увеличивается вдвое.
Видеокассета
ВИДЕОМАГНИТОФÓН, аппарат для записи на магнитную ленту телевизионных сигналов (со звуковым сопровождением) для их хранения и последующего воспроизведения. По принципу действия аналогичен обычному магнитофону, но, в отличие от него, имеет более широкую полосу пропускания частот (до 3.5–6 МГц по сравнению с 10–20 кГц у магнитофона). Такая полоса обеспечивается высокой скоростью взаимного относительного перемещения магнитной головки (видеоголовки) и ленты (от 20–40 м/с – в студийных до 3–9 м/с – в бытовых видеомагнитофонах). Для этого в видеомагнитофонах используется несколько (от 2 до 4) видеоголовок, закреплённых по окружности барабана, вращающегося практически перпендикулярно или под небольшим углом к направлению движения ленты. Видеосигналы записываются не вдоль ленты, как в обычном магнитофоне, а поперёк (поперечно-строчная запись) или наискось (наклонно-строчная запись). При этом плотность записи вдоль ленты существенно возрастает, а сама лента движется со скоростью 2.34—4.84 мм/с. При воспроизведении записи для получения непрерывного видеосигнала применяют электронный коммутатор, который поочерёдно подключает видеоголовки к усилителю воспроизведения в моменты перехода видеоголовок с одной строчки записи на следующую. Сигналы звукового сопровождения записываются и воспроизводятся неподвижными магнитными головками вдоль одного из краёв магнитной ленты. По другому краю ленты также неподвижной головкой записываются синхронизирующие сигналы.
Видеомагнитофон
Все бытовые видеомагнитофоны – кассетные, рассчитаны на использование видеокассет стандарта VHS с продолжительностью записи 60.120.180.195 и 240 мин. Наиболее совершенные видеомагнитофоны, кроме основной скорости движения магнитной ленты (SР), имеют вдвое меньшую скорость (LР), увеличивающую время записи и воспроизведения вдвое без заметной потери качества изображения и звука. Такой режим возможен при использовании 4 или 6 головок записи. У большинства видеомагнитофонов предусмотрена возможность воспроизведения видеосигналов при кратковременной остановке ленты для получения неподвижного изображения (режим «стоп-кадр»), а также медленный просмотр видеозаписи в прямом и обратном направлениях. Управление режимами работы возможно с помощью клавиш на корпусе видеомагнитофона либо с помощью пульта дистанционного управления.
ВИДЕОПЛÉЙЕР (видеоплеер), то же, что кассетный видеомагнитофон, предназначенный для работы только в режиме воспроизведения записанных на видеокассету изображения и звукового сопровождения; термин, распространённый в быту и в научно-популярной литературе, является транскрипцией английского слова videoplayer, что означает видеопроигрыватель.
ВИДЕОПРОИ́ГРЫВАТЕЛЬ, принятое в обиходе название устройств для воспроизведения сигналов изображения и звукового сопровождения, записанных на оптических дисках (лазерный проигрыватель) или на магнитной ленте в видеокассете (видеоплеер).
ВИ́ЛЛА, загородный дом с парком или садом. Первые виллы появились в 3 в. до н. э. в Италии, в последующие 200 лет распространились по всему Средиземноморью. Виллы того времени чаще всего были центрами больших загородных поместий и состояли не только из жилых, но и из хозяйственных построек. Такой тип вилл назывался villa rustica, в отличие от villa urbana – пригородного дома не для постоянного проживания, а для развлечений и отдыха. Большое развитие получили виллы в 15–17 вв. в Италии. Это были огромные загородные дома, которые окружал парк, украшенный скульптурами и фонтанами. В нач. 20 в. виллой стали называть любой комфортабельный отдельно стоящий дом с парком или садом, предназначенный для одной семьи. Как правило, виллы строят в привилегированных загородных районах или на курортах.
Вилла Пизани близ Венеции, Италия
ВИНТÓВКА, индивидуальное стрелковое оружие с длинным стволом для поражения цели на расстоянии до 2 км. Термин связан с появлением в России в сер. 19 в. ружей, стволы которых имели внутри винтовую нарезку, обеспечивавшую вращение пули для повышения её устойчивости в полёте. Наиболее примечательная русская магазинная 7.62-мм винтовка образца 1891 г. оружейника С. И. Мосина, более 60 лет состоявшая на вооружении русской, а затем и советской армии, имела массу со штыком 4.5 кг, длину без штыка 1300 мм, неотъёмный магазин на 5 патронов. Вариант винтовки с укороченным стволом назывался карабином (длина 1016 мм). С распространением во 2-й пол. 20 в. автоматов винтовки сохранились только как снайперское и спортивное оружие.
Винтовка системы С. И. Мосина
Затвор к винтовке системы С. И. Мосина
ВИНТОКРЫ́Л, летательный аппарат, в котором сочетаются конструктивные элементы самолёта и вертолёта. Подобно самолёту, винтокрыл имеет фюзеляж, крыло, хвостовое оперение и движитель – воздушный винт (пропеллер) или реактивный двигатель для горизонтального полёта; сходство с вертолётом ему придают несущие винты над фюзеляжем или на концах крыльев. Винтокрыл взлетает и садится, как вертолёт, с помощью несущих винтов, а разгоняется с помощью как несущих винтов, так и самолётных движителей. Достигнув скорости полёта, при которой начинают эффективно действовать аэродинамические рули, винтокрыл продолжает полёт, используя подъёмную силу крыльев, как обычный самолёт.
Винтокрылы появились в кон. 50-х гг. 20 в. практически одновременно в Великобритании, СССР, США. Разработчики винтокрылов стремились в одном летательном аппарате соединить свойства самолётов (высокая скорость, большая грузоподъёмность, дальность полёта) и вертолётов (возможность взлёта и посадки с места, без разбега). Многие проекты были успешно реализованы уже в кон. 70-х гг. Наибольшая скорость полёта, 486 км/ч, достигнута экспериментальным винтокрылом ХН-51А фирмы «Локхид» (США). В СССР в 1960 г. построен экспериментальный винтокрыл Ка-22 (конструкции Н. И. Камова), на котором в 1961 г. было установлено 8 мировых рекордов, в т. ч. скорости по прямой – 356 км/ч и поднятия груза 16 485 кг на высоту 2588 м. Однако по мере совершенствования вертолётов и в связи с созданием самолётов вертикального взлёта и посадки интерес к винтокрылым аппаратам резко упал, и их строительство практически прекратилось.
Винтокрыл
ВИРТУÁЛЬНАЯ РЕÁЛЬНОСТЬ, имитация окружающей действительности (зрительных образов, звука, объёма сконструированных объектов) с помощью специальных компьютерных средств. Если стереофотография и стереокино делают изображение объёмным, а голограмма позволяет осмотреть изображение с разных сторон, то виртуальная реальность позволяет с помощью специальной экипировки оказаться внутри виртуального (мнимого, кажущегося) мира. В составе экипировки для погружения в виртуальный мир используются специальные шлем, силовой жилет, перчатки и сапоги. Виртуальный шлем снабжён дисплеями для каждого глаза, наушниками и датчиками, дающими информацию о положении головы. Силовой жилет, перчатки и сапоги также снабжены специальными датчиками, имитирующими иллюзию взаимодействия с предметами в виртуальном пространстве. Надев такой «костюм», наблюдатель попадает в виртуальный мир, напр. на дно океана или на поверхность Марса. При этом можно поворачивать голову, оглядываться, ходить, дотрагиваться рукой или ногой до предметов, поднимать их, ощущать их тяжесть и температуру. То есть созданный компьютером виртуальный мир способен обманывать органы чувств наблюдателя.
Перчатка виртуальной реальности
Погрузиться в виртуальную реальность можно также с помощью виртуальной комнаты, где пол, стены и потолок снабжены экранами, на которые проецируются изображения. Моделируются движения и звуки (напр., автомобиля, самолёта, поезда или космического корабля). Всё это важно для создания специальных тренажёров для пилотов, космонавтов, водителей автомобилей, операторов ядерных реакторов. Созданы также агрегаты, действующие на вестибулярный аппарат человека. Примером могут служить вращающиеся кабины для тренировки космонавтов. Именно необходимость создания таких тренажёров, приближающих обстановку к реальной, и вызвала к жизни создание систем виртуальной реальности.
Виртуальный шлем
ВИСЯ́ЧИЕ КОНСТРУ́КЦИИ, строительные конструкции, в которых все основные несущие элементы (тросы, кабели, цепи, мембраны) работают на растяжение. Эта особенность висячих конструкций позволяет в полной мере использовать свойства строительных материалов, выдерживающих значительные растягивающие усилия (цепи, стальные проволоки, капроновые нити) и получать лёгкие (с небольшим собственным весом) конструкции. Применяются в мостах (такие мосты называются висячими), канатных дорогах и т. п.
Висячие конструкции – древнейший тип строительных конструкций. Ещё 2000 лет назад китайцы подвешивали мосты с довольно большим пролётом на цепях из кованого железа. Один из них, мост в провинции Сычуань, имеет длину 101 м. К достоинствам висячих конструкций относятся простота монтажа, экономичность и архитектурная выразительность. Недостатками являются большая нагрузка на опоры и изменяемость под действием внешних сил (ветра, температуры и т. д.). Штормовые порывы бокового ветра могут приводить к катастрофам, как это было в 1940 г. при крушении висячего Тэкомского моста (США). Особенностью висячих мостов является то, что несущие тросы, на которых держится вся конструкция, перекинутые через опоры(пилоны), закрепляются на берегах. Вся конструкция держится на этих дугообразно провисающих между опорами тросах. При движении автомобилей по мосту тросы изменяют свою геометрическую форму, что вызывает прогибы и колебания пролётного строения. Поэтому всё большее распространение получает геометрически неизменяемый тип висячей конструкции – вантовая конструкция.
Висячий мост через пролив Босфор
ВНЕДÓМЕННОЕ ПОЛУЧÉНИЕ ЖЕЛÉЗА, процессы получения железа и стали непосредственно из рудных материалов, минуя стадию выплавки чугуна в доменных печах. Развитие этого способа получения железа связано с сокращением запасов коксующихся углей, необходимых для производства кокса, служащего главным топливным материалом для доменной плавки. Из многочисленных методов, предложенных, разработанных и осуществлённых в промышленных масштабах в разных странах, наибольшее распространение получила технология производства металлизованных окатышей. Сырьём для производства окисленных окатышей в этом случае служит суперконцентрат глубокого обогащения железных руд, содержащий 68.5—69.5 % железа. Окисленные окатыши обрабатываются специально подготовленным восстановительным газом с температурой ок. 800 °C в печах шахтного типа. Металлизованные окатыши переплавляются в электропечах для производства стали высокого качества.
ВНЕДОРÓЖНЫЙ АВТОМОБИ́ЛЬ, 1) большегрузный автомобиль, масса и габаритные размеры которого не допускают возможности его передвижения по дорогам общего пользования. К таким автомобилям относятся, напр., карьерные самосвалы, имеющие полную массу св. 100 т, а ширину и высоту – св. 3 м.
2) Легковой автомобиль повышенной проходимости. Как обиходный этот термин обозначает вездеход, сочетающий в себе проходимость с комфортом легкового автомобиля. Серийное производство машины такого типа впервые началось в нашей стране. Это был автомобиль ГАЗ-61, работы над которым велись ещё в 1938 г. На машину устанавливался 6-цилиндровый двигатель мощностью 85 л. с. и три варианта кузова: 5-местный 4-дверный седан, фаэтон и пикап. Однако массовый спрос на внедорожные автомобили начался в 1950-е гг. Практически все крупнейшие мировые производители автомобилей организовали производство машин этого класса. Современный внедорожник оборудован новейшими системами автоматизированного управления и контроля, обладает повышенной комфортностью салона и высокими тягово-динамическими качествами. См. Джип.
Внедорожный автомобиль УАЗ
ВОДОБÓЙ,гидротехническое сооружение в виде бетонной плиты или деревянного настила, расположенное за водосливом или водосбросом. Служит для гашения энергии потока воды и защиты русла реки от опасных размывов. Для лучшего гашения избыточной кинетической энергии потока воды в пределах водобоя располагают водобойный колодец, водобойную стенку, гасители энергии потока. Наиболее эффективно и экономично устраивать водобойный колодец в комплексе с водобойной стенкой и гасителями.
Схема водосливной плотины с водобоем:
1 – водослив; 2 – водобойный колодец; 3 – водобойная стенка; 4 – водобой; 5 – гасители
ВОДОГРÉЙНЫЙ КОТЁЛ, прямоточный котёл для подогрева воды (без испарения), используемой для центрального отопления или централизованного теплоснабжения. Водогрейные котлы работают, как правило, на газообразном и жидком топливе.
ВОДОЛÁЗНАЯ ТÉХНИКА, специальное снаряжение и оборудование, необходимые для выполнения водолазных работ. Водолазное снаряжение надевается на водолаза при его погружении, а водолазное оборудование обеспечивает спуск водолазов, их работу под водой и подъём на поверхность.
Водолазное снаряжение по способу обеспечения дыхания водолаза под водой подразделяется на: вентилируемое; автономное с открытой схемой дыхания (с выдохом в воду); неавтономное с открытой схемой дыхания (с подачей воздуха с поверхности); автономное с полузамкнутой схемой дыхания; автономное с замкнутой схемой дыхания.
Вентилируемое снаряжение включает: шлем с манишкой и трёхслойную рубаху, образующие скафандр; галоши из толстой кожи или прорезиненной ткани со свинцовыми подошвами общей массой 20–25 кг; свинцовые или чугунные грузы общей массой 32–36 кг на груди и спине водолаза или поясные грузы в карманчиках специального пояса; наплечную подушку, нож с поясом, телефонное устройство, размещаемое в водолазном шлеме, телефонный кабель, сигнальный конец, водолазное бельё. Шлемы имеют 3 иллюминатора, травящий головной клапан для вентиляции скафандра водолазом и предохранительный клапан, препятствующий выходу воздуха из скафандра при разрыве шланга, что обеспечивает автономное дыхание водолаза воздухом скафандра (35–40 л) для аварийного выхода на поверхность. Водолазная рубаха снабжается расположенными на спине и груди травящими клапанами для сброса избыточного воздуха, которые работают автоматически.
Автономное снаряжение с открытой схемой дыхания отличается тем, что воздух для дыхания поступает к дыхательному автомату не с поверхности, а из баллонов, закреплённых за спиной водолаза.
Неавтономное снаряжение с открытой схемой дыхания включает дыхательный аппарат, гидрокомбинезон, маску, грузовой ремень с грузами, водолазный шланг, редуктор высокого давления, груз нагрудный, водолазный нож, водолазные галоши, водолазные боты, ласты, телефонную станцию с кабелем, инструмент. Дыхательный автомат обеспечивает подачу водолазу воздуха под давлением, равным давлению окружающей среды, и вывод выдыхаемого воздуха в окружающую среду. К дыхательному автомату воздух подаётся с поверхности по водолазному шлангу.
В автономном снаряжении с полузамкнутой схемой дыхания дыхательная смесь (обычно гелио-кислородная смесь) из баллона аппарата подаётся через химический поглотитель в специальный дыхательный мешок, откуда при вдохе поступает в лёгкие водолаза. Выдыхаемая смесь, проходя через химический поглотитель, очищается от углекислого газа и возвращается в дыхательный мешок.
Автономное снаряжение с замкнутой схемой дыхания (лёгкие водолаза – химический поглотитель углекислого газа – дыхательный мешок – лёгкие водолаза) включает аппараты для дыхания чистым кислородом. Для работы на больших глубинах (до 450 м) используют гелио-кислородную или азотно-гелио-кислородную смесь.
Водолазное снаряжение вентилируемого типа:
1 – шлем с манишкой; 2 – водолазная рубаха; 3 – галоши; 4 – грузы; 5 – нож с поясом; 6 – сигнальный конец; 7 – наплечная подушка; 8 – воздушный шланг; 9 – телефонный кабель
Водолазное оборудование включает: декомпрессионные камеры для декомпрессии (постепенного снижения давления) и лечебной рекомпрессии (повторного помещения под высокое давление) водолазов при водолазных заболеваниях и тренировках по пребыванию под повышенным давлением; воздухонагнетательные электрические помпы (компрессоры низкого давления) для подачи воздуха водолазу под воду; компрессоры среднего (до 3 МПа) и высокого (до 40 МПа) давления для наполнения баллонов воздухом, кислородом или гелием; телефонные станции; гидроакустические станции связи; спуско-подъёмные устройства; средства подводного фото – и телевидения; средства подводного освещения; медицинское имущество (водолазные аптечки, кислородный баллон и кислородная подушка); речные, рейдовые или морские водолазные боты; средства передвижения водолазов под водой.
ВОДОМЁТНЫЙ ДВИ́ЖИТЕЛЬ, ВОДОМЁТ, движитель, состоящий из водопроточной трубы и насоса, который засасывает воду в передней части водопроточной трубы и выбрасывает её через напорный трубопровод. Сила тяги водомётного движителя создаётся вследствие отбрасывания струи с повышенной скоростью. Предложен в 1855 г. российским механиком С. О. Бурачеком.
Различают водомёты с подводным, полуподводным и атмосферным выбросом струи. Водомётный движитель состоит из трёх основных частей: водозаборника, через который вода поступает к рабочему колесу из внешнего потока; рабочего колеса; ускоряющего поток жидкости через движитель, сопла, формирующего реактивную струю требуемой формы и скорости. Конструктивное исполнение водомётных движителей зависит от типа судна и скорости его движения. Водомётные движители устанавливаются на речных судах с небольшими скоростями движения и малой осадкой, плавающих в условиях мелководного и засорённого фарватера, а также на глиссирующих судах, судах на подводных крыльях и судах на воздушной подушке скегового типа. Водозаборники водомётов делятся на водозаборники с водоприёмным отверстием, плоскость которого примерно совпадает с направлением движения судна (статические водозаборники), и водозаборники, плоскость приёмного отверстия которых перпендикулярна направлению движения (полнонапорные). Водомётные движители со статическим водозаборником применяют на судах на подводных крыльях, работающих в речных условиях, где нет волнения, а также на глиссирующих и водоизмещающих судах. Полнонапорные водозаборники применяют на речных и мореходных судах на подводных крыльях. Для предохранения движителя от поломок вследствие засасывания плавающих предметов приёмное отверстие защищается решёткой. В качестве рабочих колёс водомётов используются осевые насосы или гребные винты (иногда – центробежные насосы). Сопло водомётного движителя формирует струю водомёта. Площадь поперечного сечения на срезе сопла, как правило, меньше, чем на входе в него. В районе сопла напорный трубопровод водомёта снабжается специальными рулями, поворотными насадками или иными устройствами, обеспечивающими изменение направления струи воды и управление судном (включая задний ход) без реверсирования главного двигателя.
Коэффициент полезного действия водомётного движителя невысок и на водоизмещающих речных судах составляет 0.35—0.43. Установка водомётов на таких судах является вынужденной мерой, т. к. на малых глубинах применить более эффективные движители (гребные винты, гребные колёса, крыльчатые движители) невозможно по конструктивным причинам. На скоростных судах водомёты могут оказаться более эффективными, чем гребные винты, т. к. при больших скоростях движения из-за кавитации на лопастях гребных винтов кпд винтового движителя падает, а поверхность лопастей разрушается.
ВОДОНАГРЕВÁТЕЛЬ, теплообменный аппарат для нагревания воды паром, горячей водой (или газами) с помощью нагретых тел и т. д. Используется для обеспечения населения горячей водой в домах, не имеющих централизованного горячего водоснабжения. Различают водонагреватели с поверхностным нагревом (тепло передаётся воде при соприкосновении её с поверхностью нагретых элементов) и с контактным нагревом (тепло передаётся воде горячим паром или газом). Используются электрические и газовые водонагреватели. Из электрических водонагревателей наиболее удобны для использования в домашних условиях непроточные (ёмкостные) нагреватели для нагревания и сохранения горячей воды в течение длительного времени. Они представляют собой теплоизолированный металлический бак с размещённым в нём электронагревательным элементом и устройство для автоматического регулирования температуры воды. Устанавливают водонагреватель в кухне или в ванной комнате. Выпускаются ёмкостью от 10 до 150 л. Газовые водонагреватели используют для отопления жилых помещений площадью 60—100 мІ и для горячего водоснабжения кухонь и ванных комнат. Бывают проточные и ёмкостные. В проточных вода нагревается, протекая по тонким трубочкам, укреплённым над газовой горелкой. Такие газовые водонагреватели оснащаются автоматической блокировкой горелки: в них при негорящем запальнике или отсутствии протока воды газ в горелку не подаётся. В ёмкостных водонагревателях вода заливается в теплоизолированный бак, где она постепенно нагревается до заданной температуры газовой горелкой.
ВОДООЧИСТИ́ТЕЛЬНЫЕ ФИ́ЛЬТРЫ бытовые, устройства очистки от вредных примесей водопроводной воды, предназначенной для питья и приготовления пищи. Существуют накопительные и проточные водоочистительные фильтры. Очистку воды в них осуществляют сменные фильтрующие элементы. Накопительные фильтры предназначены для приготовления порции очищенной воды в ёмкости – специальном кувшине. Проточные фильтры обеспечивают постоянный поток очищенной воды. Они устанавливаются непосредственно на водопроводном кране или на подводящих воду трубах. Для экономии фильтрующих элементов проточные фильтры часто снабжают переключателем: при одном положении переключателя вода проходит через фильтрующий элемент и становится пригодной для питья и приготовления пищи, при другом положении переключателя вода проходит мимо фильтрующего элемента и остаётся неочищенной, используется в хозяйственных целях. В зависимости от степени загрязнения водопроводной воды и производительности фильтра фильтрующий элемент необходимо периодически менять.
ВОДОПОДЪЁМНАЯ МАШИ́НА (водоподъёмник), устройство для безнапорного перемещения жидкости (гл. обр. воды). Простейшие водоподъёмные машины – журавль и ворот для подъёма воды из колодца. Непрерывная подача воды осуществляется водоподъёмными машинами: архимедовым винтом, водоподъёмным колесом, норией. Архимедов винт – вал с винтовой поверхностью, установленный в наклонной трубе, нижний конец которой погружён в воду. При вращении (напр., от ветряного или другого двигателя) винтовая поверхность вала перемещает воду по трубе на высоте до 4 м. Водоподъёмное колесо – колесо диаметром 2–6 м со свободно подвешенными черпаками, которые при вращении колеса зачерпывают воду и опорожняются (опрокидываясь) над лотком. Иногда вместо черпаков используют жёстко укреплённые лопасти. Нория – бесконечная цепь с укреплёнными на ней черпаками. Высота подъёма – до 60 м.
Архимедов винт
ВОДОСНАБЖÉНИЕ,совокупность мероприятий по обеспечению водой населения, промышленных предприятий, транспорта и т. д. Наиболее крупные промышленные потребители воды – предприятия металлургии, химической промышленности и теплоэлектростанции. Комплекс инженерных сооружений, осуществляющий задачи водоснабжения, т. е. получение воды из природных источников, её очистку, транспортирование и подачу потребителям, называется водопроводом. Водопровод подразделяется на коммунальный и производственный (промышленный и сельскохозяйственный). Источники воды могут быть подземные (артезианские и карстовые воды, родники) и поверхностные (реки, озёра и т. д.); используют также и дождевую воду (в Австралии, напр., она покрывает бóльшую часть потребностей населения в питьевой воде).
История водоснабжения насчитывает несколько тысячелетий. Уже в Древнем Египте строились глубокие колодцы, оборудованные простейшими механизмами для подъёма воды, использовались гончарные, деревянные, медные и свинцовые трубы. В античном Риме система водопровода получила дальнейшее развитие. Сохранились акведуки, служащие для перехода самотёчных водопроводных каналов через овраги и долины рек. После распада Римской империи упоминания о величественных водопроводах становятся всё реже. Значительную их часть разрушили вторгшиеся варварские племена. Вода в колодцах стала негодной к потреблению, трубы постепенно зарастали травой и разрушались. Гигиенические условия в средневековых городах были ужасны. Это было время, когда святой Франциск Ассизский считал грязь признаком благочестивой жизни, а святая Агнесса ни разу за всю жизнь не коснулась воды. В городах свирепствовали эпидемии. Мало-помалу, где раньше, где позже, потребность в хорошей питьевой воде становилась всё более очевидной. В городах началось строительство водопроводов. В России первый водопровод из деревянных труб был обнаружен при раскопках в Новгороде, время его постройки относится к кон. 11 в. В 15 в. был сооружён родниковый водопровод для Московского Кремля. В 1804 г. было закончено сооружение первого московского (мытищинского) водопровода, а в 1861 г. – петербургского.
При всей развитости современной мировой системы водоснабжения, по данным Всемирной организации здравоохранения, лишь немногим более 10 % населения земного шара обеспечено здоровой питьевой водой в нужном количестве, при том что запасы питьевой воды на планете неуклонно сокращаются. В связи с этим разработано немало проектов обеспечения землян пресной водой, по одному из них предлагается для получения воды растапливать айсберги.
ВОДЯНÓЕ КОЛЕСÓ, простейший гидравлический двигатель – колесо с лопастями, вращаемое потоком воды. Применялось в системах орошения в Древнем Египте, Индии, Китае и других странах, позднее – для привода водяных мельниц, рабочих машин и механизмов мелких и кустарных производств. Основные недостатки: громоздкость, малые мощность, частота вращения и коэффициент полезного действия.
Водяное колесо
ВОДЯНÓЙ ЗНАК, изображение внутри бумаги, которое видно на просвет. Обычно водяные знаки присутствуют на деньгах, других ценных бумагах, на старинных рукописях и изданиях, что помогает устанавливать их истинность и в ряде случаев уточнять дату изготовления. Водяной знак получают в процессе производства бумаги, для чего бумажную массу помещают в специальную форму с тонкой сеткой, называемой филигранью (отсюда другое название водяного знака – филигрань) и имеющей конфигурацию того изображения, которое хотят получить. Пользуются также другим способом – прокатывают по бумажной массе полый валик с рельефной сетчатой поверхностью. Водяные знаки получают в эгутёре бумагоделательной машины.
ВОÉННАЯ АВИÁЦИЯ (военно-воздушные силы, ВВС), вид вооружённых сил, основным вооружением которого являются боевые самолёты и вертолёты. Военная авиация может входить также и в состав других видов вооружённых сил: сухопутных войск (армейская авиация), военно-морского флота (морская авиация) и др.
Первые самолёты, пригодные для военных целей, появились вскоре после зарождения самой авиации. К кон. 1-й мировой войны в армиях основных воюющих государств насчитывалось уже ок. 11 000 самолётов, в т. ч. в русской – св. 1000 (к февралю 1917 г.). В годы войны созданы первые рода военной авиации: бомбардировочная, истребительная, разведывательная. Скорость самолётов увеличилась с 100–120 до 200–220 км/ч, наибольшая высота полёта (потолок) – с 2–3 до 6–7 км, боевая нагрузка достигла 2–3.5 т. Дальнейшее развитие военной авиации осуществлялось как за счёт совершенствования существовавших тогда самолётов с поршневым двигателем (в годы 2-й мировой войны скорость таких самолётов достигла практически предела – 700–750 км/ч), так и появления принципиально новых реактивных самолётов (1944—45) и вертолётов (1950-е гг.).
Современная военная авиация подразделяется на бомбардировочную, истребительно-бомбардировочную, истребительную, штурмовую, противолодочную, военно-транспортную и специальную. Соответствующие наименования имеют и самолёты: бомбардировщики, истребители-бомбардировщики, истребители, истребители-перехватчики, штурмовики, противолодочные самолёты, военно-транспортные самолёты, самолёты-разведчики, самолёты-заправщики, самолёты-корректировщики и др. Отдельную разновидность составляют военные вертолёты: боевые вертолёты, транспортно-боевые, многоцелевые, транспортно-десантные, поисково-спасательные и др. Вооружение боевых самолётов и вертолётов: ракетное оружие – для поражения воздушных или наземных (морских) целей; бомбардировочное (авиационные бомбы, зажигательные баки, бомбовые кассеты и др.) – для поражения наземных (морских) целей; стрелковое артиллерийское (пулемёты и малокалиберные автоматические пушки, в т. ч. и многоствольные) – для поражения воздушных и наземных (морских) целей; минно-торпедное (авиационные наземные и морские мины и торпеды) – для дистанционного наземного и морского минирования с воздуха и прицельного поражения кораблей торпедами.
ВОЗДУХООЧИСТИ́ТЕЛЬ НАДПЛИ́ТНЫЙ, аппарат для очистки воздуха в кухне от вредных продуктов неполного сгорания газа в горелках кухонной плиты, а также от частиц жира, сажи и копоти, образующихся при приготовлении пищи, и для уменьшения запаха подгоревшей пищи. В корпусе воздухоочистителя размещаются вентилятор, аэрозольный фильтр и бактерицидная ртутная лампа. Основной частью воздухоочистителя является аэрозольный фильтр. Частицы жира, сажи и т. п. отсасываются встроенным вентилятором вместе с воздухом из надплиточного пространства и оседают на фильтре, а очищенный воздух возвращается в помещение кухни. По мере загрязнения фильтрующий материал заменяют новым. Очистка воздуха от продуктов сгорания газа достигается его продувкой через сорбент-катализатор, находящийся в коробках-кассетах в верхней части воздухоочистителя. Для стерилизации воздуха служит бактерицидная ртутная лампа – источник ультрафиолетового излучения. Воздухоочиститель крепится над газовой или электрической плитой на высоте 700–900 мм от её поверхности. На нижней поверхности воздухоочистителя размещаются светильники для освещения плиты.
ВОЗДУХОПЛÁВАНИЕ, полёты на аэростатах (воздушных шарах) и дирижаблях. Аэростат (как и дирижабль), оболочка которого заполняется газом, более лёгким, чем воздух, сам становится легче воздуха. Так же как погружённый в воду мяч в соответствии с законом Архимеда всплывает на поверхность, аэростат стремится подняться из нижних плотных слоёв атмосферы вверх, где плотности газа в оболочке и наружного воздуха практически одинаковы. Достигнув определённой высоты, аэростат оказывается во власти воздушных течений и как бы плывёт по воздуху. Отсюда и происходит термин «воздухоплавание».
Эра воздухоплавания началась с изобретения братьями Монгольфье аэростата. Первые аэростаты имели обычно форму шара, отсюда их другое название – воздушные шары. До появления самолётов они были единственным средством для воздушных путешествий. Правда, аэростаты летали только туда, куда дул ветер, и надо было порою несколько раз менять высоту, пока не попадёшь на воздушное течение в нужном направлении. У дирижаблей этот недостаток отсутствует, поскольку они приводятся в движение воздушными винтами и имеют рули управления. Первоначально полёты на воздушных шарах воспринимались как аттракцион. Однако увлечение ими быстро приобретало популярность, и во многих странах, в т. ч. во Франции, Германии, России и др., появились клубы любителей воздухоплавания. Устраивались даже соревнования на высоту подъёма, продолжительность и дальность полётов аэростатов с экипажами. Со временем аэростаты стали применять и в практических целях, напр. для перевозки грузов, наблюдения природных явлений (напр., лесных пожаров, разливов рек) и т. п. Во время 1-й мировой войны воздушные шары использовались для воздушной разведки укреплений противника и передвижения его войск, корректировки артиллерийского огня и даже бомбометания. С развитием авиации в 30—40-х гг. 20 в. популярность воздухоплавания упала. Однако на рубеже 50—60-х гг. интерес к полётам на аэростатах стал быстро расти, гл. обр. благодаря появлению новых материалов для оболочек и более совершенного энергетического и навигационного оборудования. Полёты на аэростатах стали выше и продолжительнее. Неоднократно предпринимались попытки беспосадочного кругосветного путешествия на воздушном шаре. Так, в 1978 г. американские воздухоплаватели М. Андерсон, Б. Абруццо и Л. Ньюмен на аэростате «Дабл игл-2» пересекли Атлантический океан за 137 ч 6 мин. В ноябре 1981 г. четверо воздухоплавателей из США и Японии на аэростате «Дабл игл-5» совершили перелёт через Тихий океан, пролетев почти 8330 км за 84 ч. С кон. 80-х гг. всё чаще можно видеть плывущие по небу аэростаты, большие и не очень, порой самой необычной формы и невероятной расцветки. Ежегодно в разных местах проводятся фестивали воздушных шаров, на которые съезжаются любители воздухоплавания из многих стран мира.
ВОЗДУХОПОДОГРЕВÁТЕЛЬ, теплообменный аппарат для нагревания проходящего через него воздуха. Применяется в системах воздушного отопления, приточной вентиляции, кондиционирования воздуха, в котельных установках тепловых электрических станций и промышленных предприятий, в промышленных печах (напр., металлургической). В воздухоподогревателях для отопления и вентиляции воздух подогревается горячей водой или паром (с помощью калориферов), а также горячим газом и электрическим током.
ВОЗДУ́ШНАЯ ТРÁССА, часть воздушного пространства, предназначенная для пролёта самолётов, вертолётов, аэростатов. На земле вдоль трассы строят т. н. трассовые аэродромы, размещают средства радионавигации, контроля и управления движением. По всей трассе за каждым самолётом, вертолётом ведётся непрерывное наблюдение, поддерживается радиосвязь с экипажем. Для каждой воздушной трассы устанавливаются минимально допустимые расстояния между попутно и встречно летящими самолётами, чтобы исключить возможность их опасного сближения. При интенсивном движении на трассе выделяют т. н. воздушные коридоры – участки воздушного пространства, ограниченные по ширине, иногда и по высоте. Ни один пилот гражданской авиации не может выйти за пределы отведённого ему коридора без согласования со службой управления полётами.
ВОЗДУ́ШНО-КОСМИ́ЧЕСКИЙ КОРÁБЛЬ, летательный аппарат, способный совершать полёт как в атмосфере, так и в космическом пространстве. Для обеспечения такого полёта он должен иметь несущие элементы самолёта (крылья, хвостовое оперение, аэродинамические рули, шасси и т. п.), а также элементы космического аппарата (ракетные маршевые двигатели, систему ориентации и стабилизации, теплозащитное покрытие и т. п.). Старт осуществляется как с помощью собственных реактивных и ракетных двигателей, так и с помощью ракетно-космических или авиационно-космических систем. Посадка после завершения программы полёта производится по-самолётному на аэродром с помощью шасси. Использование воздушно-космического корабля расширяет возможности и оперативность доставки на околоземные орбиты грузов и экипажей орбитальных станций и их возвращения на Землю. Примерами воздушно-космических кораблей служат «Бор» и «Буран» (СССР), а также орбитальные корабли и системы «Спейс шаттл» (США).
ВОЗДУ́ШНЫЙ ВИНТ (пропеллер), лопастный движитель, преобразующий мощность (крутящий момент) двигателя в тягу, необходимую для поступательного движения летательных аппаратов, аэросаней, глиссеров, судов на воздушной подушке. Воздушные винты бывают тянущие – устанавливаются на самолёте и др. впереди двигателя (по направлению движения) и толкающие – помещаются позади двигателя. Винты могут быть одиночными и сдвоенными соосными, когда два винта расположены один над другим, вал верхнего винта проходит через полый вал нижнего винта и вращаются они в противоположные стороны. По способу крепления лопастей к втулке различают винты: неизменяемого шага, лопасти которых выполнены заодно со втулкой; изменяемого шага – наиболее распространённый тип, лопасти которого в полёте можно поворачивать во втулке вокруг оси на некоторый угол, называемый шагом винта; реверсивные, у которых в полёте лопасти могут быть установлены под отрицательным углом для создания тяги, направленной в противоположную от движения сторону (такой разворот лопастей используется, напр., для эффективного торможения и уменьшения длины пробега самолёта при посадке). Особенность флюгерного воздушного винта – возможность в полёте устанавливать лопасти по воздушному потоку, чтобы при остановке двигателя в полёте не увеличивать лобового сопротивления самолёта от винта. Число лопастей воздушных винтов от 2 до 6 у одиночных и до 12 – у соосных.
Разновидностями воздушных винтов являются несущий винт и рулевой винт, применяемые на вертолётах, винтокрылах, автожирах.
Воздушный винт
ВОЗДУ́ШНЫЙ КОРИДÓР, см. в ст. Воздушная трасса.
ВОЗДУ́ШНЫЙ ШАР, см. в ст. Воздухоплавание.
ВОКЗÁЛ, комплекс зданий и сооружений, предназначенных для обслуживания пассажиров, организации их отправления и приёма на станции, осуществления управления железнодорожным транспортом и размещения служебного персонала.
В русском языке словом «вокзал» впервые было названо здание, построенное в 1838 г. в Павловске – конечном пункте Царскосельской железной дороги (по проекту академика архитектуры К. А. Тона). Вокзал в Павловске был разрушен во время Великой Отечественной войны в 1941 г., но сохранились многочисленные открытки и картины с изображением старинного здания. В парке рядом с железнодорожной станцией был построен специальный зал для отдыха и развлечений, под сводами которого часто звучала музыка, выступали известные артисты (Иоганн Штраус и его братья Йозеф и Эдуард, русские артисты М. Г. Савина, А. Е. Варламов). Подобное заведение, где также устраивались гулянья и весёлые представления, находилось в 17 в. в предместьях Лондона и называлось Vauxhall (по имени владелицы Джейн Вокс).
Вокзалы строятся всегда на пассажирских станциях. На крупных станциях – это обычно большие, красивые, как правило, созданные по индивидуальным проектам здания; на небольших станциях и полустанках – павильоны на платформах или небольшие здания, которые строятся обычно по типовым проектам. На многих крупных вокзалах установлены информационные щиты и светящиеся табло, устроены переходы в разных уровнях, эскалаторы, движущиеся тротуары, транспортёры для багажа, есть камеры хранения, рестораны, парикмахерские, пункты химчистки, кассы заказа билетов на другие виды транспорта и т. д. На вокзале пассажир может купить билет, отдохнуть, позвонить, послать телеграмму. Вокзалы, как правило, работают круглосуточно, тут трудятся кассиры, носильщики, электрики, связисты, работники, обеспечивающие питание, медицинское обслуживание, безопасность и т. п.
Вокзал
ВОЛНОЛÓМ, гидротехническое сооружение для защиты от волн акватории порта, рейдовых причалов, подходов к каналам и шлюзам, береговых участков моря, озера, водохранилища и т. д. Энергия волн гасится на волноломе или отражается от него. Различают волноломы оградительные (окружённые водным пространством) и берегозащитные (расположенные непосредственно у берега). Оградительные волноломы разделяются на сплошные (вертикального или откосного профиля), плавучие, сквозные, пневматические, гидравлические. Плавучие волноломы представляют собой заякоренные понтоны. Сквозные волноломы имеют отверстия для пропуска воды. Пневматические используют для гашения энергии волн струёй сжатого воздуха, выходящего из отверстий уложенного по дну трубопровода. Гидравлические волноломы осуществляют гашение волнения встречным поверхностным потоком, который создаётся струями воды, выбрасываемыми из сопел подводящих трубопроводов. Строятся волноломы из камня и бетонных массивных блоков.
ВОЛНОМÉР, радиотехнический прибор для измерений длин электромагнитных волн. Волномеры фактически являются электронными частотомерами (длина волны колебания обратно пропорциональна его частоте). Различают резонансные и гетеродинные частотомеры. Действие резонансного частотомера (волномера) основано на подстройке колебательного контура, возбуждаемого через элемент связи сигналом исследуемой частоты, до получения резонанса. Резонанс фиксируется по наибольшему отклонению указателя индикатора. Действие гетеродинного частотомера (волномера) основано на сравнении измеряемой частоты с частотой перестраиваемого генератора – гетеродина при получении в смесителе нулевых биений. Биения также после усиления фиксируются с помощью стрелочного прибора, осциллографа или телефона.
ВОЛÓКНА ПРИРÓДНЫЕ (волокна натуральные), текстильные волокна растительного, животного и минерального происхождения, пригодные для изготовления пряжи, из которой вырабатывают текстильные изделия. Важнейшим природным текстильным волокном является хлопок. Это волокна на семенах хлопчатника. При его созревании плоды (коробочки) раскрываются, и из них собирают хлопок-сырец, который очищается от растительных примесей, обрабатывается и отправляется на прядильную фабрику. Длина волокон хлопка от 10 до 60 мм, толщина 20–22 мкм. Из хлопка получают тонкую и прочную пряжу, идущую на изготовление самых разнообразных тканей. Текстильные волокна получают также из стеблей и листьев растений. Они называются лубяными, бывают тонкие (лён, рами) и грубые (пенька, джут). Из тонких волокон изготавливают различные ткани, из грубых – верёвки, канаты, мешковину.
Природные волокна животного происхождения – шерсть и шёлк. Шерсть является волосяным покровом животных (овец, коз, верблюдов и др.). Шерсть обладает многими ценными свойствами: она легка, плохо проводит тепло, хорошо поглощает влагу. Из шерсти вырабатывают пряжу, ткани, трикотаж, валяльно-войлочные изделия и др. Шёлк – это продукт, выделяемый железами гусениц шелкопрядов. Когда приходит время гусенице превратиться в куколку, а затем стать бабочкой, она выпускает из себя тонкую нить, прикрепляет её к ветке и плетёт из этой нитки защитную оболочку – кокон. Коконы собирают, а образующую их нить разматывают на специальных машинах. При размотке коконов получают шёлк-сырец, из которого вырабатывают кручёный шёлк, применяемый для изготовления тканей, трикотажа, швейных ниток.
Природным волокном минерального происхождения является асбест, называемый в народе горным льном. Из асбеста изготавливают тепловую и электрическую изоляцию, пожарные костюмы и т. п. См. Асбест.
ВОЛÓКНА ХИМИ́ЧЕСКИЕ, объединяют два основных типа волокон – искусственные и синтетические. Искусственные волокна получают из продуктов химической переработки природных полимеров, напр. целлюлозы. Из целлюлозы вырабатывают вискозные, медно-аммиачные, ацетатные и другие волокна. Они идут для изготовления шёлковых и штапельных тканей, корда для шин и многих других бытовых и промышленных изделий. Искусственные волокна дешевле натуральных и по ряду свойств превосходят их.
Синтетические волокна получают из синтетических полимеров. Сырьём для синтетических волокон являются нефть, природный газ, уголь, отходы целлюлозно-бумажной, пищевой и других отраслей промышленности. Эластичность, прочность, стойкость к агрессивным средам и другие ценные качества синтетических волокон сделали их незаменимыми для использования в современной технике. Они идут для изготовления особо прочных канатов и тросов, фильтровальных перегородок, полупроницаемых мембран, многочисленных тканей и многих других изделий.
ВОЛОКÓННО-ОПТИ́ЧЕСКИЕ ЛИ́НИИ СВЯ́ЗИ (ВОЛС), линии оптической связи, в которых передача информации осуществляется с помощью волоконно-оптических элементов. ВОЛС состоит из передающего и приёмного оптических модулей, волоконно-оптических кабелей и волоконно-оптических соединителей. Оптическое волокно – самая совершенная среда для передачи больших потоков информации на большие расстояния. Оно изготовлено из кварца, основу которого составляет двуокись кремния, – широко распространённого и недорогого материала, в отличие от меди, используемой в обычных проводах. Оптическое волокно очень компактное и лёгкое, его диаметр всего ок. 100 мкм. Волоконные световоды представляют собой волоконно-оптические жгуты, склеенные или спечённые у концов, защищённые непрозрачной оболочкой и имеющие торцы с полированной поверхностью. Стеклянное волокно – диэлектрик, поэтому при строительстве волоконно-оптических систем связи отдельные оптические волокна не нуждаются в изоляции друг от друга. Долговечность оптического волокна – до 25 лет.
При создании волоконно-оптических линий связи необходимы высоконадёжные электронные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы, а также оптические соединители с малыми оптическими потерями. Поэтому для монтажа таких линий требуется дорогостоящее оборудование. Однако преимущества от применения волоконно-оптических линий связи настолько велики, что, несмотря на перечисленные недостатки оптических волокон, эти линии связи всё шире используются для передачи информации. Скорость передачи данных может быть увеличена за счёт передачи информации сразу в двух направлениях, т. к. световые волны могут распространяться в одном оптическом волокне независимо друг от друга. Это даёт возможность удвоить пропускную способность оптического канала связи.
Волоконно-оптические линии связи устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. К таким линиям связи невозможно подключиться без нарушения целостности линии. Впервые передача сигналов по оптическому волокну была осуществлена в 1975 г. Ныне быстрыми темпами развиваются системы дальней оптической связи на расстояния в многие тысячи километров. Успешно эксплуатируются трансатлантические линии связи США – Европа, Тихоокеанская линия США – Гавайские острова – Япония. Ведутся работы по завершению строительства глобальной волоконно-оптической линии связи Япония – Сингапур – Индия – Саудовская Аравия – Египет – Италия. В России компания ТрансТелеКом создала волоконно-оптическую сеть связи протяжённостью более 36 000 км. Она дублирована спутниковыми каналами связи. В кон. 2001 г. создана единая магистральная цифровая сеть связи. Она обеспечивает услуги междугородной и международной телефонной связи, Интернета, кабельного телевидения в 56 из 89 регионов России, где проживает 85–90 % населения.
ВОЛОКÓННО-ОПТИ́ЧЕСКИЙ КÁБЕЛЬ,один или несколько волоконных световодов с упрочняющими элементами, заключёнными в защитную оболочку. Волоконно-оптические кабели разделяют по числу волоконных световодов (одножильные и многожильные), а по функциональному назначению – для передачи энергии оптического излучения (осветительные, длиной несколько метров) и информационных сигналов (длиной в сотни и тысячи километров). Наибольшее распространение получили волоконно-оптические кабели для передачи информационных сигналов по междугородным и трансконтинентальным волоконно-оптическим линиям связи. Характеризуется невосприимчивостью к различного рода помехам и низкими потерями, что позволяет доводить расстояния между передающим и приёмным устройствами до 400–800 км.
ВОЛОЧИ́ЛЬНЫЙ СТАН, машина для изготовления металлической проволоки и труб малого диаметра. Волочильный стан состоит из рабочего инструмента – волоки – и тянущего устройства, сообщающего обрабатываемому металлу движение через волоку. В зависимости от принципа работы тянущего устройства различают волочильные станы с прямолинейным движением обрабатываемого металла и станы с наматыванием обрабатываемого металла (барабанные). Первые применяются для получения труб, вторые – для изготовления проволоки.
ВОЛЬТМÉТР, прибор для измерения напряжения в электрических цепях постоянного и переменного тока. Вольтметр включается параллельно участку цепи, на котором измеряется напряжение. Шкала вольтметра градуируется в мкВ, мВ, В или кВ. Для расширения пределов измерений используют добавочные резисторы (сопротивления), делители напряжения и измерительные трансформаторы напряжения. Вольтметры бывают аналоговые (со стрелочным или световым указателем) и цифровые (см. Цифровой измерительный прибор). В цепях постоянного тока применяют магнитоэлектрические вольтметры, в цепях переменного тока – электромагнитные, а также выпрямительные, термоэлектрические и электронные вольтметры. Электронные вольтметры аналогового типа – это приборы, состоящие из электронных блоков (выпрямителя, усилителя) и измерительного механизма постоянного тока магнитоэлектрического измерительного прибора. Различают электронные вольтметры для измерений постоянного и переменного напряжения и универсальные. К электронным вольтметрам относятся также импульсные вольтметры, предназначенные для измерения амплитуд электрических импульсов.
а)
б)
Вольтметр:
а – переносной лабораторный вольтметр; б – переносной многопредельный ламповый вольтметр с непосредственным отсчётом
ВÓЛЬТОВА ДУГÁ, то же, что дуга электрическая.
ВÓРОТ, простейшее грузоподъёмное устройство с ручным приводом. Состоит из барабана, вращаемого рукояткой, и каната (цепи), навиваемого на барабан. Свободный конец каната снабжён крюком, скобой или клещами для перемещения штучных грузов, бадьёй либо другой ёмкостью – для сыпучих или жидких материалов. Ворот – одно из древнейших изобретений человека. Подобные устройства использовали строители египетских пирамид. Широко был распространён в сельской местности для подъёма воды из колодца. Наибольший выигрыш в силе даёт дифференциальный ворот со ступенчатым барабаном.
Ворот
ВОРОТÓК, см. в ст. Инструменты для нарезания резьбы.
«ВОСТÓК», серия одноместных космических кораблей для автономного полёта человека по околоземной орбите в космическом пространстве. Космические корабли этой серии созданы под непосредственным руководством С. П. Королёва.
На космическом корабле «Восток» изучалось воздействие условий космического полёта на состояние и работоспособность космонавта, его возможность управления системами корабля в условиях невесомости. Исследовалась способность принимать и усваивать пищу, сохранять психофизические особенности поведения, восприятия окружающей обстановки и т. п. Масса корабля «Восток» – 4730 кг, длина – 4.4 м, наибольший диаметр – 2.43 м. Состоит из спускаемого аппарата и приборно-агрегатного отсека, механически и электрически соединённых между собой. Герметичный спускаемый аппарат предназначен для размещения космонавта и оборудован системой жизнеобеспечения, пультами и органами управления кораблём, системой радиосвязи и телевидения, системой телеметрического контроля состояния космонавта и техники и т. п. Для предотвращения повреждений от высоких термодинамических нагрузок при прохождении плотных слоёв атмосферы аппарат покрывался специальной теплозащитной обмазкой. Спускаемый аппарат не имел системы мягкой посадки, и космонавт при возвращении на Землю на высоте ок. 7 км катапультировался и спускался на парашюте. Спускаемый аппарат, уже без космонавта, приземлялся на парашюте. В приборно-агрегатном отсеке находилось оборудование, не требующее обслуживания. На приборном отсеке размещалась тормозная двигательная установка. После завершения программы полёта и процесса торможения приборный отсек отделялся от спускаемого аппарата и сгорал в плотных слоях атмосферы. До пилотируемого полёта было совершено пять испытательных полётов с животными и манекенами (1960—61).
Первый в мире полёт человека в космическое пространство был совершён 12 апреля 1961 г. Ю. А. Гагариным на космическом корабле «Восток-1». Он продолжался 1 ч 48 мин и состоял из одного витка вокруг Земли, во время которого была проверена принципиальная возможность полёта человека в космос. На космическом корабле «Восток-2»
Г. С. Титов (6–7 августа 1961 г., 25 ч 18 мин) показал возможность приёма пищи, сна в условиях невесомости, а также выполнения рабочих функций при кино – и фотосъёмках, управлении кораблём и т. п. При совместном полёте на космических кораблях «Восток-3» (А. Г. Николаев, 11–15 августа 1962 г., 94 ч 22 мин) и «Восток-4» (П. Р. Попович, 12–15 августа 1962 г., 70 ч 57 мин) космонавты впервые освободились от кресел, свободно плавали в невесомости, установили радиосвязь между собой, проводили медико-биологические и другие эксперименты. Впервые были проведены телевизионные репортажи с борта космического корабля, которые транслировались по телевидению. Самый длительный полёт на космическом корабле этой серии – «Восток-5» (119 ч 06 мин) совершил В. Ф. Быковский 14–19 июня 1963 г., во время которого была проведена расширенная программа медико-биологических исследований и других экспериментов. На «Востоке-6» (16–19 июня 1963 г., 70 ч 50 мин) совершила полёт первая в мире женщина-космонавт В. В. Терешкова.
Ракетаноситель «Восток» с космическим кораблём «Восток-1»
Космический корабль «Восток»
ВРÉМЯ РЕÁКЦИИ ЧЕЛОВÉКА, интервал времени от начала воздействия на организм какого-либо раздражителя до ответной реакции организма. Состоит из трёх фаз: время прохождения нервных импульсов от рецепторов до коры головного мозга; время, необходимое для восприятия нервных импульсов головным мозгом и организации ответной реакции в центральной нервной системе; время ответного действия организма. Время реакции зависит от типа раздражителя (звук, свет, температура, давление и т. д.) и его интенсивности, тренированности организма на восприятие этого раздражителя, его ожидаемости и др. Например, для распознавания сигнала светофора требуется 0.3–0.4 с, время реакции на ожог 0.15—0.2 с. Время реакции человека имеет решающее значение при определении возможности его работы лётчиком, оператором, машинистом и т. д.
ВЫКЛЮЧÁТЕЛЬ ЭЛЕКТРИ́ЧЕСКИЙ, устройство для включения и отключения электрических светильников, электронагревательных приборов, трансформаторов, двигателей, линий электропередачи и т. д. Делятся на электрические выключатели низкого (до 1000 В) и высокого (св. 1000 В) напряжения. Электрический выключатель состоит из контактной системы (подвижные и неподвижные контакты) и привода (ручного, пружинного, электромагнитного, пневматического). Для отключения токов в сотни и тысячи ампер электрические выключатели снабжаются устройствами для гашения электрической дуги.
Выключатели низкого напряжения подразделяют на бытовые и промышленные. Первые служат для включения и отключения бытовых электроприборов и устройств переменного тока (50 Гц) при напряжении до 220 В и силе тока до 10 А. Бытовые выключатели изготовляют с ручным, значительно реже – с автоматическим управлением, гл. обр. для защиты от перегрузки (по току) и разрыванию цепи при коротком замыкании. Часто бытовые выключатели совмещают в одно устройство с фотореле (для автоматического включения или выключения светильников в зависимости от освещённости), с таймером (для программирования момента включения и выключения бытовых электроприборов) или светорегулятором (для плавного регулирования яркости свечения ламп). Выключатели освещения могут иметь одну, две или три клавиши. В одноклавишных выключателях размыкается или замыкается одна пара контактов. В двух – и трёхклавишных выключателях каждая пара контактов работает как отдельный выключатель, независимо от того, как ведут себя остальные пары контактов. Как правило, один контакт у них является общим. Такие выключатели служат для раздельного включения ламп в светильнике.
Промышленные электрические выключатели изготовляют с ручным и автоматическим управлением. Последние могут иметь также защиту от понижения напряжения: если напряжение опускается ниже допустимого значения, происходит автоматическое отключение. Распространены полупроводниковые электрические выключатели с дистанционным управлением от компьютера.
Электрические выключатели высокого напряжения (высоковольтные выключатели) предназначены для ручного или дистанционного оперативного включения и отключения устройств высокого напряжения при нормальных режимах и для автоматического выключения этих установок в аварийных режимах при токах перегрузки и токах короткого замыкания.
ВЫПРЯМИ́ТЕЛЬ ЭЛЕКТРИ́ЧЕСКИЙ, устройство для преобразования переменного электрического тока в постоянный. Большинство мощных источников электрической энергии (напр., электрические генераторы на электростанциях) вырабатывают переменный ток. Однако многие электрические устройства на городском и железнодорожном транспорте, в химической промышленности, в цветной металлургии, в быту и т. д. работают на постоянном токе различного напряжения. В простейшем случае переменный ток выпрямляется электрическим вентилем, пропускающим ток (напр., синусоидальный) только в одном направлении. В однофазных электрических цепях используют однополупериодные, двухполупериодные с нулевым выводом и мостовые схемы электрических выпрямителей. На рис. 1 приведена схема однополупериодного выпрямителя однофазного тока. Напряжение U₁, обычно синусоидальное, от источника переменного тока через трансформатор Тр подаётся на вентиль В. Ток J в нагрузке Rн течёт только при положительной полярности подводимого напряжения, т. е. при открытом состоянии вентиля В. Конденсатор С заряжается положительными полуволнами пульсирующего тока, а в паузах, соответствующих по времени отрицательным полуволнам, разряжается на нагрузку. Таким образом, пульсирующий ток сглаживается, усредняется.
В схеме двухполупериодного выпрямителя (рис. 2) применяют трансформатор со средней точкой во вторичной обмотке. Благодаря такому соединению обмотки с вентилями выпрямленный ток формируется из обеих полуволн тока. Частота пульсаций выпрямленного тока при этом возрастает в 2 раза по сравнению с однополупериодным выпрямителем, что облегчает сглаживание тока.
Схема мостового выпрямителя (рис. 3) также двухполупериодная, но вторичная обмотка трансформатора выполнена без средней точки и имеет в 2 раза меньшее количество витков по сравнению со вторичной обмоткой трансформатора. Указанные схемы выпрямителей применяют обычно в системах питания устройств, у которых потребляемая мощность не превышает нескольких киловатт (бытовые электронные приборы, некоторые устройства автоматики и телемеханики и др.), и лишь в отдельных случаях для питания мощных (до 1000 кВт) устройств (напр., двигателей электровозов).
1)
2)
3)
Схемы выпрямителей однофазного тока:
1 – однополупериодная; 2 – двухполупериодная; 3 – мостовая
ВЫСÓКАЯ ПЕЧÁТЬ, способ получения полиграфического изображения на бумаге (или ином материале) с использованием печатных форм, на которых печатающие элементы выступают над пробельными (непечатающими) элементами. Текст и иллюстрации готовят раздельно и объединяют обычно при составлении печатной формы, используемой многократно. Иллюстрационные формы изготавливают в цинкографии травлением или гравированием; текстовые – набором. В высокой печати часто приходится использовать дубликаты печатных форм – копии с оригинальных форм, что обусловлено особенностями способа: повышенным давлением при печати, вызывающим быстрый износ печатных элементов при больших тиражах. Высокая печать используется для печатания текстовых изданий (книги, газеты, брошюры и пр.).
1)
2)
3)
Схема получения оттиска при высокой печати:
1 – форма; 2 – форма с краской; 3 – бумага с оттиском краски;
а – печатающие участки; б – непечатающий (углублённый) участок; в – бумага; г – краска
ВЫСОКОВÓЛЬТНЫЙ ВЫКЛЮЧÁТЕЛЬ, выключатель электрический для ручного или дистанционного оперативного включения и отключения устройств высокого напряжения при нормальных режимах и для автоматического выключения этих установок в аварийных режимах при токах перегрузки и токах короткого замыкания. Для гашения электрической дуги, возникающей при размыкании цепи с током, в высоковольтных выключателях используются дугогасительные устройства.
По виду дугогасительного устройства и среде, в которой происходит гашение дуги, различают масляные, элегазовые, воздушные, вакуумные, газогенерирующие и электромагнитные выключатели. В масляных выключателях дуга гасится с помощью потока газа, образующегося в результате разложения трансформаторного масла, в котором расположены контакты выключателя. Масляные выключатели входят в состав распределительных устройств электрических станций и подстанций. В воздушных выключателях дуга гасится сжатым воздухом; воздушные выключатели выпускаются на напряжения до 1150 В. В вакуумных выключателях дуга гасится в высоком вакууме (1–0.1 МПа); используются такие выключатели при частых отключениях нагрузки. В элегазовых выключателях гасящей средой является гексафторид серы – элегаз; рабочее напряжение таких выключателей несколько киловатт. В газогенерирующих выключателях дуга гасится потоком газов, образующихся под воздействием дуги из газогенерирующих материалов (фибры, органического стекла и др.); применяется гл. обр. на напряжения 6—15 кВ при силе тока до 600 А. В электромагнитных выключателях дуга затягивается в камеру (где она остывает и гаснет) мощным магнитным полем, создаваемым отключаемым током, протекающим по обмоткам электромагнитов; применяется на напряжения 3—10 кВ.
ВЫСОКОСКОРОСТНЫ́Е ЖЕЛÉЗНЫЕ ДОРÓГИ, магистрали, по которым поезда движутся со скоростью не ниже 200 км/ч. Вся история развития железнодорожного транспорта связана со стремлением обеспечить максимальные скорости движения, минимальное время нахождения пассажиров и грузов в пути, увеличение пропускной способности дорог. Для высокоскоростного транспорта требуется создание специальной инфраструктуры – искусственных сооружений, рельсового пути, систем управления движением, устройств сигнализации, информации и связи, обеспечивающих необходимую безопасность пассажиров и сохранность грузов. Осуществляется высокоскоростное движение либо колёсным подвижным составом, передвигающимся по традиционному рельсовому пути, либо вагонами, не имеющими непосредственного контакта при движении с путепроводной эстакадой (т. н. левитирующий транспорт). В последнем случае для создания тяги используется специальный линейный электродвигатель в сочетании с магнитным подвесом.
Рекордную скорость 140 км/ч впервые развил в 1905 г. локомотив с паровой тягой немецкой фирмы «Сименс»; через некоторое время он же достиг скорости 200 км/ч. В 1973 г. в Великобритании на локомотиве с дизельным двигателем достигнута скорость 230 км/ч. В нач. 80-х гг. на дорогах Европы появился французский суперэкспресс ТGV (Trains Grande Vitesse – вагон с высокой скоростью), развивавший скорость 380 км/ч; в 1990 г. он показал рекордную скорость – 515.3 км/ч. Однако наиболее приемлемой для эксплуатации суперэкспресса является скорость 300 км/ч. С такой скоростью движутся поезда в различных регионах Западной Европы. Наиболее развито скоростное движение во Франции, Германии, Испании, Италии – странах, связанных единой сетью высокоскоростных железных дорог. В Японии, имеющей протяжённую сеть высокоскоростных линий, объединяющих всю территорию страны, рабочая скорость движения на большинстве участков не превышает 210–240 км/ч (в тоннелях до 270 км/ч). В России создание высокоскоростного железнодорожного транспорта началось в кон. 1980-х гг. На первой скоростной линии между Москвой и Ленинградом (Санкт-Петербургом) в 1989 г. началась эксплуатация электропоезда ЭР-200, развивающего на отдельных участках скорость 200 км/ч. В кон. 90-х гг. разработан и построен скоростной электропоезд, рассчитанный на более высокие скорости для эксплуатации на том же направлении.
Высокоскоростной электропоезд
ВЫСОТОМÉР (альтиметр), прибор для определения высоты полёта летательного аппарата. Различают барометрические высотомеры и радиовысотомеры. Принцип действия барометрических высотомеров основан на однозначной зависимости атмосферного давления от высоты полёта летательного аппарата. Конструкция такого высотомера подобна конструкции барометра-анероида, но его отсчётная шкала проградуирована в метрах и километрах. По показаниям прибора определяют как абсолютную высоту (высоту относительно условного уровня, на котором атмосферное давление равно 760 мм рт. ст. – уровень Мирового океана), так и относительную (высоту относительно места вылета). Барометрические высотомеры применимы до высоты 30 км.
В радио высотомерах высота полёта измеряется при помощи радиоволн. В полёте радиовысотомер посылает радиоволны перпендикулярно земной поверхности и измеряет время между моментами излучения радиоволн и их приёма после отражения от земли (воды). Зная время и скорость распространения радиоволн (~ 300 000 км/с), легко определить расстояние, пройденное радиоволнами за это время, т. е. удвоенное расстояние от летательного аппарата до земной поверхности.
ВЫЧИСЛИ́ТЕЛЬНАЯ МАШИ́НА, устройство или комплекс устройств для механизации и автоматизации процессов вычислений и обработки информации. Первые устройства механизированного счёта состояли из зубчатых колёс, реек, рычагов и т. п. деталей, отсюда их название – вычислительные машины. Кним относятся арифмометр В. Шиккарда (1623 г., Германия), счётная машина Б. Паскаля (1641 г., Франция), арифмометры К. Томаса (1820 г., Франция) и В. Т. Однера (1890 г., Россия). На смену механическим арифмометрам пришли электромеханические счётные машины: табулятор Г. Галлерита (1887 г., США), цифровые вычислители Ц-З К. Цузе (1941 г., Германия), МАРК-I и МАРК-II Г. Айкена (1944—47 гг., США) и др. В 1946 г. в США создана первая электронная вычислительная машина (ЭВМ) – ЭНИАК; первая отечественная ЭВМ – МЭСМ построена в 1950 г. под руководством академика С. А. Лебедева. Термин «вычислительная машина» применительно к ЭВМ сохранился лишь в силу исторической преемственности; по существу ЭВМ – это комплекс (система) сложнейших электронных устройств, обеспечивающих переработку, хранение, передачу и отображение информации, представленной в цифровой, буквенной, изобразительной или речевой форме либо в виде непрерывно изменяющихся физических величин. Иногда термин «вычислительная машина» применяют также к устройствам оптической обработки информации – оптическим процессорам, называя их по аналогии с ЭВМ оптическими вычислительными машинами.
ВЫЧИСЛИ́ТЕЛЬНАЯ ТÉХНИКА, 1) совокупность технических и математических средств, методов и приёмов, используемых для механизации и автоматизации процессов вычислений и обработки информации. Основу технических средств современной вычислительной техники составляют электронные вычислительные машины (ЭВМ, компьютеры), устройства ввода, вывода, представления и передачи данных (сканеры, принтеры, модемы, мониторы, плоттеры, клавиатуры, накопители на магнитных лентах и дисках и т. д.), ноутбуки, микрокалькуляторы, электронные записные книжки и пр. К математическим средствам относятся разнообразные программы (в т. ч. операционные системы, программы технического обслуживания ЭВМ), языки программирования, инструкции, протоколы и т. д.
Первые примитивные устройства (абак, китайские счёты и т. п.) для механизации вычислений площадей земельных участков, торговых расчётов и пр. появились за сотни лет до н. э. Вычислительные устройства, такие, как, напр., шкала Непера, логарифмическая линейка, арифмометр В. Шиккарда, счётная машина Б. Паскаля, были известны уже в 17 в. На смену им в 18–19 вв. пришли планиметры Дж. Германа и Дж. Амслера, арифмометр В. Т. Однера и др. В 1833 г. английский учёный Ч. Беббидж разработал проект «аналитической машины» – гигантского арифмометра с программным управлением, арифметическим и запоминающим устройствами; однако осуществить свой проект ему не удалось гл. обр. из-за недостаточной технической базы. Развитие вычислительной техники в кон. 19 – нач. 20 в. связано в основном с созданием аналоговых вычислительных машин (АВМ). Лишь в 1944 г. в США была построена первая цифровая вычислительная машина (ЦВМ) с программным управлением МАРК-I на электромагнитных реле.
Счётная машина Б. Паскаля
Решающим событием в развитии вычислительной техники стало создание в 1946 г. в США электронной вычислительной машины (ЭВМ) – ЭНИАК. Первая отечественная ЭВМ – МЭСМ была построена в 1950 г. под руководством академика С. А. Лебедева, а спустя три года появилась БЭСМ – предшественница серии отечественных цифровых ЭВМ: «Минск», «Урал», «Днепр», «Мир», «Раздан» и др. С развитием вакуумной, а затем полупроводниковой электроники и микроэлектроники изменялась элементная база ЭВМ и других технических средств вычислительной техники, разрабатывались новые логические схемы устройств. Одновременно создавались новые, всё более сложные программы, совершенствовались языки программирования и методы управления вычислительным процессом. За каких-то 40 лет существования производительность электронных вычислительных машин возросла с нескольких тысяч до десятков миллиардов операций за 1 секунду.
Ноутбук
Новый, поистине революционный этап в развитии вычислительной техники ознаменовался созданием в 1970-х гг. персональных компьютеров. С появлением персональных компьютеров, работающих в режиме дружественного диалога с пользователем, вычислительная техника стала доступна широкому кругу пользователей – от школьников до специалистов в области математики и программирования, от кассира в магазине до конструктора космических систем, от лаборанта до учёного-атомщика. К кон. 2000 г. вычислительная техника из инструмента для математических расчётов превратилась в универсальное средство обработки информации, располагающее совершенным программным обеспечением, способное решать самые сложные задачи практически во всех сферах человеческой деятельности – экономике, энергетике, промышленности, научных исследованиях и др.
2) Отрасль техники, занимающаяся разработкой, изготовлением и эксплуатацией вычислительных машин, устройств и приборов.