2. Микрофонные усилители
В простейших малогабаритных радиопередающих устройствах, выполненных на транзисторах, формируемые на выходе микрофона низкочастотные колебания звуковой частоты обычно подаются непосредственно на модулятор. Однако в более сложных конструкциях в состав низкочастотного тракта включается дополнительный усилительный каскад. На его вход подается НЧ-сигнал, сформированный микрофоном, поэтому такие усилительные каскады часто называют микрофонными усилителями. К сожалению, подробное описание теоретических основ функционирования микрофонных усилителей, выходит за рамки предлагаемого издания в связи с его ограниченным объемом. Поэтому далее принципы работы таких устройств будут рассмотрены весьма упрощенно, не претендуя на академическую точность.
2.1. Назначение и основные характеристики микрофонного усилителя
Главной задачей, решаемой микрофонными усилителями, применяемыми в миниатюрных радиопередатчиках, является обеспечение усиления низкочастотного сигнала, формируемого на выходе микрофона, до уровня, необходимого для корректной работы модулятора. Микрофонные усилители представляют собой одну из разновидностей усилителей сигналов низкой частоты, под которыми подразумеваются устройства, предназначенные для усиления электрических колебаний низкочастотного диапазона, то есть таких сигналов, частота которых находится в пределах от 16 Гц до 20 кГц.
Требования, предъявляемые к микрофонным усилителям, зависят от сферы их применения. Поэтому микрофонные усилители, используемые, например, в высококачественной звуковоспроизводящей аппаратуре, имеют более качественные характеристики по сравнению с микрофонными усилителями, разрабатываемыми для малогабаритных радиопередающих устройств. Соответствующим образом отличаются и схемотехнические решения, применяемые при конструировании микрофонных усилителей.
Среди основных характеристик усилителей низкой частоты вообще и микрофонных усилителей в частности следует отметить коэффициент усиления, амплитудно-частотную характеристику и полосу пропускания. Именно эти характеристики оказывают определяющие влияние на выбор необходимого схемотехнического решения для микрофонного усилителя.
Одним из важнейших показателей работы микрофонного усилителя является коэффициент усиления. При этом различают коэффициент усиления по напряжению, по току и по мощности. Коэффициент усиления по напряжению (по току или мощности) численно равен отношению напряжения (тока или мощности) на выходе усилителя к напряжению (току или мощности) на его входе. Общий коэффициент усиления многокаскадного усилителя равен произведению коэффициентов усиления входящих в его состав отдельных каскадов.
Коэффициент усиления является безразмерной величиной. Однако часто его значение представляется в логарифмических единицах – децибелах (дБ). Децибел представляет собой десятую долю бела (Б) и является десятичным логарифмом отношения напряжения (тока или мощности) сигнала на выходе усилителя к напряжению (току или мощности) на его входе. Поэтому при определении общего коэффициента усиления многокаскадного усилителя, коэффициенты усиления отдельных каскадов которого выражены в децибелах, числовые значения этих коэффициентов следует сложить.
Поступающие на вход микрофонного усилителя сигналы разных частот усиливаются с разным коэффициентом усиления, поэтому особое значение имеет амплитудно-частотная характеристика усилителя, которая представляет собой зависимость коэффициента усиления от частоты усиливаемого сигнала. Такая характеристика формируется посредством измерения напряжения на выходе усилителя при постоянной амплитуде и изменяемой частоте входного сигнала.
Анализ формы амплитудно-частотной характеристики микрофонного усилителя позволяет определить ширину полосы пропускания, под которой обычно понимается полоса частот, в пределах которой коэффициент усиления уменьшается до уровня 0,707 от своего максимального значения. Часто диапазон частот или полоса пропускания определяется как область частот, в пределах которой изменение коэффициента усиления не превышает допустимого значения, например, не более 30 % (3 дБ). В малогабаритных радиопередающих устройствах для обеспечения внятности и разборчивости речевого сигнала микрофонный усилитель может иметь полосу пропускания всего от 300 Гц до 3500 Гц. Однако чаще предпочтение отдается схемотехническим решениям, с помощью которых можно получить полосу пропускания от 100 Гц до 5000 Гц.
Иногда для оценки качественных параметров микрофонного усилителя используется такая характеристика, как чувствительность. Под чувствительностью в данном случае понимается минимальный уровень сигнала, подаваемого на вход усилителя, при котором уровень сигнала на его выходе будет равен требуемому значению. В миниатюрных радиопередатчиках и радиомикрофонах уровень сигнала, формируемого на выходе микрофонного усилителя, должен быть таким, чтобы обеспечивалась корректная работа модулятора.
При выборе схемы микрофонного усилителя для малогабаритных радиопередающих устройств большое значение имеют и другие характеристики, например, нелинейные искажения. Однако их подробное рассмотрение выходит за рамки данной книги.
2.2. Усилительный каскад на транзисторе
Основу простейших микрофонных усилителей, предназначенных для работы в миниатюрных радиопередатчиках и радиомикрофонах, составляют усилительные каскады, выполненные на биполярных или полевых транзисторах. Ограниченный объем данной книги не позволяет рассмотреть даже малую часть заслуживающих внимания конструкций таких усилителей, разработанных на основе самых разнообразных схемотехнических решений. Поэтому в данном разделе основное внимание уделяется так называемым классическим схемам усилительных каскадов, выполненных на одном транзисторе.
Необходимо отметить, что в рассматриваемых в данной книге малогабаритных радиопередающих устройствах усилительный каскад на транзисторе составляет основу и генератора высокочастотных колебаний. Поэтому приводимые в данном разделе описания принципов действия транзисторных усилителей необходимы для понимания основ функционирования ВЧ-генераторов, рассматриваемых в следующей главе.
Принцип действия
В настоящее время в микрофонных усилителях в качестве усилительных каскадов низкочастотного сигнала широко используются обычные транзисторные усилители, в которых биполярный транзистор включен по схеме с общим эмиттером. Именно такие усилительные каскады, по сравнению со схемами с общей базой и с общим коллектором, обеспечивают наибольшее усиление по мощности.
Упрощенная принципиальная схема усилительного каскада, выполненного на биполярном транзисторе n-p-n проводимости, включенном по схеме с общим эмиттером, приведена на рис. 2.1а.
Рис. 2.1. Принципиальные схемы усилительного каскада на биполярном транзисторе, включенном по схеме с общим эмиттером (а) и усилительного каскада на полевом транзисторе, включенном по схеме с общим истоком (б)
В данной схеме коэффициент усиления по току представляет собой отношение амплитуд (действующих значений) выходного и входного переменного тока, то есть переменных составляющих тока коллектора и тока базы транзистора.
Главным параметром, характеризующим транзистор, включенный по схеме с общим эмиттером, является статический коэффициент усиления по току (коэффициент передачи тока) для схемы с ОЭ, который обозначается как b. Этот параметр для того или иного типа биполярного транзистора при необходимости можно найти в любом справочнике.
В транзисторном усилительном каскаде, выполненном по схеме с общим эмиттером, между входным и выходным напряжениями имеется фазовый сдвиг, составляющий 180°. Наличие указанного фазового сдвига объясняется особенностями функционирования такого каскада. При поступлении на базу транзистора VТ1 положительной полуволны входного сигнала происходит увеличение напряжения на переходе база-эмиттер. В результате возрастает ток эмиттера, и, соответственно, ток коллектора транзистора. Увеличение тока коллектора приводит к увеличению падения напряжения на резисторе R1, который является коллекторной нагрузкой. Иными словами, на нагрузочном резисторе дополнительно к уже имеющемуся постоянному напряжению добавляется переменное напряжение с той же полярностью. При этом напряжение на коллекторе транзистора VТ1, соответственно, уменьшается. Таким образом, при подаче положительной полуволны переменного напряжения на вход транзисторного каскада по схеме с общим эмиттером на его выходе формируется отрицательная полуволна выходного напряжения.
Достоинством схемы с общим эмиттером, помимо наибольшего усиления по мощности, является удобство питания от одного источника, так как на базу и коллектор транзистора подаются питающие напряжения одного знака. К недостаткам данной схемы включения следует отнести сравнительно малое входное сопротивление транзистора, определяемое особенностями конструкции биполярных транзисторов. Помимо этого, схема с общим эмиттером имеет худшие, по сравнению, например, со схемой с общей базой, частотные и температурные характеристики. С повышением частоты усиление в схеме с общим эмиттером снижается в значительно большей степени, чем, в схеме с общей базой.
Усилительные каскады на биполярных транзисторах, включенных по схемам с общей базой и с общим коллектором, практически не применяются в микрофонных усилителях миниатюрных радиопередатчиков. Поэтому подробное рассмотрение особенностей функционирования таких каскадов выходит за рамки данной книги. Необходимую информацию заинтересованные читатели могут найти в специализированной литературе.
Тем не менее, схемы включения биполярного транзистора с общей базой и с общим коллектором широко используются в схемотехнических решениях активного элемента высокочастотных генераторов маломощных радиопередающих устройств, о которых будет рассказано в одной из следующих глав. Поэтому автор считает необходимым хотя бы весьма коротко отметить основные преимущества и недостатки таких схем включения.
Усилительный каскад, выполненный по схеме с общей базой, по сравнению со схемой с общим эмиттером, обеспечивает значительно меньшее усиление по мощности и имеет еще меньшее входное сопротивление. Однако его температурные и частотные свойства значительно лучше. Помимо этого в схеме с общей базой отсутствует фазовый сдвиг между входным и выходным сигналами. Достоинством усилительного каскада по схеме с общей базой также является внесение значительно меньших искажений при усилении сигнала.
В усилительном каскаде, выполненном по схеме с общим коллектором, нагрузка включена в цепь эмиттера транзистора, а выходное напряжение снимается с эмиттера по отношению к шине корпуса. Именно поэтому такой каскад называют эмиттерным повторителем. Входное сопротивление каскада по схеме с общим коллектором в десятки раз выше, чем у каскада с общим эмиттером, а выходное сопротивление, наоборот, сравнительно мало. Помимо этого коэффициент усиления по току эмиттерного повторителя почти такой же, как и у каскада по схеме с общим эмиттером. Однако коэффициент усиления по напряжению близок к единице, причем всегда меньше ее. В схеме с общим коллектором отсутствует фазовый сдвиг между входным и выходным сигналами.
Нередко в микрофонных усилителях миниатюрных радиопередатчиков применяются усилительные каскады на полевых транзисторах. Полевые транзисторы, в отличие от биполярных, имеют большое входное сопротивление, чем значительно облегчается решение задачи согласования каскадов. Обычно предпочтение отдается схемотехническим решениям, в которых полевой транзистор включен по схеме с общим истоком. Упрощенная принципиальная схема усилительного каскада, выполненного на полевом транзисторе с каналом n-типа, включенном по схеме с общим истоком, приведена на рис. 2.1б.
Принцип работы усилительного каскада на полевом транзисторе, включенном по схеме с общим истоком, заключается в следующем. С увеличением потенциала затвора ток в цепи стока и, соответственно, падение напряжения на резисторе R1 в цепи нагрузки возрастают. При этом напряжение между стоком и истоком уменьшается. В результате переменное напряжение между стоком и истоком оказывается сдвинутым по фазе на 180° относительно переменного напряжения между затвором и истоком.
Для оценки работы усилительного каскада на полевом транзисторе обычно используют такие характеристики, как коэффициент усиления по напряжению и выходное сопротивление каскада. Необходимо отметить, что значения входной, проходной и выходной емкостей полевого транзистора весьма малы и обычно не превышают нескольких пикофарад. Поэтому их влиянием на работу низкочастотного усилительного каскада можно пренебречь.
Принцип действия усилительного каскада, выполненного на биполярном транзисторе n-p-n проводимости, включенном по схеме с общим эмиттером, рассмотрим на примере простейшего микрофонного усилителя, принципиальная схема которого приведена на рис. 2.2.
Рис. 2.2. Принципиальная схема простейшего микрофонного усилителя на n-p-n-транзисторе
В рассматриваемой схеме сигнал, сформированный на выходе микрофона BM1, через разделительный конденсатор С1 поступает на базу транзистора VТ1, включенного по классической схеме с общим эмиттером. Конденсатор С1 обеспечивает развязку входной цепи усилителя и выходной цепи источника сигнала (микрофон BM1) по постоянному току. При отсутствии этого конденсатора сопротивление резистора R3 совместно с малым сопротивлением перехода база-эмиттер транзистора VТ1 шунтирует выход источника сигнала. Помимо этого выходное сопротивление микрофона оказало бы неприемлемое влияние на положение рабочей точки транзистора VТ1, изменив режим его работы. Аналогичные функции выполняет разделительный конденсатор С2, обеспечивая развязку по постоянному току выходной цепи микрофонного усилителя и входных цепей подключаемых к его выходу каскадов. Через резистор R1 на соответствующий вывод электретного микрофона BM1 подается напряжение, необходимое для штатного функционирования микрофона.
При отсутствии входного сигнала на базе транзистора VТ1, включенного по схеме с общим эмиттером, присутствует напряжение смещения, формируемое делителем R2, R3 из напряжения питания. Наличие напряжения смещения обеспечивает протекание тока между коллектором и эмиттером транзистора. Величина этого тока, который обычно называют коллекторным током, зависит от соотношения величин сопротивлений резисторов R2 и R3. Изменение этого соотношения приводит к смещению рабочей точки на характеристике транзистора VТ1 и, соответственно, к изменению его режима работы.
При поступлении сигнала на базу транзистора VТ1 происходит изменение тока базы, что вызывает соответствующее изменение величины коллекторного тока. В результате по аналогичному закону происходит изменение разности потенциалов на резисторе R4, выполняющем функцию нагрузочного резистора в цепи коллектора транзистора VТ1. Как уже отмечалось, при возрастании напряжения на базе транзистора VТ1 происходит падение напряжения на его коллекторе, и, наоборот, при падении напряжения на базе, напряжение на коллекторе увеличивается. Таким образом, выходное напряжение однокаскадного транзисторного усилителя будет находиться в противофазе входному напряжению.
Стабилизация положения рабочей точки транзистора
Для того чтобы усилительный каскад работал в нормальном, штатном режиме, то есть без так называемого переусиления, на характеристике транзистора необходимо выбрать соответствующую рабочую точку, положение которой определяется величиной коллекторного тока при определенном коллекторном напряжении. Обычно в схемах усилительных каскадов с общим эмиттером напряжение на коллекторе транзистора выбирается равным половине напряжения источника питания, поскольку при таком соотношении обеспечивается достижение наибольшей амплитуды неискаженного выходного сигнала.
Величина напряжения, формируемого на коллекторе транзистора VТ1 (рис. 2.2) при одном и том же коллекторном токе, зависит от величины сопротивления резистора R4, которая в различных схемах может находиться в пределах от 1 до 100 кОм. Малое сопротивление коллекторного резистора выбирается в том случае, когда транзистор VТ1 должен работать в режиме с малым коллекторным током (в каскадах, которые должны обеспечивать низкий уровень собственных шумов). В результате амплитуда выходного тока, и соответственно, напряжения, будет малой при малом уровне шумов. Такие каскады обычно используются в качестве входных. При выборе резистора R4 с большим сопротивлением коэффициент усиления каскада увеличивается. Величина сопротивления резистора R4 в пределах нескольких килоом выбирается для усилителей напряжения, от которых требуется больший выходной ток при малом выходном сопротивлении.
При отсутствии входного сигнала ток базы, определяемый соотношением величин сопротивлений резисторов R2 и R3, инициирует протекание коллекторного тока, который часто называется током покоя. Под влиянием каких-либо внешних воздействий, например, при нагревании корпуса транзистора, ток покоя может измениться, несмотря на то, что напряжение на базе остается неизменным благодаря постоянным параметрам элементов делителя R2, R3. Увеличение коллекторного тока приводит к увеличению падения напряжения на резисторе R4, поэтому напряжение на коллекторе транзистора VТ1 уменьшится. В результате уменьшится и напряжение между коллектором и эмиттером. Для большинства применяемых в звукоусилительной аппаратуре маломощных биполярных транзисторов падение напряжения коллектор-эмиттер на несколько десятых долей вольта приводит к переходу в режим насыщения, после чего транзистор перестает реагировать на изменения входного напряжения.
Избежать подобных неприятностей помогают специальные схемотехнические решения, обеспечивающие стабилизацию положения рабочей точки транзистора. Одно из них заключается в использовании цепи отрицательной обратной связи по току за счет подключения резистора в цепь эмиттера транзистора VT1. Принципиальная схема простейшего усилительного каскада со стабилизацией рабочей точки транзистора с помощью цепи ООС по току приведена на рис. 2.3.
Рис. 2.3. Принципиальная схема микрофонного усилителя со стабилизацией рабочей точки транзистора с помощью цепи ООС по току
При увеличении коллекторного тока падение напряжения на резисторе R5 также увеличится, что при постоянном напряжении на базе транзистора VТ1 приведет к уменьшению разности потенциалов между базой и эмиттером. Как следствие, изменится положение рабочей точки транзистора, поскольку уменьшится напряжение, обеспечивающее отпирание транзистора. Транзистор прикроется, а ток базы уменьшится, что приведет к соответствующему уменьшению коллекторного тока.
Как только ток коллектора уменьшится, температура транзистора понизится, а ток коллектора будет продолжать снижаться. При этом уменьшится и падение напряжения на резисторе R5 до первоначального значения. Таким образом происходит стабилизация рабочей точки транзистора VТ1 с помощью включенного в цепь эмиттера резистора R5. Чем больше величина сопротивления резистора R5, тем стабильнее работает каскад при изменении температуры. Однако с увеличением этого сопротивления будет уменьшаться рабочее напряжение между коллектором и эмиттером транзистора VТ1.
При поступлении на вход каскада переменного сигнала (в процессе работы в режиме усиления) через резистор в цепи эмиттера помимо постоянной составляющей проходит и переменная составляющая коллекторного тока. В результате на резисторе R5 будет формироваться переменное напряжение низкой частоты, которое также будет приложено к базе транзистора VТ1, то есть через этот резистор замыкается петля отрицательной обратной связи по току. Поскольку фаза этого напряжения противоположна фазе входного напряжения усилителя, результирующее напряжение на базе транзистора VТ1 окажется уменьшенным, что приведет к понижению коэффициента усиления каскада. В то же время эта ООС обеспечивает снижение вносимых каскадом искажений, хотя и за счет снижения коэффициента усиления сигнала. Помимо этого указанная обратная связь увеличивает входное сопротивление каскада. Тем не менее, в миниатюрных транзисторных радиопередатчиках для достижения максимальной амплитуды выходного сигнала резистор R5 из схемы микрофонного усилителя часто исключается.
Для того чтобы через резистор R5 проходила лишь постоянная составляющая коллекторного тока, параллельно этому резистору в цепи эмиттера транзистора VТ1 включается электролитический конденсатор С3 сравнительно большой емкости. При этом его отрицательный вывод соединен с шиной корпуса, а положительный вывод подключен к эмиттеру транзистора VТ1, на котором присутствует низкое положительное напряжение. Через этот конденсатор постоянный ток не проходит, поэтому на положение рабочей точки транзистора VТ1 конденсатор С3 не оказывает никакого влияния. Сопротивление этого конденсатора переменному току невелико, поэтому переменная составляющая коллекторного тока свободно проходит через конденсатор С3 на шину корпуса, не создавая на нем заметного напряжения низкой частоты. Принципиальная схема такого усилительного каскада, часто называемого классическим, приведена на рис. 2.4.
Рис. 2.4. Принципиальная схема классического усилительного каскада со стабилизацией рабочей точки транзистора с помощью цепи ООС по току
При использовании в качестве источника низкочастотного сигнала электретного конденсаторного микрофона с двумя выводами принципиальная схема рассмотренного классического усилительного каскада будет выглядеть так, как показано на рис. 2.5.
Рис. 2.5. Принципиальная схема классического усилительного каскада для электретного конденсаторного микрофона с двумя выводами
При использовании электродинамического (динамического) микрофона в качестве источника НЧ-сигнала принципиальная схема рассмотренного классического усилительного каскада будет выглядеть так, как показано на рис. 2.6.
Рис. 2.6. Принципиальная схема классического усилительного каскада для динамического микрофона
Особого внимания заслуживает вопрос влияния на характеристики микрофонного усилителя величины напряжения питания. Сразу хотелось бы предупредить, что использование источников питания (батареек или сетевых адаптеров), выходное напряжение которых больше установленного для конкретного устройства напряжения питания категорически не допускается. Однако в радиолюбительской практике довольно часто возникает ситуация, когда под рукой нет необходимого источника. Поэтому при проведении экспериментов с транзисторными микрофонными усилителями в домашних условиях, если требуется значительно увеличить напряжение питания конструкции, предварительно следует уточнить по справочнику, соответствует ли величина напряжения коллектор-эмиттер используемого транзистора измененным условиям. Также следует проверить и рабочие напряжения электролитических конденсаторов. При необходимости эти элементы следует заменить.
Помимо этого любое изменение величины питающего напряжения приводит к изменению положения рабочей точки транзистора. Поэтому при изменении напряжения питания микрофонного усилителя следует соответствующим образом изменить и величину хотя бы одного из сопротивлений делителя R1, R2. Для резистора R1 действует правило, по которому его сопротивление при увеличении напряжения питания также следует увеличить, а при уменьшении – соответственно уменьшить. Для резистора R2 действует иное правило, по которому его сопротивление при увеличении напряжения питания следует уменьшить, а при уменьшении – увеличить.
Нередко в микрофонных усилителях в эмиттерной цепи транзистора VТ1 вместо одного резистора используется цепочка, состоящая из двух включенных последовательно резисторов. Принципиальная схема такого усилителя, выполненного на n-p-n транзисторе, приведена на рис. 2.7. В данном случае в эмиттерной цепи транзистора VТ1 последовательно включены резисторы R4 и R5. При этом положительный (верхний по схеме) вывод конденсатора С3 подключается к точке их соединения.
Рис. 2.7. Принципиальная схема микрофонного усилителя с разделенным сопротивлением в цепи эмиттера транзистора
В рассматриваемой конструкции в работе схемы стабилизации рабочей точки транзистора VТ1 участвуют оба резистора. В то же время по высокой частоте блокирован лишь резистор R5, а резистор R4 обеспечивает отрицательную обратную связь по току.
Коэффициент усиления данного микрофонного усилителя зависит от величин сопротивлений резисторов R4 и R5, его значение может изменяться от 3 до 100. Например, при R4 = 1,5 Ом и R5 = 1,2 кОм коэффициент усиления будет составлять 100 при входном сопротивлении RВХ = 3,5 кОм. При увеличении сопротивления резистора R4 до 56 Ом коэффициент усиления рассматриваемого каскада будет равен 30, а входное сопротивление RВХ возрастет до 4 кОм. При R4 = 220 Ом и R5 = 1 кОм коэффициент усиления снизится до 10 при RВХ = 6 кОм. Дальнейшее увеличение сопротивления резистора R4 до 680 Ом при уменьшении сопротивления резистора R5 до величины 470 Ом приведет к снижению коэффициента усиления данного каскада до 3, при этом входное сопротивление RВХ возрастет до 7 кОм. Значения выходного сопротивления данного усилителя при указанных значениях сопротивлений резисторов R4 и R5 неизменны и составляют 2 кОм.
Необходимо отметить, что данный усилительный каскад вполне надежно работает при снижении напряжения питания до 6 В.
В микрофонных усилителях миниатюрных радиопередающих устройств широко применяются и другие схемотехнические решения, обеспечивающие стабилизацию рабочей точки транзистора. Довольно часто используется усилительный каскад со стабилизацией рабочей точки транзистора с помощью цепи отрицательной обратной связи по напряжению. При этом резистор ООС подключается между коллектором и базой транзистора VT1. Принципиальная схема микрофонного усилителя со стабилизацией рабочей точки транзистора с помощью цепи ООС по напряжению приведена на рис. 2.8.
Рис. 2.8. Принципиальная схема микрофонного усилителя со стабилизацией рабочей точки транзистора с помощью цепи ООС по напряжению
Если по каким-либо причинам произойдет увеличение коллекторного тока транзистора VT1, то одновременно увеличится и падение напряжения на резисторе R3, что приведет к соответствующему уменьшению напряжения на коллекторе транзистора VT1. В результате уменьшится и напряжение, подаваемое на базу транзистора через резистор R2. Ток, протекающий через переход база-эмиттер, станет меньше, соответственно уменьшится и коллекторный ток транзистора. Аналогичным образом, при уменьшении коллекторного тока транзистора VT1 одновременно уменьшится и падение напряжения на резисторе R3, что приведет к соответствующему увеличению напряжения на коллекторе транзистора. В результате увеличится напряжение, подаваемое на базу транзистора VT1 через резистор R2. Ток, протекающий через переход база-эмиттер, станет больше, соответственно увеличится и коллекторный ток транзистора.
Как и в рассмотренных ранее конструкциях для получения максимальной амплитуды неискаженного усиленного сигнала на выходе микрофонного усилителя необходимо, чтобы напряжение на коллекторе транзистора VT1 составляло примерно половину от величины напряжения питания каскада. Соотношение коллекторного и базового токов выражает коэффициент усиления транзистора по току. Значение тока базы транзистора VT1 определяется величиной сопротивления резистора R2. Таким образом, падение напряжения на резисторе R2 также должно быть равно половине величины напряжения питания каскада за вычетом напряжения на переходе база-эмиттер транзистора VT1.
При сравнительно больших напряжениях питания (от 3 В до 12 В и выше) падением напряжения на переходе база-эмиттер транзистора можно пренебречь. В этом случае величина сопротивления резистора R2 может быть рассчитана как произведение величины сопротивления резистора R3 и коэффициента усиления транзистора VT1 по току. На практике рекомендуется выбирать величину сопротивления резистора R2 немного меньше расчетной. При напряжении питания усилителя в пределах от 1 В до 3 В пренебрегать падением напряжения на переходе база-эмиттер не следует, потому сопротивление резистора R2 необходимо уменьшить.
Рис. 2.9. Принципиальная схема микрофонного усилителя с усовершенствованной схемой стабилизации рабочей точки транзистора
В микрофонных усилителях, эксплуатировать которые предполагается в экстремальных условиях, например, при значительных колебаниях температуры окружающей среды или существенных колебаниях напряжения питания, нередко применяется схема стабилизации рабочей точки транзистора, изображенная на рис. 2.9.
Микрофонный усилитель на полевом транзисторе
В микрофонных усилителях миниатюрных радиопередающих устройств широко применяются и полевые транзисторы. При этом резистивные усилители на полевых транзисторах обеспечивают согласование источников сигнала, имеющих большое внутреннее сопротивление, с входом каскадов, обладающих относительно небольшим значением входного сопротивления. Каскады усиления на полевых транзисторах чаще всего выполняют по схеме с общим истоком.
Принципиальная схема предназначенного для работы с электретным микрофоном простейшего микрофонного усилителя, выполненного всего на одном полевом транзисторе, приведена на рис. 2.10. Усиление данной конструкции составляет не менее 20 дБ.
Рис. 2.10. Принципиальная схема микрофонного усилителя на полевом транзисторе
В рассматриваемой схеме сформированный микрофоном ВМ1 сигнал через разделительный конденсатор С1 подается на вход усилительного каскада, выполненного на полевом транзисторе VТ1, который включен по схеме с общим истоком.
Если на затвор транзистора VТ1 подать переменное напряжение малой величины, то при отрицательной полуволне этого напряжения ток, протекающий через транзистор, будет уменьшаться, а при положительной полуволне – увеличиваться по соответствующему закону. В результате аналогичным образом будет изменяться и напряжение на резисторе R3. Форма этого переменного напряжения повторяет форму входного сигнала, однако величина напряжения на стоке транзистора VТ1 будет значительно больше, чем величина сигнала на его затворе.
Для формирования напряжения смещения, подаваемого на затвор транзистора VТ1, в данном случае используется так называемая схема с автоматическим истоковым смещением. Напряжение автоматического смещения формируется при протекании тока стока транзистора VТ1 через резистор R4. Это напряжение подводится к затвору транзистора через резистор утечки R2, который также обеспечивает сток зарядов, накапливающихся на затворе. Режим работы данного усилительного каскада определяется величиной сопротивления резистора R4.
При отсутствии входного сигнала через транзистор VТ1 протекает ток стока, называемый током покоя. Этот ток обеспечивает формирование на резисторе R4 определенной разности потенциалов, то есть на верхнем по схеме выводе этого резистора будет положительное напряжение небольшой величины. Между затвором и шиной корпуса, имеющей нулевой потенциал, включен резистор R2, общее сопротивление которого несоизмеримо больше сопротивления резистора R4. В результате на затворе транзистора VТ1 формируется потенциал, который по сравнению с малым положительным потенциалом истока будет более отрицательным. Это небольшое отрицательное напряжение на затворе обеспечивает частичное закрытие транзистора, при этом устанавливается меньшая величина тока стока. Таким образом, величина тока покоя транзистора VТ1 зависит от сопротивления резистора, включенного в его цепь истока, то есть в данном случае от сопротивления резистора R4. Чем больше величина сопротивления резистора R4, тем большее отрицательное напряжение смещения подается на затвор транзистора VТ1. Поэтому изменением сопротивления резистора R4 подбирается такое напряжение смещения, при котором обеспечивается работа транзистора на линейном участке характеристики.
Конец ознакомительного фрагмента.