Вы здесь

Экономика ВИЭ. Издание 2-е, переработанное и дополненное. 2. Состояние и перспективы развития энергетики на основе ВИЭ в мире (Анатолий Копылов)

2. Состояние и перспективы развития энергетики на основе ВИЭ в мире

Возобновляемая энергетика стала в последние 10—15 лет не только самой быстро растущей отраслью энергетики в мире, но и источником нового этапа развития экономик многих стран. Как сообщалось в отчёте Международного энергетического агентства (МЭА) за 201312, к 2016 г. объём производимой электроэнергии на основе ветра, воды, солнца и других возобновляемых источников обгонит соответствующий индикатор по газу, что собственно уже и произошло даже раньше ещё в том же 2013 г.: 21,7% – доля природного газа в выработке электроэнергии и 22% – доля всех ВИЭ.13 В следующие 5 лет ожидаемый прирост производства энергии на основе ВИЭ составит примерно 40% и составит глобальную долю всех ВИЭ 25% к 2018 г. по сравнению с 20% в 2011 году. Доля ВИЭ, исключая гидроресурсы, достигнет к тому же году 8% в мировом энергобалансе, по сравнению с 4% и 2% в 2011 и 2006 гг. соответственно14. К 2030 г. IRENA прогнозирует в своём докладе увеличение общей доли ВИЭ до 36% при сегодняшних 18%, однако, как справедливо указывается в докладе агентства15, представленного на его 4-ой ассамблеи в Абу-Даби в январе 2014 г., это будет возможно только при условии использования мер поддержки возобновляемой энергетики в той или иной форме. Что касается использования возобновляемых источников именно в электроэнергетике, принимающей на себя в 2030 г. около 40% всего объёма использования возобновляемых ресурсов, то как указывается в REmap 2030, примерно 1/3 придётся на гидроэнергетику, ещё треть – на ветроэнергетику, 1/10 – солнечная энергетика и оставшееся – на все остальные виды и технологии ВИЭ.16 Среди прочего это означает превращение ветроэнергетики в такую же заметную и значимую часть глобальной электроэнергетики, каковой сегодня является гидроэнергетика и без которой трудно представить себе современную энергосистему в мире.

Уже сегодня видны результаты в тех странах, правительства которых проводили в разных формах политику и практические меры по её развитию и поддержке ВИЭ. Объём рынка возобновляемой энергетики сегодня уже исчисляется сотнями миллиардов евро ежегодно (прим. $329 млрд. в 2015 г. по данным Bloomberg New Energy Finance17). Рост инвестиций в секторе энергетики ВИЭ во всем мире отражает график, представленный ниже на Рисунке 1.


Рисунок 1.

Рост инвестиций в энергетику ВИЭ в мире, млрд. UDS2014

Источник: Bloomberg New Energy Finance, 2015: http://about.bnef.com/press-releases/clean-energy-defies-fossil-fuel-pri...


Рост инвестиций в энергетику на основе ВИЭ в 2015 году имел различные составные части по технологиям генерации, но наибольшую долю заняли две из них: ветрогенерация и солнечная энергетика. Не менее впечатляющий относительный рост инвестиций по сравнению с 2004 г. (Рисунок 2). Фактически за 10 лет до 2014 г. объём ежегодных инвестиций увеличился в 5 раз, став самой быстрорастущей отраслью в мире по этому показателю.


Рисунок 2. Рост инвестиций в энергетику ВИЭ в мире по сравнению с 2004 г., %

Источник: Bloomberg New Energy Finance, 2015: http://about.bnef.com/press-releases/clean-energy-defies-fossil-fuel-pri...


Несмотря на некоторое замедление в 2012—13 годах инвестиционный процесс в возобновляемой энергетике за рассматриваемый период производит сильное впечатление своими ежегодными индикаторами объёма. BNEF также оценивает объём инвестиций в корпоративный и правительственный (т.е. за счёт средств государств) НИОКР в возобновляемой энергетике в 2015 г. в $28,3 млрд и рост этих расходов на 1% по сравнению с 2014 г.18

По оценкам Министерства защиты окружающей среды ФРГ, сделанным ещё в 2006 г., величина этого рынка может достигнуть к 2030 г. 460 €2000 в год.19 Но исходя из приведённых выше темпов роста инвестиций в ВИЭ, этот индикатор роста может быть и превышен к ожидаемому сроку. Этот сектор экономики создает новые рабочие места, как в производственной части, так и в сопутствующих секторах: НИОКР, обучение и тренинг, производство энергии и обслуживание оборудования и прочее, что неоднократно отмечалось специалистами во многих странах.

Развитие отдельных технологий на основе ВИЭ в мире будет рассмотрено автором ниже.

По мнению МЭА20 активное развитие производства энергии на основе ВИЭ в последние годы основывается преимущественно на следующих двух факторах развития.

Во-первых, активное развитие этого типа энергетики в развивающихся странах мира, которые отличаются существенно более высокими темпами роста энергопотребления, чем развитый мир21. Доля стран – не членов ОЭСР, во главе с Китаем составит 2/3 в суммарном приросте производства энергии на основе ВИЭ к 2018 г. И этот более чем впечатляющий рост сможет компенсировать снижение доли развитых стран в этом процессе, в первую очередь в США и странах ЕС.

Во-вторых, существенно улучшается экономика использования ВИЭ для производства электроэнергии за счёт расширения масштабов и технологического развития отрасли. Например, ветроэнергетика является конкурентоспособной без специальных мер поддержки уже в некоторых странах: Бразилия, Новая Зеландия, Турция. Впечатляющие результаты демонстрируют геотермальная и биоэнергия. Энергия ГЭС давно уже не вызывает вопросов с точки зрения своей конкурентоспособности, особенно с учётом способности ГЭС обеспечивать пиковое потребление и балансирование в энергосистеме.

Неодинаковый уровень развития ВИЭ в разных странах можно объяснить двумя основными факторами:

• существенные различия среди стран по величине суммарного объёма ресурсного потенциала ВИЭ, пригодного для разработки, и по его структуре

• различия в эффективности схем стимулирования ВИЭэл, применяемых отдельными странами для наиболее эффективного использования того ресурсного потенциала ВИЭ, которым располагает страна

• разное время начала активных мер поддержки развития возобновляемой энергетики в стране.


РАЗВИТИЕ НАЗЕМНОЙ ВЕТРОЭНЕРГЕТИКИ

Ветроэнергетика в мире, начиная с 90-х годов ХХ века, испытывает значительный подъем. Причем этот подъём выражается сразу в нескольких факторах: рост суммарной установленной мощности ветроустановок, повышение темпа роста установленной мощности, увеличение объёма инвестиций, как в энергетику ВИЭ в целом, так и в ветроэнергетику в частности.

За 2012 год по данным IRENA и GWEC глобальный рынок ветроэнергетики вырос в стоимостном выражении на 10% по сравнению с 2011, что составило $78 млрд или €60 млрд.

Вот несколько цифр, характеризующих тенденции и результаты развития мировой ветроэнергетики, а также место России в этом развитии:

– на конец 2014 года в мире эксплуатировалось примерно 268.000 ветроагрегатов, из которых 76.241 агрегат был установлен в Китае.22 Общая установленная мощность ветрогенерации в мире достигла 432,4 ГВт23, что более, чем в два раза превышает нынешнюю установленную мощность всей российской генерации (210 ГВт, из них в России мощность работающих ВЭС составляет только 5,5 МВт (0,00003%);

– по итогам 2015 г. страной – лидером мировой ветроэнергетики остался Китай (впервые страна стала лидером по итогам 2010 г.) с общей установленной мощностью ВЭС более 145.000 МВт, обгоняя США с общей мощностью ВЭС 74.471 МВт. Приросты установленной мощности составили за 2015 г.: в Китае около 30.500 МВт24, в США прирост мощности составил 8.598 МВт (6.810 МВт в 2010 г.25). Любопытно, что, обгоняя США по объёму установленной мощности ВЭС, Китай существенно отстаёт от них по объёму производимой на ВЭС электроэнергии. В 2015 г. в США было произведено на ВЭС 190 млрд кВт·ч электроэнергии26. Китай (в сообщении Национальной энергетической администрации (NEA))27, в свою очередь, сообщил о суммарных потерях объёмов производства электроэнергии на своих ВЭС в 2015 г. на 33,9 млрд кВт·ч, что составляет примерный эквивалент 20% суммарного производства электроэнергии на ВЭС в Китае или, примерно, 169,5 млрд кВт·ч;

– ещё в 2009 году установленная мощность ветрогенерации в Германии (25,8 ГВт) превысила установленную мощность российских АЭС (22 ГВт), на конец 2015 года мощность ВЭС в Германии составляет 44.947 МВт28

Отдельно стоит подчеркнуть территориальную особенность распространения ветростанций по всему миру. Если раньше работающие ветроустановки были частью пейзажа только развитых стран Западной Европы и США, то сейчас наблюдается скачок в использовании энергии ветра в странах Азии, Латинской Америки, Восточной Европы и постсоветском пространстве. Данную тенденцию можно связать, в первую очередь, с последовательной долгосрочной политикой стран-лидеров в сфере поддержки развития возобновляемой энергетики в целом и ветроэнергетики, в частности, с ростом цен на углеводородные энергоносители, введением квот на выбросы СО2 и парниковых газов, удешевлением конструкций и технологического цикла производства ветроустановок, налаженным механизмом их подключения к сети, появлением более дешевых аналогов, в основном, производства КНР, развитием вторичного рынка установок.

График роста мощности ВЭС (Рисунок 3) имеет вид, близкий к экспоненте, что говорит о высокой скорости нарастания индикатора установленной мощности.


Рисунок 3. Рост суммарной мировой установленной мощности ВЭС, МВт

Источник: Global Wind Statistics, 2015.-GWEC, 10.02.2016


Прирост её только за последний рассмотренный год (2015) составил 17,0%.

Отметим, что индикатор объёма ежегодно устанавливаемой мощности в 2013 году был ниже, чем в предыдущем, что объясняется воздействием кризиса и неустойчивой ситуацией в странах Северной Америки, что и проиллюстрировано следующим графиком на Рисунке 4.


Рисунок 4. Ежегодный прирост установленной мощности, МВт

Источник: Global Wind Statistics, 2015.-GWEC, 10.02.2016


Особого внимания заслуживает структура стран, производящих электроэнергию посредством ВЭС (Рисунки 5 и 6), как наиболее быстро развивающийся и самый большой после ГЭС сектор возобновляемой энергетики. До середины первого десятилетия ХХI века лидерами по объёму установленной мощности были США и страны континентальной Европы. Сейчас на ведущие позиции, как было отмечено ранее, вышел Китай (он, кстати, также является лидером по объёму прироста установленной мощности) и Индия. Также относительно высокую активность по установке новых мощностей ВЭС демонстрируют США29.


Рисунок 5. Суммарная установленная мощность ВЭС на конец 2015 (10 крупнейших стран), МВт

Источник: GWEC, Global Wind Statistics, 2015.-GWEC, 10.02.2016


Рисунок 6. Введённая в 2015 г. установленная мощность ВЭС (10 крупнейших стран), МВт

Источник: GWEC, Global Wind Statistics, 2015.-GWEC, 10.02.2016


Если в августе 2012 г. Американская ветроэнергетическая ассоциация известила о преодолении США рубежа 50 ГВт мощности ВЭС,30 то всего через 3 года установленная мощность превысила 74 ГВт, т.е. выросла на 50%.

Прогноз сравнительной динамики рынка в разрезе основных регионов (Северная Америка, Европа, Азия, Латинская Америка, страны Африки и Ближнего Востока, страны Тихоокеанского бассейна) можно проследить на Рисунке 7 ниже.


Рисунок 7. Прогноз развития рынка ветроэнергетики по регионам, ГВт

Источник: GWEC, 2012


Прогноз суммарной установленной мощности ветроэнергетики (красный) и ежегодного прироста (синий) приведен ниже на Рисунке 8. Как следует из этого графика величина ежегодного прироста выходит на фазу медленного роста, в то время, как прирост суммарной установленной мощности будет ещё продолжать высокую динамику на протяжении ближайших 5—7 лет. Если сравнить данный прогноз, сделанный в 2012 г., с данными на Рисунке 3, то станет очевидным вывод, что ветроэнергетика пока идёт с опережением самых оптимистичных прогнозов и по показателю суммарного ввода мощностей (+3,3% по отношению к прогнозу 2012 г.), и по показателю ежегодного ввода (+26%).

Прогноз темпа прироста суммарной мощности (синий) и прирост годового темпа (красный) показаны на Рисунке 9 ниже.


Рисунок 8. Прогноз роста суммарной мировой установленной мощности ВЭС, ГВт

Источник: GWEC, 2013


Рисунок 9. Прогноз изменения темпа роста суммарной мировой установленной мощности ВЭС, %

Источник: GWEC, 2013


Как уже было отмечено нами ранее, прирост годового темпа выходит на своеобразное плато на уровне 8—10% ежегодно, а темп прироста суммарной мощности постепенно замедляется в мире. Скорее всего, следует ожидать нового скачка темпов роста и прироста после существенного ускорения роста ветроэнергетики морского базирования или открытия последнего большого географического рынка – России.

Технологическое развитие ветроэнергетики идёт сразу в нескольких направлениях. Во-первых, это рост единичной мощности ветроагрегатов. Если раньше, ещё 7—8 лет назад «рабочим» считался уровень единичной мощности ветроагрегата 1,2—1,5 МВт, то теперь, это уже 2,5—3 МВт. Самый мощный из ветроагрегатов принадлежит датской компании Вестас имеет мощность 8 МВт и диаметр ротора 164 м, т.е. лопасть длиной 82 м. Один из крупнейших производителей лопастей компания LM Wind Power известила31 в июне 2016 г. о завершении производства самой длинной лопасти ветроагрегата длиной 88,4 м для станций морского базирования. Однако были сообщения о ведущемся в Sandia National Laboratories исследовательских работах по созданию лопастей длиннее 290 м для ветроагрегатов единичной мощностью более 50 МВт для ВЭС морского базирования.32

Во-вторых, растут высоты башен ветроагрегатов для достижения более высоких средних скоростей потоков, а также для освоения площадок, для которых свойственны слабые ветра на стандартных ранее и ныне высотах башен 80—90 м. Сегодня многие производители готовы предложить ветроагрегаты с высотами башен более 100 м и наибольшая из известных сегодня на рынке башен ветрагрегатов превышает 170 м. Рост высоты башен привёл к необходимости использования совершенно новых технологий их производства. Традиционно башни разбиваются на секции, свариваемые на заводе и доставляемые на площадку ВЭС для сборки самой башни. Как правило для соединения секций башен используется болтовая конструкция. Однако увеличение высоты башни не только ведёт к увеличению количества секций, но и к увеличению диаметра нижних из них. А это, в свою очередь, создаёт серьёзные проблемы с их транспортировкой на площадку. Поэтому в настоящее время используются новые подходы к производству башен прямо на площадках. Компания GE предлагает высокие башни на 5 осях, обмотанных специальной строительной тканью. Другие предлагают использование бетона для их возведения или использование комбинированных конструкций. NREL в США разрабатывает в сотрудничестве с другими компаниями технологию спиральной сварки башен из рулонов листовой стали прямо на площадке.33

В-третьих, логичным развитием, связанным с предыдущими двумя отмеченными факторами, стало увеличение длин лопастей ротора ветроагрегатов. Ныне лопасти длиной более 50 м становятся почти стандартом, а новые технологии изготовления составных лопастей позволили изготовить лопасть ротора длиной 74 м. Такие новые размеры заново ставят перед разработчиками вопросы не только аэродинамических качеств лопасти, но и её надёжность, прочность за счёт используемых материалов и конструкции и цена. Причём последний из факторов по мнению специалистов начинает сейчас доминировать.34

В-четвёртых, использование новых технологических и схемных решений ветроагрегатов для решения проблемы выравнивания скорости вращения ротора ветроагрегата при изменении скоростей ветра и обеспечения за счёт этого необходимого качества вырабатываемого и выдаваемого в энергосистему тока. Используемые решения отличаются достаточно большим разнообразием вариантов. Новые решения используются для перехода от управления отдельными ветроагрегатами ВЭС к управлению всеми ветроагрегатами станции во взаимосвязи для оптимизации режимов выработки не столько каждого отдельно взятого ветроагрегата, сколько выработки всей ВЭС в целом.

Одной из задач инженеров-конструкторов ветроагрегатов всегда было нахождение баланса между необходимостью обеспечения равномерности вращения ротора, максимальным использованием энергии воздушного потока при условии соблюдения безопасности эксплуатации ветроагрегата и обеспечением качества электрического тока, выдаваемого в систему. На сегодняшний день в ветроэнергетике используется несколько технологических решений, решающих выше перечисленные задачи.

Системы контроля скорости вращения ротора. Имеются две принципиальных схемы регулирования скоростей вращения ротора в зависимости от скорости воздушного потока: система контроля вращения ротора (stall control) и система управления углом атаки лопастей ротора (pitch control) путем их поворота и «подрулирования». Кроме того, используются механические коробки передач между валом ветроколеса и ротором генератора. Пассивная система контроля вращения ротора предполагает использование такого профиля лопасти ветроагрегата, которая позволяет при достижении воздушным потоком скорости, при котором происходит изменение оптимального режима вращения и выработки энергии, переводить обтекание лопасти потоком в режим срыва этого потока (stall) и, как следствие, ликвидировать подъёмную силу потока до остановки вращения ротора ветроагрегата. Активная система контроля вращения ротора предполагает несколько фиксированных положений лопастей ветроколеса и их угла атаки, поэтому такой механизм использования контроля обеспечивает промежуточное положение между состоянием вращения и полного останова ротора.

Система управления углом атаки лопастей ротора (pitch control) для регулирования вращения вала предполагает постоянное «подруливание» лопастей ветроколеса на основе анализа выработки энергии в интервалах меньше секунды. Последняя уже опробованная технология, когда в головную часть ротора встраивается лазер, «простреливающий» воздушные потоки, набегающие на ветроколесо. На основании полученных характеристик воздушного потока система управления ветроагрегатов поворачивает лопасти заранее с тем углом атаки, который позволит максимально использовать энергию набегающих потоков ветра. Это усовершенствование позволяет увеличить выработку ветрогенератора на 5—6% за счёт более ранней подготовки ветроколеса к особенностям потока ветра по сравнению с традиционными моделями, в которых корректировка угла атаки происходит post factum.

В современных ветроагрегатах начали использовать генераторы с переменной полярностью (зависит от типа соединения магнитов статора), в которых генератор может работать с различным количеством полюсов и, следовательно, с различной скоростью вращения ротора. Также специально созданные для ветроиндустрии большие генераторы могут работать как два в одном: обеспечивая в одном режиме мощность 400 кВт, а в другом – 2000 кВт и работая на двух скоростях вращения ротора соответственно. Этот тип конструкции получает всё большее распространение. Имеются технические решения регулирования не столько скорости вращения ротора, сколько регулирование вырабатываемого тока на основе прямого привода ротора ветроколеса на генератор. В них используется эффект так называемого скольжения асинхронного генератора35.

Скорость вращения ротора асинхронного генератора будет меняться от величины крутящего момента, передаваемого с ротора ветроколеса. На практике разница между скоростью вращения при максимальной выработке и скоростью холостого хода генератора будет всего около 1%. Это однопроцентная разница синхронной скорости вращения ротора генератора и называется скольжением генератора. Это означает, что 4-хполюсный генератор будет работать вхолостую при 1500 оборотах в минуту при условии его подключения к сети с частотой тока 50 Гц. Выдавать полную мощность генератор будет уже при скорости вращения 1515 об/мин. Это очень важное и полезное свойство электромеханики генератора, состоящее в чрезвычайно малом изменении скорости вращения вала ротора в зависимости от изменения величины крутящего момента в режиме выработки генератора. Это также означает снижение нагрузки на коробку передач за счёт снижение пикового крутящего момента. Такое свойство асинхронного генератора является одной из главных причин столь их широкого использования в сетевых (т.е., подключенных к сети) ветроагрегатах.

Величина эффекта скольжения генератора является одновременно функцией величины сопротивления постоянного тока (измеряемого в омах) возникающего при вращении ротора генератора: чем выше сопротивление, тем больше величина скольжения генератора. Таким образом, изменяя сопротивление ротора, мы можем регулировать величину скольжения, т.е. зазор разницы скоростей вращения ротора генератора и ветроколеса. Таким образом величину скольжения можно увеличить до, например, 10%. Применительно к моторам, которые, как правило, являются машинами обратного действия по отношению к генераторам, зависимость скорости вращения вала мотора осуществляется включением в цепь обмотки статора силовых резисторов и системы управления ими. Типичным практическим примером такой схемы является работа стиральной машины, скорость вращения вала барабана которой – разная при разных режимах работы, а напряжение и частота потребляемого тока – постоянные.

Генераторы работают по обратной схеме. На их роторы также устанавливают внешние силовые резисторы и систему управления ими. Одной из основных проблем управления такой системой силовой электроники является способ передачи команд по регулированию величины скольжения генератора. Это осуществляется с помощью волоконной оптики, устанавливаемой в генератор и используемой для передачи сигналов управления ротором генератора. Если используется генератор с переменной величиной скольжения, то вы можете начать увеличение этого параметра в случае приближения скорости ветра и выработки к номинальным значениям мощности ветроагрегата. Наиболее популярная схема регулирования, впервые предложенная датскими производителями, предполагает установление половины от максимального значения скольжения генератора ветроагрегата при его работе на скоростях, обеспечивающих выработку, близкую к номинальной мощности агрегата. Когда происходит порыв ветра, то система управления даёт команду на увеличение скольжения генератора, чтобы позволить ротору вращение с большей скоростью, а в это же время механизм регулирования поворота лопастей начинает их поворот под ветер, чтобы лопасти могли справиться с этим порывом ветра тоже.

После того как механизм регулирования поворота лопастей выполнил свою работу, механизм регулирования величины скольжения генератора возвращает его значение к прежнему (например, половина от максимума). Если вдруг ветер падает, то схема работает в обратном порядке. Даже приведенное выше краткое описание используемых механизмов адаптации изменения скоростей ветра и работы генератора показывают, что современные ветроагрегаты могут справляться с переменчивым ветром в достаточно большом диапазоне. Внимательный читатель спросит: «А что если ветер совсем перестанет дуть в некоторый момент?» На такой вопрос мне обычно хочется ответить встречным вопросом: «А что если ваша угольная паровая турбина или её генератор, или система управления, или система подачи топлива (специалисты легко продолжат этот список) выйдет из строя?» Использование более совершенных электрических схем работы и управления ветроагрегатом для гармонизации участия ВЭС в энергосистемах на основе использования в ветроагрегатах прямого привода на вал генератора, групповых, а не индивидуальных инверторов и трансформаторов, тонкая опережающая подстройка углов атаки лопастей под находящий поток и проч. позволяют современным ветроагрегатам вполне комфортно работать в составе энергосистем.

Подтверждением этому служат реальные ситуации, когда вся или львиная доля вырабатываемой электроэнергии в большой энергосистеме обеспечивается ВЭС.36 В энергосистемах стран-членов ЕС уже несколько лет действует принцип технологической нейтральности при принятии решений о допуске того или иного генерирующего объекта в систему. На практике это означает, что вне зависимости от используемой технологии производства электроэнергии, агрегат или генерирующий объект должен обеспечивать те же условия и требования по своей надёжной и безопасной работе в системе, что и остальные генерирующие объекты. Целью этих требований, которые обычно включены в так называемые сетевые кодексы стран, является обеспечение бесперебойного функционирования энергосистемы. В случае ветровых технологий эти требования направлены на улучшение и стабилизацию работу ветроагрегатов, снижение объёма потерь ветровой энергии вследствие аварий в системе, и наличие у ветровых электростанций эксплуатационных характеристик, максимально приближенных к характеристикам традиционных электростанций.

Принятые эксплуатационные характеристики ВЭС для современных энергосистем:

• способность поддержания непрерывного энергоснабжения при сбоях (СПН)

• выработка и подача реактивной мощности по команде диспетчеров при сбоях в энергосистеме

• способность регулировать реактивную мощность, уровень мощности и вырабатываемое напряжение

• возможность регулирования активной мощности ВЭС и контроль вырабатываемого напряжения

• регулирование активной мощности по командам диспетчеров

• способность надёжного обмена информацией с СО

• общие требования к защитному оборудованию и настройкам ВЭС

• нормативное регулирование (положение) предоставления системных услуг.

Некоторые специалисты утверждают, что именно это требование является основным препятствием расширения использования китайских ветроагрегатов в Европе и США. Базовые конфигурации этих ветряков стоят много дешевле европейских или американских. Но если заказчик требует дооборудования ветряков до уровня, требуемого безопасностью и надёжностью европейской (американской) энергосистемы, то стоимость такого китайского ветряка уже становится сопоставимой с другими производителями.37


РАЗВИТИЕ ИСПОЛЬЗОВАНИЯ ТВЁРДОЙ БИОМАССЫ

На первый взгляд (Рис. 10) доля твёрдой биомассы по сравнению с ее потенциалом создает впечатление низкого уровня эффективности, при наличии нескольких исключений (к примеру, Финляндия, Швеция и Голландия).

В то же время следует отметить, что твёрдая биомасса является на сегодняшний день самым большим по объёму источником энергии на основе ВИЭ, но только для тепловой энергии, занимая, тем не менее, около 9% в суммарном глобальном топливном балансе, что превышает долю всех остальных видов ВИЭ вместе взятых за исключением гидроресурсов.


Рисунок 10. Доля биомассы, среднесрочный потенциал и ФТ

(В Голландии предусмотрена надбавка, корректируемая в соответствии с рыночными ценами на электроэнергию.)


Таким образом речь в настоящее время идёт о расширении использования биомассы как источника энергии в её наиболее современных видах и формах, а не только как древесины для отопления.

В то же время сравнительный анализ уровня использования биомассы следует проводить осторожно, т.к. в отличие от других технологий ВИЭ, к примеру, ветровой, технологии с использованием твёрдой биомассы также разнообразны, как и различные формы используемой в качестве топлива биомассы. Кроме того, с технологиями использования биомассы связано несколько проблем экономического характера, которые можно сформулировать в общем как отсутствие корректного «рынка биомассы», который бы обеспечивал необходимые ценовые сигналы для развития технологии.38 К этому следует добавить тот факт, что, как и для любой другой традиционной технологии, генерирующим компаниям, чтобы получить гарантию достаточного количества топлива для генерации энергии по установленной цене, требуется заключение долгосрочных договоров с поставщиками биомассы39. Эти обстоятельства могут объяснить, почему, несмотря на наличие высоких фиксированных тарифов, во многих странах, к примеру, в Германии и Испании, развитие данной технологии оставалось на достаточно низком уровне вплоть до 2004 г., даже несмотря на заметное улучшение тенденции на протяжении последних нескольких лет.

Два исключения в использовании биомассы – Финляндия и Швеция: в обоих случаях механизмы поддержки стимулируют развитие рентабельных проектов (освобождение от налогообложения в Финляндии, «зелёные» сертификаты в Швеции), и рынок демонстрирует соответствующую реакцию на данные сигналы.

Любопытно отметить, что в период с 1994 по 2008 гг. импорт вторичных древесных ресурсов, т.е. по сути древесных отходов, увеличился с 2,4 до 6 млрд. долл. или на 150%40, что с очевидностью свидетельствует и о расширении вовлечения в оборот этого вида ресурса, и о росте цен на них, превращении отходов в обычный сырьевой товар. Также заслуживает внимания тот факт, что активными импортёрами этого ресурса кроме Японии (около 50% импорта, что легко объяснимо скромностью собственных лесных ресурсов) стали как раз страны, сами располагающие существенными лесными ресурсами и активно их использующими в деревообработке. Это уже упоминавшиеся Финляндия, Швеция и Канада, США, что, с нашей точки зрения, позволяет говорить уже об эффекте расширенного саморазвития отрасли древесного биотоплива, начиная с определённой ступени, когда крупным производителям изделий из древесины настолько выгодно становится перерабатывать его отходы в условиях сложившейся системы поддержки, что они готовы их импортировать дополнительно к собственным объёмам.

Особое место в составе задачи расширения использования твёрдой биомассы занимают твёрдые бытовые отходы (ТБО). Процессы его использования состоят из нескольких взаимосвязанных ступеней, отличающихся степенью эффективного использования либо с точки зрения повторного использования, либо с точки зрения производства энергии из него.

Первой ступенью является наиболее простой и дешевый, но и наиболее экологически и социально опасный метод захоронения отходов на полигонах. Данный метод используется в России для, примерно 97% всего производимого мусора, столь широкое распространение в России получил ввиду его дешевизны – около 15 евро за захоронение 1 тонны ТБО против около 1000 евро за тонну в странах Западной Европы.

Второй ступенью иерархии методов утилизации бытовых отходов после захоронения мусора на полигонах является его использование в качестве топлива. Для этого проектируются специальные ТЭЦ на базе мусоросжигательных заводов (МСЗ), к которым предъявляются требования, отличные от ТЭЦ на традиционном топливе. Мусор, используемый для этих целей, проходит специальную подготовку – сортировку, позволяющую избавить его от негорючих включений, а также полимеров, выделяющих при горении опасные вещества.

Следующие ступени – это переработка, компостирование и вторичное использование переработанного мусора. Данные методы являются наиболее экологически выгодными, однако для их реализации необходим мусор, разделенный на основные составляющие фракции – органика, стекло, бумага, пластик и т.д., что приводит к потребности в его раздельном сборе, либо сортировке, ввиду чего данный метод наиболее затратен. Обойтись только сортировкой и переработкой мусора пока, к сожалению, невозможно и поэтому в развитых странах активно развивается строительство генерирующих мощностей на основе термической обработки части ТБО.

На данный момент в США насчитывается 460 ТЭЦ на базе МСЗ41 мощностью от 1,5 до 715 МВт. Структура установленной мощности этих станций следующая:

• станции мощностью до 5 МВт – 156

• станции мощностью от 5 до 25 МВт – 148

• станции мощностью свыше 25 МВт – 156

с разбивкой по установленной мощности, как показано на Рисунке 11. При этом в США насчитывается 21 станция мощностью более 100 МВт.


Рисунок 11. Структура установленной мощности станций на базе МСЗ в США

Источник:http://globalenergyobservatory.org/


Ситуация со строительством и эксплуатацией электростанций на основе МСЗ в европейских странах – различная. Лидер – Дания, которая сжигает свой мусор уже примерно 150 лет (Рисунок 12).


Рисунок 12. Утилизация мусора в европейских странах

Источник: по данным Eurostat2010 и CEWEP


В странах Европы по данным на 2012 год насчитывалось 452 ТЭЦ на базе МСЗ42. Лидерами по количеству таких станций в Европе являются: Франция, Германия, Италия, Швеция и Дания. Европейские страны планируют и далее наращивать объёмы производства энергии на станциях на основе МСЗ, доведя её объёмы к 2020 г. до 134 млрд кВт•ч.

Доля между объёмами тепла и электроэнергии на этих станциях в сумме распределяется, примерно, как 2:1. Поэтому такое значение имеет политика государств по отношению к развитию генерации на ТЭЦ наряду с политикой в сфере сбора и утилизации мусора. Утилизация мусора в т.ч. путём его частичного сжигания предполагает наличие нескольких источников выручки (компенсации затрат):

• плата жителей за сбор и утилизацию мусора домохозяйств,

• плата за приём мусора от собирающих компаний на ТЭЦ МСЗ,

• стоимость проданной электроэнергии,

• стоимость проданного тепла,

• выручка от продажи и (или) повторного использования вторичного сырья из ТБО.

Выводом из этого перечня является необходимость довольно «тонкой» настройки всей этой системы тарифов и цен.


БИОГАЗ

Ситуация с использованием имеющегося потенциала биогаза в Европе подобна ситуации с биомассой, но в меньшем масштабе, что можно увидеть на Рисунке 13.

Развитие технологии с использованием биогаза значительно зависит от схем стимулирования не только на национальном уровне, но и на уровне регионов и отдельных муниципалитетов, т.к. часто генерация на основе этой технологии – местная, небольшая, являющаяся частью сугубо муниципальной энергетики и теплоснабжения. Эта ситуация стала источником дополнительных трудностей для анализа, и в ней не просто разобраться.

Две страны ЕС-28 с самым высоким уровнем развития использования биогаза в настоящее время – это Германия и Великобритания, и в обоих случаях свалочный газ является доминирующей технологией, стимулируемой при помощи дополнительных схем на муниципальном уровне. Эта ситуация может объяснить отличие от соответствующего развития технологии в Испании: в последнем случае испанское правительство обеспечило в самом начале определённые низкие фиксированные тарифы, не ставшие достаточным стимулом для необходимого технологического развития. А, например, в Польше сейчас нет ни одной свалки, которая не была бы занята под производство свалочного газа, после того, как в стране была принята адекватная система поддержки, все свалки «разобрали». Для многих стран отсутствие детальной информации об опыте поддержки на местном и национальном уровне не позволяет оценить реализуемые стратегии.

Остановимся на биогазе, получаем на свалках, так называемом, свалочном газе. Свалочный газ – конечный продукт микробиологического разложения определённых фракций отходов, захороненных на мусорном полигоне. К ним относятся: растительные и животные остатки, бумага и древесина. Скорости, с которой эти материалы подвергаются биоконверсии, а также выход свалочного газа, существенно различны и зависят, в первую очередь от вида отходов (т.н. «морфологии» отходов), а также от физико-химических условий в теле свалки (влажность, температура, кислотность, доступ воздуха и т.д.). Проблема утилизации свалочного газа стоит достаточно остро, ввиду того, что метан, составляющий от 40 до 70% единицы объёма свалочного газа (остальные составляющие СГ – СО2 (порядка 30—60%), H2S, O2, N2 – порядка нескольких процентов), является чрезвычайно сильным парниковым агентом (его парниковый эффект превосходит аналогичный для СО2 примерно в 21 раз).


Рисунок 13. Доля биогаза, среднесрочный потенциал и ФТ

(1. В Голландии надбавка составляет 0,016 евро за 1 кВт•ч.

2. В Венгрии реализован механизм фиксированных тарифов с привязкой ко времени использования энергии; поэтому был рассчитан средневзвешенный показатель на основании равномерного графика нагрузки.)


Поэтому западные природоохранные организации субсидируют даже простое факельное сжигание собираемого свалочного газа.

Из-за достаточно высокого содержания метана свалочный газ хорошо горюч (его средняя калорийность составляет примерно 5500 Ккал на м3)43 и может быть использован в качестве топлива без специальной предварительной обработки как в устройствах прямого сжигания (различные топочные устройства), так и в газопоршневых и газотурбинных двигателях.

Особенностью эксплуатации мусорных полигонов при получении на них свалочного газа является изменение выдаваемых объёмов газа со временем из-за «живого» характера процессов, происходящих в пробуренных скважинах, и соответствующие колебания выработки электроэнергии от этого. Колебания уровня производительности скважин могут происходить на разных временных горизонтах. Есть долгосрочные изменения, связанные с постепенным затуханием процессов выработки метана бактериями, которое наступает приблизительно после 18—20 лет эксплуатации полигона. Есть сезонные колебания выработки метана на скважинах, связанные с влиянием температур и влажности массы полигона. Колебания производительности могут происходить и в течение одного дня, особенно на начальном этапе работ, когда уточнение производительности каждой скважины и особенностей её работы пока не завершено.


СОЛНЕЧНАЯ ЭНЕРГЕТИКА НА ОСНОВЕ ФОТОПРЕОБРАЗОВАНИЯ

Солнечная энергетика на основе фотоэлектрического преобразования (ФЭ, фотовольтаика) является на сегодня самым активно развивающимся сегментом возобновляемой энергетики.

В соответствии с результатами исследования44 в мире в 2012 году было установлено примерно 30 ГВт новых мощностей генерации на основе фотопреобразования, и этот показатель аналогичен показателю 2011 года. Однако уже в 2015 г. годовой объём ввода мощностей генерации на основе ФЭ составил более 57 ГВт45 и благодаря такому быстрому росту мощностей солнечной генерации суммарной уровень установленной мощности генерации на основе фотоэлектрического преобразования во всем мире к концу 2012 года составил приблизительно 100 ГВт, то по итогам 2015 г. уже более 220 ГВт что равно, примерно, суммарной установленной мощности российской энергосистемы – одной из крупнейших в мире. По объёму новых вводов солнечной генерации в 2015 году лидирующие позиции заняли Китай и Япония, построившие, по предварительным данным, 16,2 ГВт и 12,6 ГВт соответственно. В тройке лидеров также США с 7,3 ГВт новой солнечной генерации.46

И такие темпы роста солнечная энергетика на основе фотоэлектрического преобразования показывает уже несколько лет подряд, несмотря на критическое состояние многих традиционных лидеров отрасли – компаний-производителей солнечных элементов и панелей.

Мировыми лидерами по объёмам установленной мощности генерации на основе энергии солнца как источника (ФЭ) являются Германия (38,301 ГВт на конец 2014 г.), Китай (28,199 ГВт), Япония (23,300 ГВт), США (18,280 ГВт), Франция (5,600 ГВт), Италия (18,450 ГВт), Испания (4,787 ГВт),47.

За последние 2 года этот список несколько изменился за счёт резкого увеличения объёмов вводов мощностей ФЭ в Китае, США и Японии, которые потеснили традиционных ещё на 2012 г. прежних лидеров отрасли: Италию и Испанию. В производстве солнечных батарей и их элементов лидерами являются Китай, Германия, Япония. Например, Германия в течение 2005—2010 гг. вводила примерно по 650—750 МВт мощностей солнечных станций на фотоэлектричестве ежегодно. Но уже в 2011 г. суммарный ввод в Германии составил почти 7,5 ГВт и только за декабрь 2011 г. немцы ввели 3 ГВт мощности солнечных батарей, а в США – примерно 1,7 ГВт за весь 2011 год.


Рисунок 14. Суммарный объём установленной мощности ФЭ генерации в мире, МВт

Источник: BNEF, http://www.eurobserv-er.org/pdf/photovoltaic; http://www.pv-tech.org/technical-papers


Сохраняющееся лидерство Германии в развитии солнечной энергетики привело к возникновению развитого рынка с соответствующей инфраструктурой, обеспечивающим в стране низкие цены на солнечные панели на крышах и в составе ФЭ станций.

По имеющимся сведениям48, если в США ещё в 2011 г. средняя цена установленной мощности солнечных систем на крышах зданий (мощностью до 100 кВт) составляла $5,2 за 1 ватт, то в Германии в том же году – только $2,8. Главной причиной такого разрыва специалисты считают именно степень зрелости немецкого рынка энергетики ФЭ и конечную эффективность фиксированных тарифов как меры поддержки.49

Пожалуй, важнейшим фактором ускорения ввода мощностей ФЭ станций в мире стало заметное снижение стоимости основного оборудования солнечных станций – фотоэлектрических панелей и отдельных элементов, из которых панели собирают. Ещё 3—4 года назад цены $2—3 за ватт пиковой мощности считались для солнечных фотоэлектрических панелей большим достижением. Начало 2012 года было отмечено знаменательным событием: впервые были зарегистрированы оптовые цены поставки панелей по ценам ниже $1 (€0,78) за ватт или ниже $1000 (€781,3) за 1 кВт пиковой мощности. Говоря об актуальных ценах на фотоэлектрические панели (Рисунок 15), следует иметь в виду одно, недавно сформировавшееся явление, а именно, продажа небрендированных или даже контрафактных панелей категорий «b» и «с» по демпинговым ценам, немногим выше $0,65 (€0,496) за ватт пиковой мощности. При этом следует иметь в виду, что эффективность таких панелей заметно отличается в худшую сторону. По мнению автора, уровень цен на основное оборудование солнечных станций – солнечные панели, около $1000 (€781,3) за 1 кВт пиковой мощности является новым ценовым ориентиром на ближайшие 1—2 года.


Рисунок 15. Средние цены продажи ФЭ панелей со склада производителя или с первой точки продаж (долл. США за ватт пиковой мощности)

Источник: Mints, P. A Solar Panel Quality Manifesto. http://www.renewableenergyworld.com/rea/news/article/2012/09/a-solar-pan...


В результате такого резкого снижения затрат на строительство ФЭ станций сейчас во многих районах мира, в т.ч. в России солнечные энергоустановки на основе фотопреобразования показывают более экономичные результаты, чем установки с использованием дизельного топлива или мазута.

Принято различать несколько технологических направлений в солнечной энергетике: фотовольтаика (включая органическую фотовольтаику), концентраторная (тепловая) солнечная энергетика. Бóльшая часть технологий продолжает развиваться и улучшать эксплуатационные характеристики солнечных панелей (Рисунок 16).


Рисунок 16. Развитие технологий солнечной энергетики в мире

Источник: NREL, Malbranche, Philippe, CEA-INES, Presentation «OVERVIEW OF PV TECHNOLOGIES»


Наибольшее развитие в настоящее время получила фотовольтаика. В основном на базе её технологий сегодня реализуются масштабные проекты строительства солнечных электростанций (на конец 2015 года суммарная установленная мощность построенных в мире солнечных электростанций достигла более 230 ГВт).

Современная фотовольтаика представлена следующими технологиями и материалами:

1. кремниевые:

a. монокристаллические

b. мультикристаллические

c. технология тыльной пассивации PERC

d. технология сомкнутого заднего контакта MWT

e. технологии туннельного перехода

f. другие

2. тонкоплёночные (в том числе гетеропереходные):

a. CIGS (солнечные элементы на основе соединений меди, индия, галлия и селена)

b. на основе теллурида кадмия

c. на основе аморфного и микроморфного кремния

d. на основе арсенида галлия (гетеропереходная концентраторная фотовольтаика)

e. комбинированные гибридные технологии (на основе микроморфных и кристаллических элементов – так называемая HIT-технология)

3. органические технологии фотопреобразования (пока не достигли стадии промышленного развития).

Тонкоплёночные технологии еще более разнообразны и выбор той или иной технологии в первую очередь обусловлен климатическими особенностями той местности, где строится солнечная электростанция. Комбинированные гибридные технологии стали результатом разработок, осуществляемых в развитие тонкопленочной технологии, и благодаря сочетанию свойств обладают большим потенциалом роста эффективности преобразования солнечной энергии и снижения себестоимости. Их разработка ведется компаниями-лидерами отрасли, в том числе в Японии (Panasonic) и США (SolarCity, First Solar). В последнее время аналогичные разработки начаты и в России (компания «Хевел» совместно с ФТИ им Иоффе).

В последние годы мы стали свидетелями эволюции фотоэлектрических модулей, КПД преобразования которых для технологии на основе кристаллических кремниевых пластин (на которые приходится более 90% рынка) увеличился со значения порядка 12% или ниже до текущего стандартного значения 18%. Что касается производственных мощностей, то по состоянию на конец 2011 года более 20 производителей заявляли о возможной производственной мощности, исчисляемой в ГВт, т.е. явно превышающую единичную мощность их производства в 1000 МВт, однако, для развития в те годы было характерно не просто увеличение мощности, но и усовершенствование в плане автоматизации технологических операций и управления процессами производства. Результат этой эволюция нашел свое отражение в определении цены 1 ватта установленной пиковой мощности (Втпик) солнечных батарей и, впоследствии, в стоимости 1 кВт•ч электроэнергии, произведённой на основе фотопреобразования энергии солнца.