Вы здесь

Энциклопедия «Техника» (с иллюстрациями). Б (А. П. Горкин)

Б

БÁГГИ, облегчённый спортивный автомобиль для автокросса. История багги начинается в 1950-х гг., когда появились необычные автомобили, быстро мчащиеся по песку и грязи и преодолевающие всевозможные препятствия. Без крыльев, без облицовки, иногда и без кузова, они выглядели некрасиво, но функционально. На автомобильных кладбищах можно было найти всё необходимое для их изготовления, что особенно привлекало молодёжь. Сначала это были автомобили, более предназначенные для туризма, чем для спорта. На них устанавливали фары, зеркала, стеклоочистители, бамперы и т. п. Но постепенно всё лишнее, мешавшее гонкам, снималось, и наконец багги приобрели современный вид. Вскоре стали проводиться и официальные соревнования на багги. Поскольку понятие «автокросс» включает различные соревнования по бездорожью, от любительских и клубных в заброшенном карьере до мастер-рейда Париж – Дакар, то и весь класс этих машин весьма разнообразен, начиная с прогулочных, одно – и двухместных гоночных до тяжёлых рейдеров. Также популярны и зрелищны гонки багги по своеобразному треку с грунтовой грязевой дорожкой. В конструкции багги сочетаются высокие технологии с простейшими решениями: сверхмощные компактные двигатели и простейшие втулки или тросы приводов, протянутые от педалей. Но простота – это залог надёжности, необходимой из-за огромных нагрузок. Ездить на багги дешевле, чем, напр., участвовать в кольцевых гонках или ралли. Здесь открывается почти бескрайняя перспектива для любителей технического творчества, да и выбор трасс для тренировок и соревнований не проблема – годится любой карьер.

Багги


БÁЗА ДÁННЫХ, упорядоченная совокупность данных, организованных по определённым правилам и предназначенных для хранения (обычно во внешней памяти ЭВМ) и постоянного многократного использования. Для создания и ведения базы данных (обновления, обеспечения доступа к ним по запросам и выдачи их пользователю) используется набор языковых и программных средств, называемых системой управления базы данных (СУБД). Аналогами компьютерных баз данных являются каталоги, телефонные книги, атласы и другие виды справочных изданий. База данных является основной составной частью банка данных. Кроме баз данных, банк данных содержит также программные, языковые и другие средства вычислительной техники, предназначенные для централизованного накопления данных и их использования с помощью компьютера.


БАЙДÁРКА, предназначенная для спорта или туризма одно-, двух – или четырёхместная лёгкая лодка с вырезами в палубе для гребцов с двухлопастными вёслами. Спортивные байдарки имеют цельный каркас и деревянную или пластмассовую обшивку, туристические – разборный каркас (деревянный, металлический или пластмассовый) и эластичную обшивку из водонепроницаемого материала. См. Гребные суда.


БАЙТ, основная единица количества информации, воспринимаемая и обрабатываемая в компьютере. Она соответствует восьми разрядам двоичного кода: 1 байт = 8 бит. Один байт – это количество информации в сообщении об одном из 256 (т. е. 2 в 8-й степени) возможных равновероятных событий. Байт записывается в памяти компьютера, считывается и обрабатывается как единое целое. Используются и более крупные единицы: килобайт (Кбайт), мегабайт (Мбайт), гигабайт (Гбайт) и т. д. Приближённо 1 Кбайт = 1000 байт, 1 Мбайт = 1 000 000 байт, 1 Гбайт = = 1 000 000 000 байт. Каждый символ на клавиатуре компьютера (буква, цифра, знаки сложения, вычитания, умножения, деления, знаки препинания и др.) кодируется с помощью одного байта.


БÁКЕН, плавучий навигационный знак, устанавливаемый на якоре для определения фарватера или указания навигационной опасности на реках и каналах. Является основным плавучим знаком на малых реках. Бакен состоит из плотика с укреплённой на нём надстройкой треугольной, шаровой или цилиндрической формы. В верхней части надстройки имеется штырь для крепления сигнального фонаря. Плотик бакена и его надстройку изготавливают из дерева. Треугольная надстройка представляет собой трёхгранную пирамиду. Шаровая надстройка состоит из двух круглых дощатых щитов, прикреплённых крестообразно к вертикальному бруску. Надстройка бакена цилиндрической формы выполнена из двух круглых ободов, на которые набита дощатая обшивка. Для установки бакенов применяются якоря и якорные цепи или металлические тросы. Левая кромка судового хода при движении вниз по течению ограждается бакенами треугольного силуэта белого цвета. Сигнальный огонь бакенов левой кромки судового хода – белый постоянный или белый проблесковый. В качестве огней может применяться зелёный постоянный или зелёный проблесковый огонь. Правая кромка судового хода ограждается бакеном круглой или прямоугольной формы красного цвета. Сигнальный огонь бакенов круглой или прямоугольной формы – красный постоянный или красный проблесковый. При движении вниз эти знаки оставляют справа.


БАНК ДÁННЫХ, см. в ст. База данных.


БÁРДИН Иван Павлович (1883–1960), металлург, академик АН СССР. Руководил проектированием и строительством крупных металлургических предприятий (в т. ч. Кузнецкого металлургического комбината), созданием типовых металлургических агрегатов, разработкой и внедрением непрерывной разливки стали и кислородно-конвертерного процесса получения стали, освоением и комплексным использованием новых видов металлургического сырья.


БÁРЖА, плоскодонное, преимущественно несамоходное грузовое судно с упрощёнными обводами корпуса. Иногда баржами называют также тихоходные грузовые суда с упрощёнными обводами.

Баржа


Баржи подразделяются на две категории: сухогрузные и наливные. Сухогрузные баржи делят на трюмные, баржи-площадки и специализированные. У трюмных барж грузоподъёмностью от 400 т полностью открытые трюмы, двойные борта и двойное дно. Трюмные баржи меньшей грузоподъёмности обычно имеют одинарные борта и днище. Трюмные баржи, перевозящие грузы, боящиеся подмочки, сверху закрываются сдвижными люковыми крышками. Баржи-площадки предназначены для перевозки грузов на палубе. К специализированным баржам относятся баржи-гаражи для перевозки тракторов и автомобилей, зерновозы, саморазгружающиеся баржи для перевозки цемента и т. д. Наливные баржи перевозят жидкие продукты (гл. обр. нефтепродукты) непосредственно в трюмах или в специальных встроенных ёмкостях. При перевозке вязких продуктов они оборудуются системами подогрева. Сухогрузные баржи имеют грузоподъёмность от 100 до 4000 т, наливные – до 11 000 т. Баржи эксплуатируются в основном на внутренних водных путях (реки, озёра, водохранилища), реже – в морских условиях (внутренние или прибрежные моря, проливы). На внутренних водных путях из барж формируются буксируемые или толкаемые составы, включающие в себя от одной до нескольких десятков барж. Несамоходные морские баржи эксплуатируются в специально спроектированных составах из судна-толкача и одной баржи. Кормовая часть такой баржи имеет вырез для входа носовой части судна-толкача. Оба судна оборудуются гидравлическим сцепом. Баржа и буксир оборудуются также буксирным устройством для возможности вождения баржи на буксире.


БАРК, парусное морское грузовое судно дальнего плавания с 3–5 мачтами; все мачты, кроме кормовой, несут прямые паруса, кормовая – косые.

Барк «Крузенштерн»


БАРКЕНТИ́НА, парусное грузовое судно с 3–6 мачтами и косыми парусами на всех мачтах, кроме носовой, имеющей прямые паруса.


БАРÓГРАФ, прибор для автоматической непрерывной записи изменений атмосферного давления. Наиболее распространён анероидный барограф, состоящий из нескольких соединённых вместе гофрированных коробок (из которых выкачан воздух), деформирующихся под действием атмосферного давления, передаточного механизма, барабана с часовым механизмом и корпуса. Запись выполняется пером на диаграммной бумажной ленте, укреплённой на барабане. По времени полного оборота барабана барографы делятся на суточные и недельные.

Барограф:

1 – анероидные коробки; 2 – перо; 3 – барабан с бумажной лентой, приводимый в движение часовым механизмом


БАРÓМЕТР, прибор для измерения атмосферного давления. Наиболее распространены жидкостные (ртутные) барометры, деформационные барометры – анероиды и гипсотермометры. В ртутном барометре атмосферное давление измеряется по высоте столба ртути в запаянной сверху трубке, опущенной открытым концом в сосуд с ртутью. Изобрёл ртутный барометр в 1644 г. итальянский математик и физик Э. Торричелли, он же впервые с помощью своего барометра измерил атмосферное давление. Ртутные барометры – наиболее точные приборы, ими оборудованы метеорологические станции, и по ним проверяется работа других видов барометров – анероида и гипсотермометра.

Ртутные барометры:

а – чашечный; б – сифонный; в – сифонно-чашечный


В анероиде атмосферное давление измеряется по величине деформации упругой металлической коробки, из которой откачан воздух; при изменениях давления коробка сжимается или расширяется, а связанная с ней стрелка перемещается по шкале, указывая давление. Анероиды изготовляют разных типов, в т. ч. бытовые для наблюдения за изменением атмосферного давления при комнатной температуре. Гипсотермометр – прибор для определения атмосферного давления по температуре кипения воды, зависящей от давления (с понижением атмосферного давления температура кипения воды понижается). Гипсотермометр состоит из кипятильника и точного ртутного термометра.


БАТАРÉЯ СÓЛНЕЧНЫХ ЭЛЕМÉНТОВ, см. Солнечная батарея.


БАТИПЛÁН, подводный буксируемый аппарат с пилотом. Глубина хода меняется с помощью горизонтальных рулей. См. Подводный аппарат.


БАТИСКÁФ, самоходный глубоководный аппарат для океанографических исследований с экипажем. Состоит из корпуса-поплавка, заполненного более лёгким, чем вода, наполнителем (обычно бензином), и стального шара-гондолы, в котором размещается экипаж, аппаратура управления, измерительные и прочие приборы. Плавучесть батискафа регулируется сбрасыванием балласта и выпуском бензина. Движется батискаф с помощью гребных винтов с приводом от электродвигателя. Объём шара-гондолы 5–8 мі. Максимальная глубина погружения св. 10 км. Первый батискаф был построен и испытан швейцарским учёным О. Пиккаром в 1948 г. В январе 1960 г. Ж. Пиккар (сын О. Пиккара) и Д. Уолш на батискафе «Триест» достигли дна Марианского жёлоба в Тихом океане (ок. 11 000 м). См. Подводный аппарат.


БАТИСФÉРА, несамоходный глубоководный аппарат для океанографических исследований с экипажем, опускаемый на тросе. См. Подводный аппарат.


БÁШНЯ, свободно стоящая высотная конструкция. Форма башни может быть призматической, цилиндрической, пирамидальной, конической и т. д. Первоначально башни строились для оборонных целей (сторожевые и крепостные башни) и для сигнализации (маяки). Из семи чудес света, названных древнегреческим историком Геродотом, два – это башни: Александрийский маяк и маяк на острове Родос, выполненный в виде статуи бога солнца Гелиоса. Большую роль в защите от нападений кочевников и пиратов играли сторожевые башни. Так, в средневековой Испании вдоль всего побережья, от Кадиса на Атлантике до Барселоны на Средиземноморье, были построены башни. В случае нападения сигнал об опасности с помощью факела и зеркал передавался от башни к башне, и о приближении врагов быстро становилось известно в каждом прибрежном селении. Строились башни, выполнявшие культовые (колокольни, минареты), гражданские (городские ратуши) и инженерные (водонапорные) функции. Благодаря выразительности и динамизму возвышающиеся над окружающим ландшафтом башни нередко становились опознавательным символом местности и даже своеобразной визитной карточкой городов. Таковы, напр., «падающая башня» в Пизе или Эйфелева башня в Париже. Самыми высокими башнями в мире являются телебашни в Торонто (550 м) и в Москве (540 м). Отличительной особенностью башни как высотного сооружения является преобладающее влияние на неё метеорологических факторов: ветровой нагрузки, температуры, обледенения. Устойчивость башни обеспечивается её собственной конструкцией, в отличие от мачты, удерживаемой в вертикальном положении специальными оттяжками.

1)

2)

3)

4)

5)

Наиболее известные башни теле– и радиоцентров крупных городов мира:

1 – Москва (башня Шухова), 148 м; 2 – Париж (Эйфелева башня), 312 м; 3 – Токио, 333 м; 4 – Москва (Останкино), 540 м; 5 – Торонто, 550 м


БЕЗОТКÁЗНОСТЬ, см. в ст. Надёжность.


БЕЛЛ (bell) Александер Грейам (1847–1922), изобретатель телефона. Шотландец по происхождению. Жил и работал в США. Изучая акустику и физику речи, создал несколько приборов для демонстрации глухим артикуляции речи. В 1876 г. получил патент на телефон.

В последующие годы совместно с другими исследователями опубликовал ряд приоритетных работ в области записи и воспроизведения звука.

А.Белл


БЕНАРДÓС Николай Николаевич (1842–1905), российский изобретатель электрической дуговой сварки. Предложил (1882) способ соединения и разъединения металлов непосредственным действием электрического тока, названный им электрогефестом, который сразу же нашёл применение как в России, так и за рубежом. Бенардосу также принадлежит приоритет в разработке ряда способов сварки косвенно действующей дугой, сварки в струе газа, дуговой резки как в обычных условиях, так и под водой, электрического способа покрытия больших металлических поверхностей слоем меди и др.

Н.Н. Бенардос


БЕНТОНИ́ТОВЫЙ РАСТВÓР, специальный глинистый раствор (суспензия), который широко используется в тоннельном строительстве для крепления стен выработок. Представляет собой коллоидный раствор с удельным весом 10.5—12 кН/мі. Бентонитовый раствор обладает интересными свойствами. Находясь в жидком состоянии (золь), он с течением времени загустевает (переходит в гель), а при механическом воздействии вновь переходит в золь. Обладая низкой вязкостью и высокой глинизирующей способностью, бентонитовая суспензия проникает в грунт, образуя на поверхности стен тонкую (0.5—30 мм), но достаточно плотную и прочную плёнку, удерживающую от обрушения вертикальные откосы траншей с нагрузкой на поверхности. Свойства глинистого раствора не изменяются на всех стадиях строительных работ; он не ухудшает сцепления арматуры с бетоном, не смешивается с бетонной смесью, что позволяет вести бетонирование подводным способом. В закреплённые глинистым раствором траншеи опускают арматурные каркасы и бетонируют конструкции стен непосредственно в грунтовой опалубке, вытесняя бентонитовый раствор бетонной смесью (технология «стена в грунте»). Используется также при щитовой проходке для крепления выработки в головной части щита.


БЕРЕГОУКРЕПИ́ТЕЛЬНЫЕ СООРУЖÉНИЯ, сооружения, служащие для защиты берегов водоёмов (рек, морей, водохранилищ, каналов и др.) от разрушающего воздействия волн, течений, напора воды, льда и других природных факторов. Берегоукрепительные сооружения строятся для предупреждения разрушений (размывов) берегов и затоплений населённых пунктов, промышленных объектов, дорог, мостов, линий связи, ценных лесных и сельскохозяйственных угодий, культурных и исторических памятников и т. п., а в курортных зонах используются для сохранения, создания и расширения пляжей. Основное требование к возводимым берегоукрепительным сооружениям – эффективность работы, надёжность и долговечность. При их создании желательно максимально использовать местные строительные материалы. По характеру взаимодействия с водным потоком берегоукрепительные сооружения делятся на активные и пассивные. Активные сооружения используют энергию потока на работу по намыву и сохранению береговых наносов. К таким сооружениям на морях относятся наносозадерживающие буны и волноломы, на реках – поперечные полузапруды, регулирующие дамбы, струенаправляющие щиты. Пассивные берегоукрепительные сооружения противостоят водному потоку (на морях – волноотбойные стены, наброска из крупных блоков и фигурных массивов; на реках – каменная наброска, тюфяки, габионы, бетонные и железобетонные плиты). Выбор вариантов комплекса берегоукрепительных сооружений и их типов зависит от рельефа берега, его гидрогеологического режима и геологического строения.


БÉССЕМЕР (bessemer) Генри (1813–1898), английский изобретатель. Имел св. 100 патентов на изобретения в различных областях техники. Занимаясь в 1854 г. проблемой улучшения тяжёлого артиллерийского снаряда, пришёл к выводу о необходимости более совершенного способа получения литой стали для орудийных стволов. В 1856 г. Бессемер запатентовал конвертер для передела жидкого чугуна в сталь без подвода теплоты – продувкой воздухом. Такая технология получила название бессемеровского процесса. В 1860 г. изобрёл вращающийся конвертер с подачей воздуха через днище и цапфы. Выдвинул идею бесслитковой прокатки стали.


БЕССТЫКОВÓЙ ПУТЬ, железнодорожный путь, содержащий вместо коротких стандартных рельсов длиной 12.5 м сваренные рельсовые плети длиной 150–950 м. Плети чередуются с т. н. уравнительными пролётами длиной по 50–70 м (2–4 пары стандартных рельсов). Длину плети выбирают такой, чтобы силы, возникающие в ней при максимальных колебаниях температуры, были не в состоянии преодолеть силы сопротивления продольному сдвигу по всей длине плети. Бесстыковой путь обладает рядом преимуществ перед обычным звеньевым: увеличивается надёжность работы пути и рельсовых цепей автоблокировки, а следовательно, повышается безопасность движения поездов, снижается уровень шума от стука колёс на стыках и уменьшается амплитуда колебаний вагонов; увеличиваются сроки службы элементов пути. Начиная с 1960-х гг. бесстыковой путь широко применяется на железных дорогах большинства стран. В России бесстыковой путь был предложен в 1930 г. инженерами М. С. Боченковым и К. Н. Мищенко.


БЕТÓН, искусственный камень, получаемый в результате твердения рационально подобранной смеси вяжущего вещества, воды и заполнителей (песка и щебня или гравия). При правильном соотношении составляющих вяжущее вещество заполняет все промежутки между отдельными песчинками, а цементно-песчаный раствор – между зёрнами щебня или гравия. Тогда бетон получается достаточно крепким, а сооружение – прочным. В качестве вяжущего материала применяются цемент, известковые вяжущие в сочетании с силикатными компонентами (силикатный бетон), гипс (гипсобетон), органические материалы (асфальтобетон, полимербетон). В зависимости от наибольшей крупности применяемых заполнителей бетоны подразделяются на мелкозернистые (размер щебня или гравия до 10 мм) и крупнозернистые (до 150 мм). Для достижения высокой прочности бетона необходимо такое уплотнение укладываемой массы, чтобы внутри не было воздушных пузырьков и пустот. Раньше уложенный на стройке бетон колотили вручную трамбовками, топтали ногами, «штыковали» тонкими железными прутьями. Ныне бетон уплотняют вибраторами. Забота о бетоне также предполагает обеспечение оптимальных условий для твердения цемента: влажной среды и положительной температуры. Поэтому летом бетон закрывают от лучей яркого солнца и время от времени поливают водой, а зимой пропускают через него электрический ток или обогревают горячим паром, чтобы не замёрз.


БИМЕТÁЛЛ, материал, состоящий из двух прочно соединённых разнородных по своим свойствам металлов или сплавов (напр., сталь и алюминий, титан и молибден). Биметалл применяют для экономии дефицитных и дорогостоящих материалов или для получения материалов с новым набором свойств, исходя из характеристик компонентов. Биметалл получают одновременной горячей прокаткой или прессованием двух металлов или сплавов, заливкой легкоплавкого металла на тугоплавкий или погружением последнего в расплав легкоплавкого металла, гальваническим способом или наплавкой легкоплавкого компонента при использовании электрического или плазменного нагрева. Биметаллические пластинки широко применяют в электротехнической промышленности, когда при пропускании через них электрического тока пластинки заметно нагреваются и из-за разности коэффициентов термического расширения двух металлов изгибаются, что приводит к замыканию или размыканию электрических контактов.


БИНÓКЛЬ, оптический прибор для наблюдения удалённых предметов двумя глазами (произошло от латинского bini – пара и oculus – глаз). По существу состоит из двух параллельных зрительных труб, соединённых вместе. Различают два типа биноклей. Небольшие бинокли, с 2.5—4-кратным увеличением, изготовляются на основе зрительных труб Галилея; дают прямое изображение рассматриваемых предметов, хорошо передают освещённость наблюдаемого изображения. Наиболее распространены т. н. призменные бинокли, у которых между объективом и окуляром помещают оборачивающую систему призм. Это позволило уменьшить общую длину прибора по сравнению с длиной зрительных труб, обладающих таким же увеличением. По увеличению (кратности) различают бинокли малого увеличения (2—4-кратные, напр. театральные), среднего (5—8-кратные, т. н. полевые) и большого (10—22-кратные, морские). Существуют также бинокли с переменной кратностью увеличения (7—12). Получение резкого изображения (фокусировка) в биноклях обеспечивается за счёт перемещения окуляров относительно объективов зрительных труб. Фокусировка окуляров может быть раздельной для получения оптимальной резкости изображения для каждого глаза либо совмещённой, когда оба окуляра перемещаются синхронно на одинаковое расстояние. Все современные бинокли имеют просветлённые объективы с высоким коэффициентом пропускания света (до 0.9), что позволяет вести наблюдения даже в сумерках.

Театральный бинокль

Бинокль ночного видения


БИОЛОГИ́ЧЕСКАЯ ЗАЩИ́ТА от ионизирующих излучений, возникающих в ядерном реакторе, изолирует его и предотвращает (или снижает) проникновение излучений наружу за пределы защитной оболочки. При этом защита от заряженных частиц не представляет затруднений, т. к. их пробег во всех материалах весьма мал; проблема связана с предотвращением воздействия нейтронного и гамма-излучений. Для защиты от них применяют конструкции из поглощающих материалов, выполненные в виде экранов, стенок и герметичных куполов, воздвигаемых над реактором или вокруг иного источника радиоактивного излучения. В качестве защитных материалов для ослабления нейтронного излучения используют воду, бетон; для защиты от гамма-излучений – сталь, свинец, бор, кадмий. Для защиты обслуживающего персонала ядерных объектов применяют также индивидуальные средства: защитные комбинезоны, пневмокостюмы, респираторы, специальные ботинки, перчатки и т. п. Все виды защиты призваны снижать интенсивность проникающего излучения до уровня, безопасного для человека, животных и окружающей среды. Помимо технических средств, для биологической защиты организма от действия ионизирующих излучений применяют химические средства, которые вводят в организм до или во время действия излучения. С их помощью повышается сопротивляемость организма к действию радиации.


БИОМЕТАЛЛУРГИ́Я, область металлургии, в которой для извлечения металлов из руд, концентратов, горных пород и растворов используют микроорганизмы или их метаболиты (продукты обмена в живых клетках). Биометаллургия используется на практике для выщелачивания меди, урана и других металлов из «бедных» руд, переработка которых традиционными методами крайне нерентабельна – себестоимость меди, получаемой с помощью микроорганизмов, в 1.5–2 раза ниже, чем при использовании традиционных технологий. Эффективно применение биометаллургии для выщелачивания металлов при переработке мышьяковистых медно-цинковых концентратов, которые практически невозможно переработать по стандартной технологии. В основном это достигается окислением микроорганизмами необходимых металлов для перевода их в растворимые соединения. Биометаллургические процессы используются и при обогащении, в т. ч. и подземном, горных пород, сульфидизации окисленных руд, биосорбции металлов из растворов, в т. ч. из морских вод. Применение биометаллургии позволяет существенно снизить сырьевые ресурсы за счёт использования «бедных» руд, обеспечить более полное извлечение всех ценных компонентов из сырья без создания сложных горно-добывающих комплексов. Биометаллургические процессы легко автоматизируются, обеспечивают высокую производительность труда и решают важные проблемы охраны окружающей среды. Биометаллургические технологии не имеют вредных выбросов, что резко снижает или исключает возможность загрязнения окружающей среды.


БИОУПРАВЛÉНИЕ, система управления приборами, механизмами и устройствами, в которой в качестве управляющих сигналов используются различные проявления жизнедеятельности организма. Для биоуправления могут служить биоэлектрические потенциалы, генерируемые различными тканями организма человека, механические и акустические явления, сопровождающие работу сердечно-сосудистой системы и дыхания, колебания температуры тела и др. Наиболее распространены системы биоэлектрического управления. В этих системах биопотенциалы, генерируемые скелетными мышцами, сердцем, головным мозгом, нервами после усиления и соответствующей обработки выполняют роль командных, управляющих сигналов. На этом принципе основана, напр., работа активных протезов. Для управления ими используются биопотенциалы частично ампутированных, парализованных или полностью сохранённых мышц. Электронные стимуляторы, в отличие от биоуправления, вырабатывают электрические или акустические сигналы. Они применяются для дозированного воздействия электрическим током или звуковыми колебаниями на биологически возбудимые органы и ткани. Наиболее широко распространены портативные электронные кардиостимуляторы, используемые при нарушениях ритма сокращений сердечной мышцы. Они вживляются под кожу в грудную клетку, имеют батарейное питание и способны работать годами. Существуют и виброакустические стимуляторы, которые, влияя на биологически активные точки организма, оказывают на него лечебное воздействие. Они представляют собой генераторы электрических колебаний, звуковой частоты, которые преобразуются виброфонами в звуковые колебания, подводимые к определённым точкам тела для возбуждения противодействия болезни.


БИПЛÁН, самолёт с двумя крыльями, расположенными один над другим. Бипланы были, по существу, единственным типом самолёта до нач. 1930-х гг. Это первый самолёт братьев Райт (США, 1903 г.), «Илья Муромец», построенный под руководством И. И. Сикорского (Россия, 1913 г.), По-2 (У-2) авиаконструктора Н. Н. Поликарпова (Россия, 1928 г.) и многие другие. Большинство бипланов имели ферменную конструкцию фюзеляжа и крыльев и обшивку из ткани или фанеры. По сравнению с монопланами они были более маневренны (особенно на виражах), имели меньшие взлётные и посадочные скорости, что позволяло им свободно взлетать и садиться практически с любых аэродромов. В 1920—30-х гг. на бипланах было установлено несколько рекордов высоты, в т. ч. российским лётчиком В. К. Коккинаки в 1935 г. на истребителе И-15 – 14 575 м. С нач. 1940-х гг. бипланы почти повсеместно вытеснены монопланами. Одна из последних и наиболее удачных конструкций биплана – цельнометаллический многоцелевой самолёт Ан-2, созданный в 1947 г. в конструкторском бюро О. К. Антонова, выпускавшийся более 40 лет.

Биплан У-2


БИТ, единица количества информации, которая содержится в сообщении типа «да» – «нет». Бит в вычислительной технике – двоичная цифра, двоичный разряд, принимающий только два значения – 0 или 1. Одним битом можно выразить только два числа – 0 и 1. Двухбитовых комбинаций может быть четыре (2 во 2-й степени) – «00» – 0, «01» – 1, «10» – 2 и «11» – 3, трёхбитовых – восемь и т. д. В восьми битах «умещается» 256 (2 в 8-й степени) целых чисел. Восьмибитовое число – байт служит единицей измерения компьютерной информации.


БИ́ТУМНЫЕ МАТЕРИÁЛЫ, материалы, изготовленные на основе битумов (преимущественно нефтяных) с минеральными добавками. Использование битума в качестве вяжущего придаёт этой группе материалов свойства водонепроницаемости, стойкости против воздействия кислот, щелочей, агрессивных жидкостей и газов, способность быстро приобретать пластичность при нагревании и увеличивать вязкость при остывании. К битумным материалам относятся кровельные и гидроизоляционные материалы, битумные мастики и эмульсии, асфальтобетоны и литой асфальт. Кровельные и гидроизоляционные битумные материалы бывают двух видов. Первые приготовляются пропиткой специального картона нефтяными битумами с последующим покрытием более тугоплавким составом. К ним относятся толь, рубероид, пергамин, гидроизол (на основе асбестового картона), кровельные рулонные стеклоткань и стекловойлок (на стеклооснове), ондулин. Материалы второго типа называются безосновными: они получаются путём прокатки термомеханически обработанных смесей битума с наполнителями и добавками в полотнища заданной толщины. К ним относятся изол (резинобитумный материал, изготавливается из материалов, содержащих каучук; благодаря эластичности широко применяется для оклеечной гидроизоляции), бризол (получается смешением битума с дроблёной резиной и асбестовым волокном; применяется для антикоррозийной защиты), пароизол (герметизирующий материал) и др. Битумные мастики и эмульсии применяются в обмазочной гидроизоляции, для приклейки штучных и рулонных кровельных и гидроизоляционных материалов, для заполнения деформационных швов и т. д. См. Асфальтобетон.


БЛÓКИНГ-ГЕНЕРÁТОР, однотранзисторный (или одноламповый) генератор электрических импульсов малой длительности (порядка 1 мкс), периодически повторяющихся через сравнительно большие промежутки времени. Малая длительность импульса достигается за счёт сильной трансформаторной обратной связи, вызывающей лавинное нарастание и такое же лавинное уменьшение силы тока через транзистор (лампу). Блокинг-генератор отличает лёгкая синхронизация и стабилизация колебаний; возможность получения большой мощности в импульсе при малой средней мощности. Блокинг-генераторы применяют в импульсной технике для получения мощных импульсов малой длительности, в радиолокационных развёртывающих устройствах, в системах кадровой и строчной развёртки в телевизорах, в делителях частоты и др.

а)

б)

Типовая схема блокинг-генератора:

а – с электронной лампой Л; б – с транзистором Т; RН – сопротивление нагрузки; ТР – трансформатор в цепи обратной связи;

D – полупроводниковый диод, ограничивающий силу тока в цепи базы транзистора; Еа и ЕК – напряжения источников анодного и коллекторного токов; R – резистор; С – конденсатор


БЛОКИРÓВКА, изменение режима работы (вплоть до остановки) машины, прибора или устройства, вызванное внезапным нарушением нормальных условий их эксплуатации; предотвращает ошибочные действия при управлении работой технического объекта. Осуществляется автоматически или вручную. Блокировка повышает безопасность обслуживания и надёжность работы оборудования в самых различных областях промышленности, транспорта и бытового назначения. Блокировка осуществляется механическими, оптическими, магнитными или электрическими связями. Прекращается блокировка подачей воздействия, возвращающего части аппарата или машины в исходное (до блокировки) состояние или допускающего переход в новое рабочее состояние. Примером блокировки может служить система двуручного управления особо опасными машинами (прессами, одноножевыми бумагорезальными машинами). Такая система заставляет рабочего нажимать обе кнопки управления в течение всего рабочего цикла. При отпускании одной из кнопок во время рабочего цикла работа машины прекращается, и тем самым блокировка защищает обе руки рабочего от травм.


БЛЮ́МИНГ, высокопроизводительный прокатный стан для обжатия стального слитка в блюм, сляб или заготовку для сортопрокатных станов. На металлургических предприятиях блюминг – промежуточное звено между сталеплавильными и прокатными цехами, выпускающими готовую продукцию. Применение технологии непрерывной разливки исключает блюминг из структуры предприятия чёрной металлургии.


БОЕВÁЯ МАШИ́НА ДЕСÁНТА (БМД), гусеничная машина-амфибия, предназначенная для повышения мобильности, вооружённости и защищённости воздушно-десантных войск. По сравнению с боевой машиной пехоты обладает меньшими габаритами и массой, позволяющими десантировать её на парашюте вместе с боевым расчётом. Впервые появилась в СССР в 1930-х гг. Современная отечественная БМД-3 (1990) имеет массу 12.5 т, скорость по шоссе (на плаву) 70 (10) км/ч, запас хода 500 км, боевой расчёт (экипаж + десант) 7 (2 + 5) человек. Вооружение: размещённые в одном блоке башни 30-мм автоматическая пушка и 7.62-мм пулемёт, 30-мм автоматический гранатомёт, противотанковые управляемые ракеты.

Боевая машина десанта (БМД-3)


БОЕВÁЯ МАШИ́НА ПЕХÓТЫ (БМП), гусеничная машина-амфибия, предназначенная для повышения мобильности, вооружённости и защищённости пехоты. Оснащённые этими машинами подразделения могут действовать на поле боя совместно с танками в одной боевой линии. Впервые БМП появились в СССР в 1960-х гг. Современная отечественная БМП-3 (1987) имеет массу 18.7 т, скорость по шоссе (на плаву) 70 (10) км/ч, запас хода 600 км, боевой расчёт (экипаж + стрелки) 10 (3 + 7) человек. Вооружение: размещённые в одном блоке башни 100-мм пушка, используемая для стрельбы как обычными снарядами, так и противотанковыми управляемыми ракетами, 30-мм автоматическая пушка и 7.62-мм пулемёт, а также два 7.62-мм пулемёта, установленных в передней части корпуса.

Боевая машина пехоты (БМП-3)


БОЕВÁЯ РАЗВÉДЫВАТЕЛЬНАЯ МАШИ́НА (БРМ), гусеничная или колёсная машина-амфибия для войсковой разведки в зоне расположения противника на глубине до 100 км. Может также использоваться для боевого и сторожевого охранения, борьбы с разведывательно-диверсионными группами противника. Первая отечественная БРМ появилась в 1958 г. До неё разведывательные функции выполнялись бронеавтомобилями, бронетранспортёрами, лёгкими танками. Разведывательное оборудование современной российской гусеничной БРМ-3К (1993) составляют радиолокационные, лазерные, телевизионные и инфракрасные приборы. Вооружение: 30-мм автоматическая пушка и 7.62-мм пулемёт.

Боевая разведывательная машина


БОЕВÓЙ ВЕРТОЛЁТ, вертолёт военной авиации для поражения наземных и морских целей и вертолётов противника, сопровождения своих транспортно-десантных и многоцелевых вертолётов. Применяется с 1950-х гг. Необходимая живучесть боевых вертолётов обеспечивается за счёт бронирования, противопожарной защиты, дублирования источников электропитания, приводов и цепей управления и др. Вооружаются управляемыми и неуправляемыми ракетами, авиабомбами, пулемётами и малокалиберными пушками. Наиболее распространённые боевые вертолёты: огневой поддержки, противотанковые и противолодочные. Один из самых совершенных в мире вертолётов огневой поддержки российский Ка-50 («Чёрная акула», 1995 г.) имеет взлётную массу 9.8 т, массу боевой нагрузки 2.3 т, дальность полёта 520 км, скорость 300 км/ч, высоту полёта 5.5 км, экипаж 1 человек.

Боевой вертолёт Ка-50 («Чёрная акула»)


БОЕВЫ́Е КОРАБЛИ́, надводные и подводные суда, предназначенные для ведения военных действий, решения боевых задач; входят в состав военно-морского флота. Обладают повышенной по сравнению с гражданскими судами живучестью. Вооружение боевых кораблей – ракетное оружие (противокорабельное, противолодочное, зенитное и против наземных целей), артиллерийское (как правило, универсальное – против надводных и воздушных целей), торпедное, бомбомётное (для метания противолодочных глубинных бомб), минное и авиационное (корабельные самолёты и вертолёты). На одном корабле может быть несколько видов оружия, из которых один является главным, определяющим боевое назначение корабля.

Боевые суда известны с глубокой древности. Сначала они перемещались только с помощью вёсел (гребные военные суда), затем и парусов (переход к чисто парусным кораблям закончился в 18 в.). Паровые корабли появились в 1-й пол. 19 в., а с двигателями внутреннего сгорания (дизелями) – в нач. 20 в. С этого времени начинается оснащение военно-морских флотов подводными лодками. В нач. 2-й пол. 20 в. вступили в строй атомные подводные лодки, а затем и атомные надводные корабли (корабли с ядерными энергетическими установками, обеспечивающими практически неограниченную дальность плавания). Развивалось и корабельное вооружение. На первых военных судах использовали метательное оружие (лук, праща, баллиста, катапульта); с появлением артиллерии основным вооружением становятся артиллерийские орудия, а во 2-й пол. 20 в. ещё и ракетное оружие, в т. ч. и ракетно-ядерное.

Современные боевые корабли Российской Федерации подразделяются на следующие классы: подводные лодки (атомные подводные лодки, дизель-электрические подводные лодки); надводные корабли – авианесущие (тяжёлые авианесущие крейсеры), ракетно-артиллерийские (тяжёлые ракетные крейсеры, ракетные и артиллерийские корабли, эскадренные миноносцы, артиллерийские, патрульные, сторожевые и ракетные катера), противолодочные (малые и большие противолодочные корабли, сторожевые корабли), минно-тральные (заградители, морские, базовые и рейдовые тральщики) и десантные (малые, средние и большие десантные корабли, десантные и штурмовые десантные катера на воздушной подушке).


БОЛЬШÁЯ ИНТЕГРÁЛЬНАЯ СХÉМА (БИС), сложная интегральная схема с большой степенью интеграции. БИС создают методами планарной технологии (от английского planar – плоский, ровный) путём формирования их элементов с одной (рабочей) стороны полупроводниковой пластины (подложки). Планарная технология основана на создании в приповерхностном слое полупроводника монокристаллической пластины областей с различным типом проводимости, в совокупности образующих структуру интегральной схемы. Такие области создаются местным введением в подложку специальных примесей. Все эти области имеют выход на одну сторону подложки, что позволяет осуществить их коммутацию в соответствии с заданной схемой при помощи плёночных металлических проводников. Наибольшее число БИС создаётся на основе МДП-структуры (металл – диэлектрик – полупроводник-структура), представляющей собой упорядоченную совокупность тонких (менее 1 мкм) слоёв металла и диэлектрика, нанесённых на полупроводниковую пластину. Применяется для создания на её основе транзисторов, конденсаторов, приборов с зарядовой связью, фотоэлектронных умножителей и др. Цифровые БИС на основе МДП-структур содержат от 1000 до 10 000 элементов.


БОЛЬШÓЙ ПРОТИВОЛÓДОЧНЫЙ КОРÁБЛЬ (зарубежный аналог – фрегат), боевой корабль, предназначенный гл. обр. для поиска и уничтожения подводных лодок противника и обеспечения противолодочной защиты соединений своих кораблей в морских походах. Боевые корабли, оснащённые простейшими гидроакустическими средствами (т. н. «охотники» за подводными лодками), появились во время 1-й мировой войны. Противолодочные корабли специальной постройки с мощными гидроакустическими комплексами, позволяющими с большой точностью и на больших расстояниях определять местонахождение подводных лодок, стали поступать на вооружение флотов с 1960-х гг. Отечественный большой противолодочный корабль типа «Удалой» (введён в строй в 1980 г.) имеет водоизмещение 7500 т, скорость хода до 30 узлов (55.6 км/ч), дальность плавания 5700 миль (10 560 км), экипаж 220 человек, автономность 30 суток. Вооружение: 8 противолодочных ракет, 8 торпед, 64 зенитные ракеты, артиллерийские и бомбомётные установки, 2 вертолёта.

Большой противолодочный корабль «Зоркий»


БÓМБА, 1) бомба авиационная (авиабомба) – вид боеприпасов, сбрасываемых с боевых самолётов и вертолётов для поражения наземных и морских целей противника. Относится к бомбардировочному вооружению, появившемуся вместе с первыми авиационными воинскими формированиями. Наиболее распространённые типы авиабомб: осколочные, фугасные, объёмно-детонирующие, или «вакуумные» (образуют в окружающей среде перед взрывом облако горюче-воздушной смеси), бетонобойные, зажигательные, светящие, дымовые и др. Некоторые армии имеют химические и ядерные бомбы. Конструкция большинства авиабомб представляет собой корпус капле – или сигарообразной формы с аэродинамическим оперением (стабилизатором), снаряжённый взрывчатым веществом или другим наполнителем и взрывателем. Масса (калибр) авиабомб колеблется от 0.5—10 кг (противотанковая) до 10 т и более (фугасная). Появившиеся в сер. 20 в. управляемые (корректируемые) авиабомбы сочетают сравнительную дешевизну и мощность обычной бомбы с точностью управляемой ракеты (отклонение от центра наводки всего 5—10 м). Так называемые планирующие крылатые авиабомбы могут сбрасываться вне зоны действия зенитных средств противника. Российские корректируемые авиабомбы КАБ-1500Л (фугасная, масса 1500 кг, дальность сброса 20 км) и КАБ-500 ОД (объёмно-детонирующая, масса 500 кг) имеют соответственно лазерную и телевизионную головки самонаведения.

Авиационная бомба


2) Бомба глубинная – вид боеприпасов для поражения подводных лодок противника. Может выстреливаться из корабельного бомбомёта или сбрасываться с противолодочных самолётов и вертолётов. У наиболее распространённых глубинных бомб масса 120–250 кг, скорость погружения в воду до 13 м/с.

3) Устаревшее название артиллерийского разрывного снаряда массой более пуда, 16.38 кг (снаряд меньшей массы назывался гранатой).


БОМБАРДИРÓВЩИК, самолёт военной авиации для поражения наземных и морских целей противника. Основное вооружение – бомбы и ракеты. Может иметь также 1–2 пушки и несколько пулемётов. Бомбардировщики подразделяются на фронтовые (тактические) и стратегические (дальние и межконтинентальные). К последним относится один из самых больших в мире отечественный сверхзвуковой ракетоносец-бомбардировщик Ту-160 (1987), имеющий взлётную массу 275 т, боевую нагрузку 40 т, дальность полёта 10 500 км, скорость до 2000 км/ч, высоту полёта до 16 км, экипаж 4 человека. Вооружение: стратегические крылатые ракеты с дальностью стрельбы 2500 км и ядерной боевой частью или различные бомбы, в т. ч. и ядерные, общей массой до 40 т.

Стратегический бомбардировщик Ту-95В


БРÁЙЛЯ ШРИФТ, рельефно-точечный шрифт, разработанный для письма и чтения слепых; создан французским тифлопедагогом Луи Брайлем, ослепшим в трёхлетнем возрасте. В основе шрифта – комбинации из шести точек, соответствующие буквам латинского и русского алфавита, а также знакам препинания, математическим, химическим и нотным знакам. Первой книгой, напечатанной по системе Брайля, была «История Франции» (1837). В России книгопечатание шрифтом Брайля началось в 1885 г.


БРАНДСПÓЙТ, металлический наконечник гибкого шланга; устаревшее название ствола в пожарной технике.


БРИКЕТИ́РОВАНИЕ, процесс переработки различных материалов, отходов производства путём прессования их в куски геометрически правильной и однообразной формы (брикеты), практически одинаковой массы. При брикетировании появляется возможность использования материалов, применение которых малоэффективно или затруднительно, а также утилизируются отходы (пыль, шлаки, металлическая стружка и т. п.). Для упрочнения брикетов используют связующие добавки (пек, битум, жидкое стекло).


БРОНЕТÁНКОВАЯ ТÉХНИКА, гусеничные и колёсные военные машины различного назначения, имеющие броневую защиту, вооружение и способность передвигаться по различным дорогам и бездорожью. Первой такой машиной считается бронеавтомобиль, появившийся ещё в нач. 20 в. в Великобритании. Англичане первыми создали также танк (1916) и танкетку (1924), которая из-за слабого вооружения и бронирования значительного распространения не получила. Основу современной бронетанковой техники составляют: танки, боевые машины пехоты, боевые машины десанта, бронетранспортёры, боевые разведывательные машины. К бронетанковой технике относят также самоходные артиллерийские установки (орудия), самоходные ракетные (реактивные) пусковые установки, машины управления, некоторые вспомогательные машины и др. Из них только танки имеют противоснарядную броню, остальные – противопульную (толщина до 30 мм). Бронетанковым вооружением служат артиллерийские орудия, пулемёты, ракетное оружие. Большинство боевых машин имеют амбразуры для ведения огня расчётом из индивидуального оружия. Как правило, бронетанковая техника комплектуется радиосвязью, автоматизируемым комплексом управления огнём, дневными и ночными прицельно-наблюдательными приборами, фильтровентиляционной установкой, обеспечивающей нормальные условия обитания при действии на заражённой местности.


БРОНЕТРАНСПОРТЁР (БТР), обычно колёсная или гусеничная боевая машина-амфибия для транспортировки пехоты и огневой поддержки её на поле боя. Впервые появились в Великобритании (1918). Первый советский БТР создан в 1937 г. на шасси трёхосного автомобиля. Современный отечественный четырёхосный с восемью ведущими колёсами БТР-80 имеет массу 13.6 т, скорость по шоссе (на плаву) 80 (9) км/ч, запас хода 600 км. Вооружение: 14.5-мм и 7.62-мм пулемёты, размещённые в одной башенной установке. Боевой расчёт состоит из командира, механика-водителя, наводчика и 7 стрелков.

Бронетранспортёр (БТР-80)


БРÓНЗЫ, сплавы на основе меди, в которых легирующими добавками могут быть любые химические элементы, кроме цинка и никеля. Различают оловянные (до 19 % Sn), алюминиевые (4—12 % Аl), бериллиевые (до 2 % Be) и другие бронзы. Первая бронза, выплавленная человеком ещё за 3 тыс. лет до н. э., была оловянной. Этот сплав, по-видимому, получался естественным путём при плавке руд тех месторождений, в которых меди сопутствовало олово. Бронза сыграла важную роль в замене каменных и медных орудий древнего человека. На планете на долгое время воцарился «бронзовый век». Самые ранние бронзовые изделия были найдены в Иране, Турции и Месопотамии. Своё название бронза получила по имени одного из портов Италии – Брундизия, туда привозили медь из разных стран.

Изделия из бронзы: бронзовый шлем; бронзовый меч


Бронза плавится при более низкой температуре, чем чистая медь; отличается бoльшей прочностью, твёрдостью и износостойкостью, меньше подвержена коррозии в морской воде, парах кислот, растворах щелочей, легче заполняет литейные формы. Получают бронзы сплавлением меди с легирующими элементами в индукционных электрических печах. Деформируемые бронзы используют для отливки заготовок, которые затем подвергают горячей или холодной механической обработке давлением (прессованию, прокатке), получая листы, прутки, ленты, трубы; из литейных бронз отливают высококачественные фасонные изделия технического и художественного назначения. Используют бронзы для изготовления деталей машин, подшипников, шестерён, арматуры, работающих в морской воде, судовых гребных винтов, художественных отливок – колоколов, пушек, статуй, напр. бога солнца Гелиоса (колосс Родосский) высотой 32 м (нач. 3 в. до н. э.), «Медного всадника» в Санкт-Петербурге.


БРОШЮРОВÁНИЕ, полиграфический процесс, в результате которого из отпечатанных листов получают покрытый обложкой и состоящий из тетрадей книжный блок, содержащий все страницы издания и подготовленный для вставки в переплётную крышку или крытья обложкой. Брошюрование включает разрезку отпечатанных листов, фальцовку (складывание печатных листов в тетради), прессование тетрадей, присоединение к отдельным тетрадям, если необходимо, дополнительных элементов – вклеек, вкладок, накидок (дробная часть листа) и т. п., комплектование тетрадей в книжные блоки, крытьё обложкой (для книг в обложке и брошюр). Книжный блок представляет собой комплект (один экземпляр) скреплённых в корешке тетрадей или отдельных листов, содержащий все страницы и другие детали (вставки, вклейки, форзацы и т. п.). Форзацы служат для скрепления первой и последней страниц книжных блоков с переплётной крышкой. После вставки блока в крышку книгу сушат, обжимают и скругляют корешок, наклеивают упрочняющие элементы и др. Кроме названных операций, при брошюровании применяют и другие приёмы для дополнительной защиты, украшения издания и т. п.


БУ́ЕР, оборудованные мачтой и парусами сани на трёх коньках для прогулок и спортивных гонок на льду. Появились в 18 в. в Голландии. В России первый буер построен в 1819 г. Гонки на буерах проводились на льду Финского залива (участвовало более сотни буеров), там же устраивались буерные походы в Выборг и Нарву. В Европе и СССР с 1932 г. строился спортивный двухместный буер со штурвалом – «Монотип-15» (площадь паруса 15 мІ). С 1937 г. наиболее распространённым буером становится американский буер (DN) с площадью паруса 6 мІ. В 1950-х гг. в СССР строились большие гоночные буера С-20 и самые скоростные буера С-12 с жёстким аэродинамическим крылом площадью 12 мІ. Современный спортивный буер – разборный одноместный аппарат с деревянным корпусом с «ямой», в которой лежит пилот. Буер имеет 3 стальных конька – передний на носу корпуса, прикреплённый к подпружиненной стойке, и 2 задних, установленных на концах упругой поперечной перекладины, играющей роль рессоры. Поворот переднего конька осуществляется румпелем. Коньки съёмные, меняются в зависимости от снежно-ледовых условий. На корпусе устанавливается мачта длиной 5 м с парусом 6 мІ. Скорость современного буера может достигать 150 км/ч.

Буер


БУ́КСА, механический узел ходовой части вагона и локомотива, предназначенный для передачи нагрузки от тележки или рамы на колёсную пару, на которой она размещена. Букса ограничивает продольные и поперечные перемещения колёсной пары при движении, обеспечивает смазку находящихся в её корпусе подшипников и защищает их от загрязнений. Первоначально на вагонах и локомотивах устанавливали буксы с подшипниками скольжения. С 1930-х гг. буксы стали оснащать подшипниками качения – сначала на пассажирских вагонах, а затем и на грузовых, а также на локомотивах.


БУКСИ́РНОЕ СУ́ДНО, БУКСИ́Р (буксир-толкач, толкач), судно, предназначенное для вождения на буксирном канате или толканием одиночных несамоходных судов или составов, выполнения рейдовых работ по формированию составов, перемещению судов в условиях ограниченной акватории порта и др. Появление буксиров как отдельного класса судов восходит к самому началу практического применения паровых машин на судах. После успешных испытаний в Англии в 1788 г. колёсного парохода В. Саймингтон построил буксир «Шарлотта Дундас», который водил баржи водоизмещением 70 т со скоростью более 3 узлов (ок. 6 км/ч).

Современные буксиры, буксиры-толкачи и толкачи классифицируются в зависимости от района плавания и характера выполняемых задач. Буксиры, за исключением буксиров-плотоводов, относят к классу обслуживающих судов и разделяют на океанские, морские, рейдовые, портовые и для внутренних водных путей. Буксиры-плотоводы, буксиры-толкачи, плотоводы и толкачи эксплуатируются на внутренних водных путях. Буксиры-толкачи, которые могут буксировать суда и составы на буксирном канате или методом толкания, эксплуатируются как на внутренних водных путях, так и в морских условиях (морские барже-буксирные составы).

Буксиры отличаются малой длиной, что обеспечивает необходимые маневровые качества, высокими тяговыми показателями, большой остойчивостью. Мощность крупных океанских буксиров достигает 9200 кВт, а мощность буксиров-спасателей – 16 000 кВт, мощность портовых буксиров доходит до 2600 кВт. Скорость океанских и морских буксиров составляет 12–18 узлов (22.2—33 км/ч), портовых и рейдовых буксиров – 10–12 узлов (18.5—22.2 км/ч).

Буксирное судно для внутренних водных путей.


Буксирные суда оснащаются буксирным устройством, обеспечивающим буксировку несамоходных судов, а также судов, потерявших способность двигаться своим ходом. Основными конструктивными узлами буксирного устройства являются буксирный гак, буксирная лебёдка, на барабан которой наматывается буксирный канат, и буксирные арки, направляющие и ограничивающие движение буксирного каната. Буксирная лебёдка позволяет изменять длину буксирного каната, обеспечивая на извилистом судовом ходу при малой длине каната требуемую управляемость, а на прямом судовом ходу – уменьшать сопротивление состава за счёт увеличения длины буксирного каната. Буксирный гак используется при отказе буксирной лебёдки. Буксиры-толкачи, помимо буксирного устройства, оборудуются сцепным или автосцепным устройством, обеспечивающим жёсткую сцепку носовой части судна с кормовой частью состава. Толкачи оборудуются только сцепным (автосцепным) устройством. Конструкция сцепных и автосцепных устройств разнообразна. В речных и озёрных условиях отечественные буксиры-толкачи и толкачи оборудуются однозамковыми или двухзамковыми автосцепами, которые обеспечивают сцепку замков клешневого типа, установленных на одном судне, с вертикальными рельсами, укреплёнными на торцевой части (транце) другого судна. На морских баржебуксирных составах сцепка толкача и баржи производится с помощью мощных гидравлических сцепов, обеспечивающих возможность взаимных наклонений толкача и баржи относительно общей горизонтальной оси. На портовых буксирах применяются вакуумные сцепы. Эти буксиры оснащаются также манипуляторами для захвата буксирного каната. Для обеспечения высокой маневренности портовые буксиры оснащаются винторулевыми колонками, меняющими направление силы упора винта по желанию судоводителя. Буксиры-спасатели оснащаются разнообразным оборудованием для оказания помощи терпящим бедствие судам – буксировки судов, потерявших ход, снятия с мели, откачки воды, тушения пожаров, спасения людей. Все буксиры-толкачи и толкачи оборудуются мощным кормовым якорным устройством, обеспечивающим удержание на кормовом якоре толкаемого состава на течении. Мощность речных буксиров-толкачей и толкачей связана с размером составов, которые, в свою очередь, определяются габаритами водного пути. Т. к. эффективность перевозок возрастает при увеличении грузоподъёмности составов, на крупных реках используют мощные буксиры-толкачи. Мощность наиболее крупных отечественных толкачей достигает 2–3 тыс. кВт. На Миссисипи, где возможно применение особо крупных составов, мощность толкачей достигает 9 тыс. кВт.


БУЛЬДÓЗЕР, землеройная машина (а также съёмное землеройное оборудование на тракторе или тягаче), предназначенная для разработки и перемещения грунта, щебня, засыпки котлованов и траншей, расчистки снега на дорогах, планировки площадок и т. д. С помощью бульдозера можно перемещать грунт на небольшие расстояния (не более 80—100 м). Рабочий орган бульдозера – мощный отвал – может быть поворотным или неповоротным. Бульдозеры многоцелевого назначения наряду с выполнением традиционных работ используются для разработки и засыпки траншей, каналов, скважин, проведения земляных работ на мёрзлых грунтах, в погрузочно-разгрузочных работах. На бульдозеры приходится более 40 % всех объёмов земляных работ. Это объясняется высокой производительностью, манёвренностью, универсальностью и простотой конструкции рабочего оборудования.

Бульдозер


БУМÁГА, материал из растительных волокон, беспорядочно распределённых в тонкий лист и связанных между собой поверхностными силами сцепления. Бумагу производят гл. обр. из волокон древесины после соответствующей их обработки – размола, соединения с различными добавками (наполнителями), красителями и т. п. Впервые бумага была получена Цай Лунем во 2 в. в Китае путём осаждения водной суспензии свежих растительных волокон на сетке. В 6 в. этот способ, долго сохранявшийся в секрете, был вывезен в Японию, затем в страны Азии (6–8 вв.), где бумагу изготовляли из пенькового и льняного тряпья. Позднее таким образом бумагу стали вырабатывать в странах Северной Африки, где она вытеснила традиционный материал – папирус, в Испании и других странах Европы. В России бумага известна с 10 в. Машинное производство бумаги возникло в нач. 18 в. в Голландии, где был изготовлен первый размалывающий аппарат – ролл. В кон. 18 в. во Франции Н.-Л. Робертом был предложен способ механизированного отлива бумаги на непрерывно движущейся сетке. В дальнейшем к этому оборудованию были добавлены устройства для прессования и сушки, а также специальные прессы для уплотнения (каландры), намотки в рулоны; старые роллы заменили размалывающими аппаратами непрерывного действия. В качестве сырья начали применять появившиеся синтетические материалы, добавка которых к исходной бумажной массе улучшила прочностные качества бумаги.

В зависимости от назначения в состав бумаги вводятся различные наполнители: каолин (глина белого цвета, состоящая из минерала каолинита), тальк и другие минеральные вещества, придающие бумаге белизну, прочность, гладкость и другие физико-химические свойства, необходимые для печати: непрозрачность, хорошее восприятие краски, смачиваемость или влагостойкость. Кроме того, в бумагу вводят проклеивающие вещества (крахмал, смолы, клеи и др.), делающие бумагу непроницаемой для чернил, упрочняющие поверхностный слой, увеличивающие её плотность и т. п. В специальные виды бумаги добавляют красители, химические волокна. В зависимости от назначения бумага имеет различные показатели: масса листа площадью 1 мІ (4 – 250 г), толщина листа (4 – 400 мкм). Выпускается более 600 видов бумаги: для печати (типографская, офсетная, иллюстрационная, для глубокой печати, картографическая, мелованная, газетная, листовая, для обоев и др.); для письма (писчая, конвертная и т. п.); чертёжно-рисовальная (в т. ч. калька и ватман); электроизоляционная; папиросная; впитывающая (фильтровальная, промокательная и др.); для производства фибры, пергамента, санитарно-гигиенических изделий и т. п.; для аппаратов (телеграфная лента, перфокарточная и др.); светочувствительная (для изготовления фотобумаги и т. п.); переводная (копировальная и др.); обёрточная (мешочная, спичечная, бутылочная, парафинированная и т. п.); промышленно-техническая (патронная, наждачная, асбестовая и другого назначения).

Изготовляют бумагу на бумагоделательных машинах из бумажной массы – смеси размолотых и особым образом обработанных волокнистых материалов в воде с добавлением наполняющих, красящих и проклеивающих веществ. Основные части бумагоделательной машины – сеточная, прессовая, сушильная, каландр, накат. Сеточная часть имеет одну или несколько движущихся бесконечных сеток, на которые непрерывным потоком поступает бумажная масса, постепенно теряющая воду и распределяющаяся по сетке для формования. Дальнейшее обезвоживание и формование бумажного полотна происходит в прессовой части, а также при сушке (до необходимой влажности 5–7 %), которая осуществляется на расположенных в два яруса вращающихся горячих цилиндрах. Затем бумага охлаждается на холодных цилиндрах и поступает на каландр, после чего сматывается на накате в рулон. Бумагоделательная машина – сложный многофункциональный технологический агрегат, имеющий длину ок. 100 м, ширину – до 20 м и высоту отдельных частей – до 15 м. Производительность современных бумагоделательных машин 250–500 т/сут.


БУ́НА (полузапруда, поперечная дамба), гидротехническое сооружение, предназначенное для регулирования режима водного потока и защиты морского или речного берега от размыва. Для устройства бун применяют грунт, камень, бетон, фашины, габионы. Габион имеет вид заполненного камнем ящика из металлической сетки. Фашиной называют туго стянутую связку ивового хвороста в форме цилиндра. Буны сооружают перпендикулярно или под некоторым углом к берегу. Донные буны служат для предохранения от размыва оснований береговых сооружений (дамб, подпорных стенок).


БУРÁВ, сверло с режущей кромкой на одном конце и круглым отверстием (ушком) для ручки на другом. Используют для ручного сверления отверстий в древесине. Бурава подразделяют на цилиндрические, улиткообразные и ложечные. Цилиндрические бурава изготовляют длиной 500–600 мм для сверления отверстий диаметром 12–38 мм; улиткообразные – длиной 285–356 мм для отверстий 16–22 мм; ложечные – длиной 150–340 мм для отверстий 5—22 мм. Цилиндрические и улиткообразные бурава имеют заборный винт, благодаря которому они легко входят в древесину. Для сверления отверстий диаметром меньше 10 мм используют буравчик – круглый стальной стержень с режущей кромкой на одном конце; другой конец стержня изогнут и образует ручку.

Бурава:

а – цилиндрический винтообразный; б – улиткообразный; в – буравчик;

1 – ушко; 2 – рабочая часть; 3 – режущая кромка; 4 – заборный винт


«БУРÁН», орбитальный космический корабль многоразового использования. Выполнен по самолётной схеме типа «бесхвостка» с низко расположенным стреловидным крылом. Стартует «Буран» с помощью ракеты-носителя; спуск вне атмосферы происходит с использованием собственных ракетных двигателей в режиме торможения, в атмосфере и при посадке – по-«самолётному». Основное назначение: доставка сменных экипажей на орбитальные станции и возвращение их на Землю; выполнение научных исследований и экспериментов в автономном полёте; ремонт космических аппаратов на орбите; доставка на Землю результатов научной и технологической деятельности экипажей орбитальных станций. Корабль оснащён оборудованием и системами для стыковки на орбите с другими космическими аппаратами и комплексами. Его максимальная стартовая масса 105 т, в т. ч. 30 т полезного груза; длина 36.37 м, размах крыльев 23.92 м, высота на стоянке 16.35 м; экипаж 2—10 человек. 15 ноября 1988 г. состоялся космический полёт «Бурана» в автоматическом режиме без экипажа. Выполнив два витка вокруг Земли и завершив программу испытательного полёта, «Буран» успешно совершил посадку на аэродроме космодрома «Байконур».

«Буран»


БУРÉНИЕ, процесс образования горной выработки (преимущественно круглого сечения) путём разрушения горных пород с последующим удалением их из забоя. Бурение осуществляется гл. обр. механическим способом (бурильным долотом, резцом), реже термическим, гидравлическим, взрывным и другими способами. Породу можно разрушать либо только по внешнему контуру с сохранением в центре колонки (керна) – т. н. колонковое бурение, – либо по всему сечению (бескерновое бурение). Выработки могут иметь разный диаметр и соответственно разные названия: шпур, шурф, скважина, шахтный ствол (иногда называется просто шахтой). Глубина выработок – от десятков сантиметров до нескольких километров в зависимости от назначения выработки, вида полезного ископаемого, способа добычи. Шурфы (диаметром 15–30 мм) для закладки взрывчатого вещества бурят на глубину до 5 м. Шурфы (25–50 мм) для систем вентиляции, отведения вод и т. п. прокладывают на глубину до 25 м. Эксплуатационные скважины для добычи газа, нефти, подземных вод (75—800 мм) могут иметь глубину от нескольких метров до 10 км и более. Бурят также вентиляционные, водоотливные, разведочные и другие скважины. Шахтные стволы прокладывают в вертикальном и наклонном направлениях, часто за несколько проходов, образуя необходимый тоннель (до нескольких метров).

Бурильное долото


БУРИ́ЛЬНО-КРÁНОВАЯ МАШИ́НА, самоходная машина для бурения скважин при сооружении опор линий электропередачи (ЛЭП) и связи, опускания и установки в котлованы бетонных блоков под опоры ЛЭП, для строительства свайных фундаментов, ограждений и т. д. Буровой инструмент и крановое оборудование могут быть установлены как на базовый трактор на гусеничном ходу, так и на специально оборудованный колёсный автомобиль. В городах применяют небольшие бурильно-крановые машины, предназначенные для бурения ям и скважин под установку столбов, посадку деревьев и т. д. Их называют ямокопатели или ямобуры.

Бурильно-крановая машина


БУРОВÁЯ УСТАНÓВКА, комплекс машин и механизмов, предназначенных для бурения, крепления и по-следующего обслуживания буровых скважин и шахтных стволов. Буровые установки сооружают для разведки месторождений полезных ископаемых, на месте их добычи и эксплуатации, а также для проведения глубинных геологических исследований. Для работы установки либо доставляют в разобранном виде (отдельно механизмы, конструкции и т. п.) и собирают на месте, либо транспортируют уже в собранном виде по рельсовому пути на катках, на барже (т. н. самоходные установки). В состав буровой установки входит буровая вышка (от 10 до 60 м), монтируемая обычно из металлических конструкций, которая служит для размещения оборудования, спуска и подъёма бурового инструмента. На установке работают лебёдка и другие подъёмные механизмы, насосы, компрессор и пр. Для питания машин и механизмов энергией предусматривается автономное энергоснабжение от двигателей внутреннего сгорания или дизель-генераторных агрегатов либо имеются распределительные устройства для подключения к централизованным системам электроснабжения. На буровой установке осуществляются сложные технологические процессы, управление которыми и согласованная работа всех её частей обеспечивается автоматизированной системой управления.


БЫ́СТРЫЙ РЕÁКТОР, см. в ст. Ядерный реактор.


БЬЕФ, часть водоёма, реки, канала, расположенная по течению выше водонапорного сооружения (плотины, шлюза), т. н. верхний бьеф, или ниже него – нижний бьеф. Бьеф, образованный двумя или несколькими последовательно расположенными водоподпорными сооружениями и находящийся на водораздельном участке водной системы или водотока, называется раздельным.