Вы здесь

Шелест гранаты. 2. Ветер в стали (Александр Прищепенко, 2012)

2. Ветер в стали

2.1. «Изо всех сил старайтесь стать образованными, воспитанными людьми и берегите себя»

Тикубасё. 9 февраля 1383 года. Третий год Эйтоку


Учиться в МИФИ было трудно. Неудовлетворительные оценки на первых курсах не миновали многих, а треть поступивших была отчислена. Однажды на экзамене обратил на себя внимание студент, монотонно бубнящий ответ. Лицо экзаменатора вытянулось от удивления, он заглянул в учебник, потом начал шептаться с сидевшими рядом коллегами. Удивляться было чему: студент заучил наизусть пару сотен страниц с многочисленными формулами! Этот подвиг, воистину достойный Геракла, пропал втуне: парню не зачли экзамен, потому что решить качественные задачи и ответить на дополнительные вопросы он не смог. Острое желание несмотря ни на что «стать ученым» привело некоторых в психиатрические клиники. Но успешная учеба еще не является гарантией успеха в дальнейшем: можно разбираться в ходе рассуждений тех, кто заложил основы дисциплины, но не быть способным к синтезу – творческому объединению их идей со своими собственными.

Счастливчики, сочетавшие уникальную память и интеллект, встречались: один из приятелей на спор пролистал несколько десятков страниц заведомо незнакомой ему книги и потом свободно воспроизводил любой из абзацев. Я же, не обладая выдающейся памятью, на экзаменах пользовался шпаргалками. Обнаружение шпаргалки преподавателем влекло запрет на повторную сдачу экзамена во время сессии, но за все годы пришлось быть пойманным лишь раз. Избежать последствий огромных нагрузок помогали занятия спортом, выступления за сборную команду МИФИ. Не обходилось и без «спорта сильных и смелых», как на условном языке именовался преферанс. Игра в карты строго преследовалась ректоратом, да и правители страны – по давней традиции, людишки недалекие – подражали вкусам Ленина, считавшего игру в карты предосудительной, но обожавшего шахматы. Сбросить напряжение удавалось, конечно, и в каникулы, которые я проводил на спортивных сборах, а также – отдыхая с родителями (летом 1968 г. – в закарпатском селе Камьяница).

…В тот год обстановка настораживала: в окрестных лесах стояли солдатские палатки и бронетехника, поход за грибами был чреват встречей с патрулем и нудными расспросами «откуда-куда-зачем». Однажды, боясь опоздать на автобус, идущий в Ужгород, я в спешке натянул отцовские форменные брюки, в которых он ходил по грибы. В «вароше»[23] ко мне подошел измученный поисками, одетый в гражданское, человек и, приглушенно сказав «здравия желаю», спросил, как пройти к штабу корпуса. Его ввели в заблуждение брюки и моя короткая стрижка. За обедом, рассказав о случае, я заметил тень, промелькнувшую на отцовском лице. Когда нас не могла услышать мама, он кратко прокомментировал: «В мирное время корпуса формируют только в Особый период»[24].

В ночь на 21 августа спать помешал рев моторов на шоссе и вонь сожженного горючего – войска двинулись в Чехословакию. Их поток не прервался и утром: вперемежку шли подразделения танков Т-54/55 (не самых новых) и совсем уж раздолбанные, груженные всяким хламом, мобилизованные в колхозах автомашины. Барражировали парами фронтовые бомбардировщики Ил-28 (тоже – устаревшие). Поняв, что мне довелось стать свидетелем исторических событий, я собрал газеты за эти дни (рис. 2.1). Войска, оказывается, вводились, поскольку «…Опасность братоубийственной борьбы, которую подготовила реакция и которая была бы трагическим повторением Липан[25], поставила нас перед необходимостью принять историческое решение – обратиться за помощью к Советскому Союзу и к другим братским социалистическим странам. Наши союзники предоставили нам эту помощь так же, как в 1945 году, когда речь шла о том, быть нам или не быть…». Радовал резкий рост бдительности. Если члены «народного правительства Финляндии» 1939 г. опрометчиво были названы поименно, то теперь империалистическим наймитам оставалось только совершить каппукку[26], прочитав подпись к Воззванию: «Группа членов ЦК КПЧ, Правительства и Национального собрания, которые обратились за помощью к правительствам и коммунистическим партиям братских стран»…




Рис. 2.1


Слева: «Советских воинов, оказывающих братскую помощь, повсюду радостно встречали дети Чехословакии». Справа: «Обнаруженный советскими воинами склад оружия, которым снабжали реакцию ее зарубежные хозяева». Видно, у «зарубежных хозяев» склады ломились от ручных пулеметов Дегтярева (на переднем плане), станковых – Горюнова, а также – автоматов Калашникова


…Напряженность учебы несколько спала только через три года: в расписании появилось много специальных предметов, для студентов организовывали экскурсии по институтам Средмаша, которых было немало в Москве.

2.2. Уран, нейтроны мгновенные и запаздывающие, быстрые и тепловые

…Руды урана выглядят очень красиво (рис. 2.2). Ядро урана содержит 92 положительно заряженных протона, как и все тяжелые металлы, он вреден для человека. К тому же уран очень медленно распадается, испуская альфа-частицы (ядра гелия). Пробег их в конденсированных веществах – десятки микрон и, если залить кусок урана прозрачным компаундом, получается вполне безопасный сувенир. Кроме протонов, ядро урана включает и нейтроны, число которых может быть различным: в природном уране большинство ядер содержат по 146 нейтронов и лишь 0,7 % – по 143 (ядра с другим числом нейтронов в естественных условиях чрезвычайно редки́). Ядра с равными количествами протонов, но различными – нейтронов, называют изотопами. Ядерные свойства изотопов, как правило, различаются очень существенно[27], а вот химические – идентичны и разделить изотопы химическими методами нельзя, но различие в массах позволяет сделать это физическими методами.

…Припомним попытки очистить запачканные штаны или юбку. Использование бензина или другого растворителя часто приводит к тому, что после его высыхания на светлой материи вместо компактного пятна остается отчетливо различимый, расплывшийся круг (а то – и несколько, концентрических).






Рис. 2.2


Урановые руды, слева направо: друза кристаллов желтого отунита, гуммит и смолка. Обычно они содержат менее процента урана


Все наверняка слышали о броуновском, хаотическом движении молекул, а многие – о том, что при данной температуре скорость движения молекулы тем выше, чем меньше ее масса[28]. Если растворитель испаряется достаточно интенсивно, он служит «фотофинишем» – фиксирует результат гонки молекул. Возьмите лупу и рассмотрите на ваших изгаженных штанах (хорошо, если они белые) результат этого забега. Произошло вот что: раствор, благодаря капиллярным явлениям, просачивался по тонким зазорам между ворсинками материи. Растворенные загрязнения вынуждены были пройти довольно большие расстояния по таким узкостям, легкие компоненты при этом опередили тяжелые, а испарение растворителя законсервировало распределение. Это явление называют хроматографией. Его можно наблюдать на фильтровальной бумаге, сначала капнув растворитель с загрязнениями, а потом – добавляя по каплям в центр пятна чистый растворитель (рис. 2.3). Когда бумага высохнет, ее можно по концентрическим окружностям, определяющим границы разделенных зон, разрезать, став обладателем обогащенных различными компонентами кусочков…


Рис. 2.3

Разделение методом хроматографии на промокательной бумаге синих чернил марки «Радуга-2»:

а) на бумагу капнули чернила, растворителя в них недостаточно, он быстро испарился, заметного разделения нет;

б) в центр чернильного пятна шприцем добавили растворителя (воды), разделение началось;

в) дальнейшее добавление воды привело к тому, что самая быстрая (зеленоватая) компонента настолько опередила другие, что между ней и компонентой с промежуточной скоростью диффузии образовался разрыв (светлая область, в которой, вероятно, присутствует в основном растворитель). Совсем уж «медленная» компонента занимает область в центре хроматограммы, более темную, чем остальные


В процессе разделения уранов есть много общего с хроматографией. Сначала их природную смесь переводят в газообразное состояние, соединяя с фтором, потом – прокачивают через бесчисленные пористые перегородки, так что молекулы гексафторида более легкого изотопа постепенно опережают тяжелые. Обогащенный легким изотопом газ собирают и выделяют из него металл. Разделение идет медленно, потому что массы (235 и 238 единиц), а значит, и скорости теплового движения этих изотопов урана различаются незначительно.

Более эффективен процесс их разделения в центрифугах (рис. 2.4), работа которых напоминает отжимание белья в стиральных машинах, но автор воздержится от описания демонстрационного опыта, поскольку при этом возможен выход из строя ценного в любой семье аппарата. Да, к тому же, и метод газовой диффузии применяется до сих пор.




Puc. 2.4


Слева, вверху: уран – серебристый на свежем изломе металл, который на воздухе сначала покрывается налетом цвета спелой сливы, а затем и вовсе чернеет. Ниже: центрифуга, предназначенная для разделения газообразных гексафторидов урана. Справа: цех центрифуг на заводе под Екатеринбургом.

Желающие могут прикинуть, через сколько центрифуг (ступеней разделения) проходят газы, пока будет выделен достаточно «облегченный» гексафторид. Из разделенных газов опять получают металлические ураны: «оружейный» и «отвальный»


Заводы, где из природного урана извлекают легкий изотоп, занимают площади в многие квадратные километры. Миллиарды долларов расходуются, чтобы разделить «близнецов», неотличимых ни по внешнему виду, ни химическим анализом. Но их ядерные «характеры» – совершенно разные.

Процесс деления U238 – «платный»: прилетающий извне нейтрон должен «принести» с собой энергию более МэВа. A U235 «бескорыстен»: для возбуждения и последующего распада от пришедшего нейтрона ничего не требуется, вполне достаточно его энергии связи в ядре (рис. 2.5). При попадании нейтрона в способное к делению ядро, образуется неустойчивый «компаунд», но очень быстро (через 10-23 – 10-22 секунды) такое ядро разваливается на два осколка, неравных по массе и испускающих новые нейтроны (по 2–3 в каждом акте деления, процесс этот вероятностный), и, благодаря им, со временем может «размножаться» число делящихся ядер – эта реакция называется цепной. В U235 цепь развивается, а кинетическая энергия осколков деления на много порядков превышает выход энергии при любом акте химической реакции, в которой состав ядер не меняется.

Продукты деления нестабильны и еще долго «приходят в себя», испуская излучения самых различных видов, в том числе – те же нейтроны. Короткоживущими осколками нейтроны испускаются спустя 10-16-10-14 секунды после развала компаунд-ядра и такие нейтроны называют мгновенными. Но некоторые нейтроны испускаются через вполне ощутимое человеком время (до десятков секунд). Эти нейтроны называют запаздывающими, доля их по сравнению с мгновенными мала (менее процента).


Рис. 2.5


В ядерной физике оказалась весьма плодотворной модель «жидкой капли», в соответствии с которой действие внутриядерных сил приводит к явлению, напоминающему поверхностное натяжение. Возбужденное попаданием нейтрона в U235 компаунд-ядро U236 не разваливается сразу, в нем сначала образуется перетяжка (верхний рисунок), а затем происходит деление на осколки, как правило, неравной массы. Процесс этот – вероятностный, а пример показывает, что делящаяся в первом поколении, растянувшаяся «капля» вот-вот распадется на ядра бария и криптона. Из образовавшихся после распада трех мгновенных нейтронов деления один (в центре) «промахнулся», а два других – положили начало второму поколению, с образованием пар цезия и рубидия, ксенона и стронция. На графике – сечения реакции деления U233 на нейтронах разных энергий. Вероятность того, что медленный нейтрон вызовет деление, на порядки превышает ту же вероятность для быстрого нейтрона


Свободные нейтроны активно взаимодействуют с любыми ядрами, причем весьма разнообразно. Вероятность взаимодействия описывают «сечениями», измеряемыми барнами (барн равен 10-24 см2), уподобляя то или иное ядро мишени соответствующей площади для летящего нейтрона. Одно и то же ядро может представлять различной площади мишень для разных сценариев взаимодействия: например, отскок нейтрона от ядра может быть намного более вероятен, чем его захват ядром с испусканием гамма кванта. Таких сценариев очень много и по совокупности информации о них можно «узнать» то или иное ядро так же точно, как по отпечаткам пальцев – человека.

Образованные делением частицы при многочисленных столкновениях с окружающими атомами отдают им свою энергию, повышая, таким образом, температуру вещества. После того как в сборке с делящимся веществом появились нейтроны, мощность тепловыделения может возрастать или убывать, а может быть и постоянной. Параметры сборки, в которой число делений в единицу времени не растет, но и не уменьшается, называют критическими. Критичность сборки может поддерживаться и при большом, и при малом числе нейтронов, находящихся в ней в данный момент времени. В зависимости от того, больше или меньше это число, больше или меньше и мощность тепловыделения. Тепловую мощность увеличивают, либо «подкачивая» дополнительные нейтроны извне в критическую сборку, либо делая сборку сверхкритичной (тогда дополнительные нейтроны «поставляют» все более многочисленные «поколения» делящихся ядер).

Образующиеся при делении нейтроны часто пролетают мимо окружающих ядер, не вызывая повторного деления. Чем ближе нейтрон к свободной поверхности, тем больше у него шансов вылететь из делящегося материала и никогда не возвратиться обратно (подумайте, кто из суетящейся у обрыва толпы скорее других свалится в пропасть!). Форма сборки, сберегающей нейтроны в наибольшей мере – шар: для данной массы вещества он имеет минимальную поверхность. Ничем не окруженный (уединенный) шар из 94 %-ного U235 без полостей внутри становится критичным при массе в 49 кг и радиусе 85 мм. Если же сборка из такого же урана – цилиндр с длиной, равной диаметру, она становится критичной при массе в 52 кг, а для длинного цилиндра, с высотой восьмикратно превосходящей диаметр, эта масса превысит 100 кг[29].

Понятно, что внешнюю поверхность сборки можно уменьшить и увеличив плотность ее вещества, поэтому-то взрывное сжатие, не меняя количества делящегося материала, тем не менее, может переводить сборку из до критического состояния в сверхкритическое.

И, наконец, о роли энергии нейтронов. «Отскакивая» от ядер, нейтроны передают им часть своей энергии, тем большую, чем «легче» (ближе им по массе) ядра. Чем больше столкновений претерпевают нейтроны, тем более они «замедляются», и, наконец, приходят в тепловое равновесие с окружающим веществом («термализуются»). Скорость «тепловых» нейтронов – 2200 м/с, что соответствует энергии 0,025 эВ. Время термализации (миллисекунды) ощутимо человеком, но важно помнить, что за такое время быстрые нейтроны снижают свою энергию на много порядков, до «тепловых» значений; в разы же они теряют ее всего за несколько столкновений, что займет доли пикосекунды!. Нейтроны могут ускользнуть из замедлителя, захватываются его ядрами, но с уменьшением энергии их способность вступать в реакции существенно возрастает, поэтому нейтроны, которые «не потерялись», с лихвой компенсируют убыль численности.

Так, если шар делящегося вещества окружить замедлителем, многие нейтроны покинут замедлитель или будут поглощены в нем, но будут и такие, которые, потеряв свою энергию, вернутся в шар («отразятся») и с гораздо большей вероятностью вызовут акты деления (рис. 2.5). В процессе обмена нейтронами между замедлителем и делящимся веществом установится усредненная, пониженная в сравнении с той, с которой они рождаются, энергия нейтронов, вызывающих деление. Если шар окружить слоем бериллия толщиной 25 мм, то можно сэкономить 20 кг U235 и все равно достичь критического состояния сборки. Заплатить за такую экономию придется временем: каждое последующее поколение нейтронов, прежде чем вызвать деление, должно сначала замедлиться. Эта задержка уменьшает число поколений нейтронов, рождающихся в единицу времени, а значит, энерговыделение «затягивается». Чем меньше делящегося вещества в сборке, тем больше требуется замедлителя для развития в ней цепной реакции, а деление идет на все более низкоэнергетичных нейтронах. В предельном случае, когда критичность достигается только на совсем уж тепловых, например, в растворе солей урана в воде[30], масса сборок – сотни граммов, но раствор просто периодически вскипает. Выделяющиеся в объеме пузырьки пара уменьшают среднюю плотность делящегося вещества, и цепная реакция прекращается. Затем пузырьки, всплывая, покидают жидкость и вспышка делений повторяется. Можно, конечно, закупорить сосуд, и тогда пар высокого давления разорвет его. Это будет типичный тепловой взрыв, опасность которого заключается не в мощности, а в радиационных эффектах.

Вот как описан в книге Р. Юнга «Ярче тысячи солнц» закончившийся трагично эксперимент доктора Слотина, правда, не с ураном, а другим делящимся веществом – плутонием (рис. 2.6).

«Задача состояла в том, чтобы достигнуть, но не превзойти критической точки самого начала цепной реакции, которую Слотин должен был немедленно прерывать, раздвигая полушария. Если бы он «проскочил» критическую точку или недостаточно быстро прервал начавшуюся реакцию в самом ее начале, то масса превзошла бы критическую величину и последовал бы ядерный взрыв…




Рис. 2.6


Слева: приспособления для отливки заготовки заряда из плутония. Правее: так обращался с содержащей плутоний сборкой доктор Слотин (фотография взята из отчета комиссии, расследовавшей одну из первых в истории ядерных аварий). Снимок справа вверху дает представление о такой аварии. Сфотографирован образец плутония, правда, не оружейного, как в опыте Слотина, а изотопа с массовым числом 238. Различия в ядерных свойствах «плутониев» даже более велики, чем «уранов»: в Pu238 не может возникнуть цепная реакция деления, но другие самопроизвольные ядерные реакции протекают столь интенсивно, что металлический Pu238всегда пребывает в раскаленном состоянии; оружейный Pu239 сравнительно малоактивен (хотя его температура и превышает комнатную на несколько градусов), зато – способен к цепной реакции, которая при определенных условиях может быть взрывной. В опыте Слотина она такой не стала, но Pu239 раскалился, став на несколько секунд похожим внешне на Pu238. Еще один «беспокойный» изотоп – Pu240 – испускает нейтроны спонтанно и на четыре порядка более интенсивно, чем «оружейный» собрат. Высокий «примесный» нейтронный фон не позволяет применять полученный в реакторе плутоний в зарядах ствольного типа, таких, как примененный в бомбе, сброшенной на Хирошиму


…Неожиданно его отвертка соскользнула. Полушария сошлись слишком близко, и масса стала критичной. Мгновенно все помещение наполнилось ослепительным блеском. Слотин вместо того, чтобы укрыться и, возможно, спасти себя, рванул голыми руками оба полушария в разные стороны и прервал тем самым цепную реакцию».

Надеюсь, читателю очевидны «ляпы»: оказывается, человек в состоянии движениями рук прервать ядерный взрыв, а уж если таковой неминуем – может «укрыться» (уж не спрятавшись ли под стол?).

Авторам книги «Критические параметры систем с делящимися веществами и ядерная безопасность» удалось избежать безграмотного пафоса.

«Лос-Аламос, 1946 г. Случай неконтролируемой вспышки цепной реакции произошел на сборке, состоящей из плутониевой сферы[31], облицованной никелем толщиной 0,13 мм (плотность плутония равнялась 15,7 г/см, общий вес – 6,2 кг), окружаемой бериллиевыми полуоболочками. Экспериментатор, регулируя зазор между полуоболочками отверткой, неожиданно выронил ее. Бериллиевые полуоболочки сомкнулись, что явилось причиной вспышки цепной реакции, в результате которой в сборке произошло 3 ·1015 делений. Физик, проводивший эксперимент, умер через девять дней в результате переоблучения дозой 900 рентген».

Оружейник-ядерщик, мельком взглянув на характеристики «сферы», скажет, не раздумывая: сборка была изготовлена для заряда, где одно поколение быстрых нейтронов сменяется другим, более многочисленным, за неимоверно короткое, неуловимое живыми существами время. Не будучи окружена замедлителем, «сфера» была подкритичной, безопасной. В присутствии замедлителя процесс, начавшись либо с нейтрона, рожденного в спонтанных реакциях всегда присутствующих в оружейном плутонии примесных ядер, либо – что менее вероятно – со случайно попавшего в сборку фонового[32] нейтрона, далее происходил на частицах, каждое поколение которых долго замедлялось, и потому не был взрывным. Цепь делений угасла сама, когда сборка раскалилась, а значит – расширилась. Дальнейшие действия физика предотвратили два неприятных последствия: другую вспышку делений после остывания сборки и загрязнение всего окружающего плутонием, который, раскалившись, мог и сбросить с себя защитную оболочку из никеля[33].

Вероятно, целью опыта было выяснить, безопасно ли монтировать сборку в заряд, окружая при этом замедляющим нейтроны бериллием. Пошли на жутковатый эксперимент потому, что во все времена далеко не все, что необходимо для реализации новых идей, можно было рассчитать. Упоминание «ослепительного блеска» следует отнести на счет эмоциональной реакции свидетелей аварии. На самом деле, это было неяркое фиолетовое свечение ионизованного гамма квантами воздуха (обычно в такой ситуации ощущается и сильный запах озона).

Важный вывод, который следует из разобранных примеров: излюбленный журналистами параметркритическая массасам по себе не характеризует способность к взрыву. Для одного и того же делящегося вещества критические массы могут отличаться на порядки (в зависимости от его формы, плотности, присутствия замедлителя), причем, даже если такая масса собрана и цепная реакция происходит, взрывной она бывает отнюдь не всегда.

Ранее упоминавшийся U235 ключевую роль во многих областях уступил плутонию 239, ядро которого при делении испускает в среднем 2,895 нейтрона – больше, чем U235(2,452). К тому же в плутонии ниже сечения нейтронных реакций, не вызывающих деления.

Плутоний многолик: в разных интервалах температур он может существовать в фазах числом в полдюжины, с плотностями от 14,7 до 19,5 г/см3. «Тяжелый» плутоний предпочтителен во многих отношениях, за исключением одного: в этой (альфа) фазе он очень хрупок. Поэтому легирующей присадкой фиксируют дельта фазу[34], проигрывая в плотности чуть более 20 %, но получая пластичный и хорошо обрабатываемый металл. Уединенный шар Pu239 становится критичным при почти втрое меньшей массе, чем шар U235, а главное – при меньшем радиусе, что очень важно, поскольку позволяет снизить габариты критической сборки.

Впрочем, «двести тридцать третий» изотоп урана позволяет достичь критичности при массе сборок меньшей, чем в случае плутония, правда, ненамного. И получают его при облучении нейтронами тория, которого в земной коре содержится втрое больше, чем урана. Но U233 не вытеснил плутоний: уж очень интенсивно испускает гамма кванты сопутствующий ему изотоп с массовым числом 232. Брать в руки U233 – «чревато».

Известны и другие делящиеся изотопы. В 60-х годах из них грозились сделать «атомные пули», но когда их действительно выделили в осязаемых количествах и исследовали, оказалось, что «оружейные» их преимущества сомнительны, а стоимость – умопомрачительна[35].

…От пуль «страшной разрушительной силы» пришлось защищаться и автору – в 90-х годах, на заседании комиссии, созданной для рассмотрения изобретения, связанного, правда, не с делением, а с применением так называемого «холодного синтеза», о котором тогда верещали газетные заголовки. Синтезом называют процесс слияния легких ядер. О настоящем, протекающем при огромных температурах и сопровождаемом выделением значительной энергии, синтезе речь впереди, а изобретение касалось «холодного», якобы возможного при температурах комнатных: изобретатели обещали «стреляя из пулемета, поливать противника стамиллиметровыми снарядами».

«Холодный синтез» считало шарлатанством большинство авторитетов в области ядерной физики, но к их мнению в подобных ситуациях надо относиться с осторожностью, потому что человеческая психика устроена так, что вторжение на свою территорию, будь то квартира или возделываемое поле – воспринимается с крайним неудовольствием. Правда, наука не принадлежит кому-либо лично, но это унылое утверждение верно лишь формально, а на самом деле – парадигма «Земля принадлежит тем, кто ее обрабатывает»[36] сидит одинаково крепко как под крестьянским треухом, так и (пусть и в слегка отредактированном виде) под академической шапочкой.

Теоретики обычно стремятся оценить осуществимость предложения, опираясь на известные законы, но дело в том, что и верные законы могут «работать» по-разному, в зависимости от формулировки задачи. И потом: даже если и задача сформулирована и все преобразования проделаны безупречно – как быть с численными значениями величин, от которых зависит ответ «да, возможно» или «нет, невозможно»? Если все они точно известны – есть ли в предложении новизна? А если их приходится выбирать, руководствуясь интуицией, вряд ли такой метод отличается от того, сущность которого можно сформулировать как: «Рожа мне его не нравится…» или: «С такими ногами, девушка, в стриптизерки надо пойти, а не по комиссиям шляться…»

Автор прикинул, противоречит или нет рассматривавшееся предложение ранее известным, проверенным фактам. Доказательства, представленные изобретателями, при этом во внимание, конечно, не принимались: на столе лежали броне плиты с отверстиями, в которые можно было просунуть кулак, но ведь такой результат можно получить и не от «пуль холодного синтеза», а просто прилепив к плите кусок пластита и приладив к нему детонатор…

В обеденный перерыв пришлось съездить домой за книгой Глесстона «Действие ядерного оружия», а после перерыва – попросить специалистов по ядерным реакциям отдохнуть и задать изобретателям вопросы, проверяя, правильно ли занесены в протокол ответы на них.

В: Вы утверждаете, что источником энергии у вас является синтез, неважно – «холодный» или «горячий»?

О: Да.

В: Согласны ли вы, что в каждом акте синтеза выделяется свободный нейтрон?

О: Да.

В: Верно ли, что энерговыделение при взрыве вашего устройства эквивалентно взрыву нескольких килограммов ВВ?

О: Да.

В: У меня в руках книга Глесстона, там приведены данные об энергии, выделяющейся в акте синтеза – 17 Мэв, что соответствует 2,7-10-12 Дж, вы согласны?

О: Да.

В: А где лично вы находились при проведении опытов?

О: В блиндаже, метрах в десяти. А какое это имеет значение?

Имело это такое значение, что в каждом из опытов должно было выделиться по 1019-1020 нейтронов: достаточно было поделить заявленное значение энерговыделения в опыте на энерговыделение в одном акте синтеза, чтобы в том убедиться. В десяти метрах от смертельной дозы нейтронов не мог спасти ни один блиндаж.

Все стали мусолить книгу, раздалось неуверенное беканье изобретателей, что, может, у них и «не выделялись нейтроны», на что последовал заготовленный ответ: «Тогда вам надо не размениваться на прикладные мелочи, а сначала заявить об открытии совершенно нового класса ядерных реакций». Далее диалог продолжался вполне предсказуемо.

– Мы не намерены вступать в споры об открытии, есть эффект – и всё!

– Тогда следует продемонстрировать на полигоне, как и чем проделываются дырки в бронеплитах, а не затевать дискуссии о так называемом холодном синтезе…

Конечно, на этом активность первопроходцев не иссякла, впоследствии до автора доходили отголоски скандалов на эту тему, но на заседания комиссий его больше не приглашали.

Механические поражения в результате взрывных эффектов ядерных реакций начинают превалировать над радиационными, если энерговыделение в сборке превысит несколько тераджоулей (что соответствует примерно килотонне тротилового эквивалента)[37]. Если бы даже «атомные пули» и были созданы, то такое мини-оружие по всем меркам было бы ядерным и после его применения остались бы неоспоримые улики: продукты реакций и наведенная нейтронами радиоактивность, а это дало бы противнику право ответить на «пулеметные» экзерциции полноценным ядерным ударом…

.. В НИИ авиационной автоматики (НИИАА, позднее – ВНИИА) я попал по распределению – для выполнения дипломной работы. Чтобы понять принципы действия «авиационной автоматики», вернемся к нашим сборкам.

Поверхность сборки (рис. 2.7а), содержащей плутоний («черная сердцевина»), искусственно увеличивают, выполняя ее в форме шарового слоя (полой внутри) и заведомо подкритичной, даже – и для тепловых нейтронов, даже – и после окружения ее замедлителем

(слой желтоватого цвета). Вокруг сборки из очень точно пригнанных блоков взрывчатки монтируют заряд, также образующий шаровой слой. Читатель и сам догадывается, для чего нужен взрыв: чтобы рвать, метать, деформировать. Но чтобы сберечь нейтроны, надо и при взрыве хоть и уменьшить радиус сборки, но сохранить ее благородную форму шара, для чего подорвать слой взрывчатого вещества одновременно по всей его внешней поверхности, обжав сборку равномерно со всех сторон. Для этого служит детонационная разводка из поликарбоната – также в форме шарового слоя, плотно прилегающего к заряду взрывчатки.


Рис. 2.7


Анимация: перевод сборки в сверхкритическое состояние при имплозии. Справа – «система многоточечного инициирования»: тонкая полоска целлулоида с обернутой вокруг нее нихромовой проволокой, взятой из «сгоревшего» паяльника. Эта полоска укладывается по периферии «заряда» (оранжевого цвета) и при подаче тока инициирует реакцию в бихромате по внешней поверхности


…Предположим, у нас есть всего один детонатор, но кроме него – взрывчатка, по консистенции напоминающая пластилин, причем скорость ее детонации очень стабильна. Попробуем сначала одновременно «развести» детонацию только в две точки. Сначала просверлим в нужных местах два отверстия. Далее, взяв циркуль и, поочередно помещая его ногу в отверстия, произвольным, но одинаковым радиусом сделаем две засечки. Процарапаем или отфрезеруем (но на небольшую, меньшую, чем толщина разводки глубину) две прямые канавки, ведущие от отверстий к точке пересечения засечек. Плотно забьем и канавки и отверстия взрывчатым «пластилином», а в точке пересечения канавок установим наш единственный детонатор. Когда он сработает, детонация пробежит по канавкам абсолютно равные расстояния, а поскольку скорость ее высокостабильна – в один и тот же момент времени достигнет отверстий. В отверстия также забит взрывчатый «пластилин», в отличие от канавок, находящийся в контакте с основным зарядом, поэтому его детонация «заведет» и основной заряд – одновременно и в двух требуемых точках.

Для инициирования в трех точках задача усложнится. Вспоминаем планиметрию (правда, у нас поверхность не плоская, а сферическая, но – пойдем на такое упрощение): через три точки можно провести окружность одного-единственного радиуса (в центр ее и поместим детонатор), делать засечки произвольным радиусом уже нельзя. Для четырех точек – следующая ступень усложнения: одну из них (ближайшую к детонатору) придется соединять с детонатором не прямой, а ломаной канавкой, чтобы обеспечить равное с остальными тремя время пробега детонации.

А если точек – несколько десятков, да еще они должны равномерно покрывать всю сферическую поверхность заряда? Такая задача для сферической поверхности решается с применением методов геометрии Римана. Элемент разводки выглядит как на рис. 2.8, и не на всяком станке, даже – с числовым программным управлением, его можно изготовить, зато применение разводки позволило существенно уменьшить диаметры зарядов, по сравнению с первыми образцами, в которых для тех же целей использовались детонационные линзы. Кроме того, для заряда с разводкой необходимы всего несколько электродетонаторов в специальных, плоских розетках (рис. 2.9), в то время как для каждого «линзового» заряда их требуются десятки (рис. 2.10).


Рис. 2.8


Слева – элемент детонационной разводки. Справа – детонационная линза, состоящая из взрывчатых веществ с разной скоростью детонации (у внешнего слоя она выше). Форма зарядов подобрана так, что если инициировать этот конус на вершине, то к его основанию придет детонационная волна сферической формы


Рис. 2.9


Детали боевого блока: носовая часть и розетки электродетонаторов


Рис. 2.10


Макет, предназначенный для демонстрации экскурсантам принципа имплозии, оснащен несколькими десятками «детонаторов». Натурный заряд такого типа требует значительно большего энергообеспечения системы инициирования и менее надежен по сравнению с устройством, в котором используется многоточечная детонационная разводка


…Как-то автору потребовалось сформировать сходящуюся к оси цилиндрическую волну. Конечно, восемь использованных им электродетонаторов не были «товарами народного потребления» из тех, что используют в забоях и штреках. Все восемь были соединены последовательно, но, несмотря на то, что запускающий их импульс максимально форсировали, данные скоростной съемки показали, что они не сработали одновременно (рис. 2.11). Для устройства автора такое катастрофой не явилось: исследуемое явление не было очень уж чувствительно к симметрии сжатия. Ядерный заряд в аналогичной ситуации слегка «недодал» бы энерговыделения: отклонение формы сборки от шаровой увеличило бы потери нейтронов.




Рис. 2.11


Верхний ряд, снимки 1 и 2: цилиндрическая имплозия. Там, где детонационные волны сталкиваются, давление и температура значительно выше, поэтому области столкновений на снимках ярко светятся. Измерив по фотографии расстояние между центром точки инициирования и границей такой области и зная скорость детонации ВВ, можно определить, какое время прошло с момента инициирования до столкновения волн. Электродетонатор, находящийся в позиции, соответствующей положению часовой стрелки «полтретьего», сработал раньше других (примерно на 0,4 микросекунды): для этой точки инициирования упомянутое расстояние больше среднего значения. Начавшаяся раньше детонация «успела» расширить свой сектор за счет соседей и раньше «толкнула» находящийся в центре объект, нарушив симметрию сжатия. От этого опыта остался и «свидетель» – медный электрод (справа), на обратной поверхности которого, в местах столкновения детонационных волн, заметны откольные явления.

Такие же наглядные снимки сферической имплозии получить невозможно, поэтому внутри метаемого взрывом шарового слоя размещается «башня» с множеством контактных датчиков различной длины (нижний левый снимок). Сжимаемый имплозией шаровой слой последовательно замыкает эти датчики, что дает возможность, зарегистрировав моменты замыкания, определить элементы движения слоя. Левее – детонаторы, применявшиеся в ядерных зарядах: вверху – мостиковый, ниже – высоковольтные, не содержащие инициирующего ВВ. Справа – контейнер для боекомплекта


Первые «атомные» электродетонаторы срабатывали от накаливания током тончайшей проволочки: от нее воспламенялась, а затем детонировало инициирующее ВВ, передавая детонацию бризантному. Была до тонкостей «вылизана» технология изготовления таких детонаторов, и все равно готовые изделия «калибровали», выбирая те, которые минимально отличались друг от друга по параметрам. Такие образцы объединяли в «боекомплект» и хранили в специальных опломбированных контейнерах. Потом от детонаторов с мостиком накаливания отказались по соображениям безопасности: из-за наличия инициирующего ВВ они могли сработать при нагревании, да и токовые импульсы от разного рода наводок могли привести к подрыву и – в самом безобидном случае – к рассеиванию плутония, каковое к приятным обстоятельствам никак не отнесешь. Поэтому перешли на «безопасные» детонаторы: в них нет инициирующего ВВ, а формирует в бризантном ВВ ударную волну, трансформирующуюся в детонационную, канал высоковольтного разряда. Понятно, что для срабатывания таких детонаторов нужно больше энергии, чем для мостиковых, но – безопасность превыше всего!

…Остается доделать всякую ерунду: завинтить крышки, подключить кабели, ведущие к розеткам электродетонаторов (рис. 2.12)… Впрочем, что значит– «ерунду»? Операции при сборке «авиационной автоматики» только одной категории – «ответственные»! Выполняются они «тройкой». Один громко, с внятной артикуляцией, зачитывает пункт инструкции: «Затянуть гайку, позиция… ключом позиция… с моментом…». Второй повторяет услышанное, берет поименованные в соответствующих позициях инструкции гайку и ключ, снабженный измерителем момента, «затягивает». Третий контролирует правильность зачитывания, повторения, соответствие «позиций» и показания измерителя момента. Потом все трое расписываются в соответствующей графе за проведенную операцию (одну из многих тысяч подобных), и каждый знает: в случае чего – «следствие, протокол, отпечатки пальцев…» Таинство производило сильное впечатление на тех, кому довелось быть его свидетелями, в том числе – на С. Королева, который позже внедрил аналогичный порядок и в космической отрасли.








Рис. 2.12


Верхний и центральный ряды – иллюстрации процесса монтажа первого имплозивного заряда «Гаджет» (заимствованы из подлинной американской инструкции). 1 – детали из плутония; 2 – полоний-бериллиевый источник нейтронов; 3 – герметизирующая прокладка рифленого золота; 4 – капсула из урана-238; 5 – сегменты ВВ; 6 – элемент шарового слоя из алюминия. Конструкция ядерного заряда «Гаджета» иная, чем изображенная на анимации (рис. 2.7): в нем нет замедлителя нейтронов, вместо него плутониевый шар окружен слоями отвального урана и алюминия. Импеданс алюминия повыше, чем у продуктов детонации ВВ, поэтому после имплозии давление ударной волны в нем повышается (рис. 1.8). Оно повышается еще раз при переходе волны в уран, одна только плотность которого выше, чем у алюминия более чем в семь раз! Массивный шаровой слой отвального урана повышает также инерционность сборки, «давая» плутонию больше времени для деления (торцевые поверхности капсулы 4 – сферические, одного радиуса с этим слоем). Нижний ряд, слева: процесс монтажа. Снимок явно инсценирован, предназначен для публикации в журнале, логотип которого виден внизу. На самом деле, ядерный заряд монтируют не «на коленке», а на станке, позволяющем поворачивать изделие в двух плоскостях, обеспечивая свободный доступ к любому из элементов (правее)


Работа заряда начинается с момента, когда мощный высоковольтный импульс одновременно подрывает все детонаторы. Огоньки детонации с постоянной скоростью (около 8 км/с) разбегаются по канавкам, а пройдя их – ныряют в отверстия и одновременно во множестве точек «заводят» заряд (рис. 2.76). Далее следует сходящийся внутрь[38] взрыв (рис. 2.7в), который сдавливает сборку давлением более миллиона атмосфер. Поверхность сборки уменьшается, в плутонии исчезает полость (рис. 2.7 г), а плотность его – увеличивается, сжимаемая сборка «проскакивает» критическое состояние на тепловых нейтронах и становится существенно сверхкритичной на нейтронах быстрых.

…Не знаю, как решит читатель, по-моему – кинограмма рис. 2.7 выглядит довольно живописно. Но, как говаривал товарищ Семплеяров[39]: «Разоблачение совершенно необходимо. Без этого ваши блестящие номера оставят тягостное впечатление. Зрительская масса требует объяснения!»

«Зрительская масса» наверняка догадалась, что сфотографирован не взрыв настоящего ядерного заряда. Но на кинограмме – вообще не взрыв, а анимация. Вместо взрывчатого вещества использован оранжевый порошок бихромата аммония (с его помощью детям демонстрируют «вулкан»), «Плутоний» сделан из подкрашенного черной тушью поролона, а «замедлитель» – из термореактивного кембрика, сжимающегося при нагревании. В отличие от детонации взрывчатки, реакция в бихромате идет медленно и можно рассмотреть (и сфотографировать самой обычной, даже «телефонной», камерой), как фронт реакции «сходится» к сборке. Существенная некорректность модели в том, что «плутониевая» сборка становится «сверхкритичной» при сжатии ее нагреваемым кембриком, а не «взрывчаткой».

Но все описанное и смоделированное – детонация заряда, перевод сборки в сверхкритическое состояние – еще не ядерный взрыв. Ядерный взрыв начинается, когда через период, определяемый ничтожным временем незначительного замедления быстрых нейтронов, каждый из нового, более многочисленного их поколения добавляет производимым им делением энергию в более чем две сотни МэВ в и без того распираемое чудовищным давлением вещество сборки. В масштабах происходящих явлений прочность даже самых лучших легированных сталей столь мизерна, что никому и в голову не приходит учитывать ее при расчетах динамики взрыва. Единственное, что не дает разлететься сборке – инерция[40]: чтобы расширить плутониевый шар за десяток наносекунд всего на сантиметр, требуется придать веществу ускорение в десятки триллионов раз превышающее ускорения земного притяжения! В конце концов, вещество все же разлетается, прекращается деление, но не интересные события: энергия перераспределяется между тяжелыми, ионизованными осколками разделившихся ядер, другими испущенными при делении заряженными частицами, а также электрически нейтральными гамма квантами и нейтронами. Энергия продуктов реакций – порядка десятков и даже сотен МэВ, но только гамма кванты больших энергий и нейтроны имеют шансы избежать взаимодействия с веществом, из которого была сделана сборка и покинуть зарождающийся огненный шар ядерного взрыва.

Заряженные же частицы быстро теряют энергию в актах столкновений и ионизаций. При этом испускается излучение, правда, уже не «жесткое» ядерное, а более «мягкое», с энергией на три порядка меньшей, но все же более чем достаточной, чтобы «выбить» у атомов электроны – не только с внешних оболочек, но и вообще все. Мешанина из «голых» ядер, «ободранных» с них электронов и излучения с плотностью в граммы на кубический сантиметр[41] – все то, что было зарядом – приходит в некое подобие равновесия. Температура в совсем «молодом» огненном шаре (рис. 2.13а) – десятки миллионов градусов. Если шар захватывает сталь, она превращается в ветер[42].

Казалось бы, даже и «мягкое», но двигающееся с максимально возможной скоростью света излучение должно оставить далеко позади вещество, которое его породило, но это не так: в «холодном» воздухе пробег квантов кэвных энергий составляет сантиметры и двигаются они не по прямой, а при каждом взаимодействии переизлучаясь, меняя направление движения. Кванты ионизируют воздух, распространяются в нем как вишневый сок, вылитый в стакан с водой.






Рис. 2.13


Образование ударной волны при ядерном взрыве происходит вследствие двух причин: при мощном взрыве ее формирует расширяющаяся плазма нагретого радиационной диффузией воздуха; при взрыве малой мощности – то же делает «плазменный пузырь» из вещества, бывшего до взрыва зарядом (снимок «а», сделанный с выдержкой 10 не, в увеличенном по сравнению с остальными масштабе). Понятно, что возможен и промежуточный случай, когда эффективны оба механизма. «Усы», выступающие в нижней части – превращенные излучением в плазму тросы, поддерживавшие металлическую «этажерку», на которой был установлен заряд. Плотность ядер в конденсированном веществе (металле) тросов на много порядков больше, чем в окружающем воздухе, поэтому и плотность энергии, отдаваемой им распространяющимся излучением, выше. Эти взаимодействия сопровождаются высвечиванием разнообразных квантов. Используется накачка излучением и в рентгеновских лазерах). В дальнейшем рентгеновским излучением вокруг пузыря (он виден в центре снимка «б») из воздуха образуется полностью ионизованная плазма; затем плазменный пузырь распадается, а его остатки «подпирают» изнутри слой горячей плазмы («в»); далее эти остатки вырождаются в струи («г»), плазма огненного шара остывает, становится непрозрачной, но интенсивно излучает в видимой части спектра («д»); наконец – формируется ударная волна, а интенсивность излучения снижается. Подобраны наиболее наглядные снимки, полученные при различных испытательных взрывах


Такое называют радиационной диффузией. Тепловая энергия вещества пропорциональна четвертой степени его температуры, поэтому на этой стадии она «умещается» в небольшом объеме. «Молодой» огненный шар через несколько десятков наносекунд после завершения мощной[43] вспышки делений имеет радиус три метра и температуру почти 8 млн. кельвинов. Но уже через 30 микросекунд его радиус составляет 18 метров, правда, температура падает – около миллиона градусов.

Шар пожирает пространство, а ионизованный воздух за его фронтом почти не двигается: диффундирующее излучение передать ему значительный импульс не может. Но оно накачивает в этот воздух огромную энергию, нагревая его и, когда энергия излучения иссякает, шар начинает расти за счет расширения горячей плазмы. К тому же изнутри шар распирает то, что раньше было зарядом. Полностью ионизованный воздух прозрачен, и на фотографиях можно увидеть (рис. 2.136) этот плазменный сгусток в центре.

Расширяясь, подобно надуваемому пузырю, плазменная оболочка истончается. Ее, конечно, ничто не «надувает»: с внутренней стороны почти не остается вещества, все оно летит от центра. Через 30 микросекунд после взрыва скорость этого полета – более сотни километров в секунду, а гидродинамическое давление в веществе – более 150 тысяч атмосфер! Чересчур уж тонкой стать оболочке не суждено, она лопается, образуя «волдыри» (рис. 2.13в). Кстати, если все произошло на небольшой высоте, то плазма теряет форму шара, что видно из фотографий. Там, где вещество заряда ударяет в грунт, давление и температура умножаются по сравнению со значениями на «свободном» фронте. Такой удар способен поразить самые высокозащищенные цели, такие как шахты МБР.

Процесс захватывает новые слои воздуха, энергии на то, чтобы «ободрать» все электроны с атомов уже не хватает, уменьшается прозрачность фронта. Иссякает энергия ионизованного слоя и обрывков плазменного пузыря, они уже не в силах двигать перед собой огромную массу, вырождаются в струи (рис. 2.13 г) и заметно замедляются. Но то, что до взрыва было воздухом, движется, оторвавшись от шара, вбирая в себя все новые слои воздуха холодного – начинается образование ударной волны.

При отходе ударной волны от огненного шара, меняются характеристики излучающего слоя, и резко возрастает мощность излучения в оптической части спектра (так называемый «первый максимум»). При дальнейшем движении волны происходит сложная конкуренция процессов высвечивания и изменения прозрачности окружающего воздуха, приводящая к реализации и второго максимума, менее интенсивного, но значительно более длительного – настолько, что выход световой энергии больше, чем в первом максимуме.

Вблизи взрыва все окружающее испаряется, подальше – плавится, но и еще дальше, где тепловой поток уже недостаточен для плавления твердых тел, грунт, скалы, дома текут как жидкость под чудовищным, разрушающим все прочностные связи напором газа, раскаленного до нестерпимого для глаз сияния.




Рис. 2.14


«Постаревший» огненный шар превращается в облако радиоактивной пыли. Под местом взрыва произошло остекловывание песка, как это было и при первом испытании («Trinity Operation»). Образовавшийся новый минерал получил название «тринитит»


…Наконец, ударная волна уходит далеко от точки взрыва, где остается рыхлое и ослабевшее, но расширившееся во много раз облако (рис. 2.14) из конденсировавшихся, обратившихся в мельчайшую и очень радиоактивную пыль паров. Нет, не воды. Или в самом общем случае – не только воды, а того, что побывало плазмой заряда, рекомбинировало, и того, что в свой страшный час оказалось близко к месту, от которого следовало бы держаться как можно дальше. Облако начинает подниматься вверх. Оно остывает, меняя свой цвет, «надевает» белую шапку конденсировавшейся влаги, за ним тянется пыль с поверхности земли (рис. 2.15)…








Рис. 2.15


Испытание Encelade французского термоядерного заряда энерговыделением 440 кт. Атолл Муруроа, 12.06.1971


…Среди читателей попадаются настырные, проверяющие все с карандашом в руке. Автор сделал многое, чтобы осложнить им

задачу: энергию в МэВах надо перевести в джоули, потом – в тротиловый эквивалент, вспомнить правила действий со степенями. Но все же может найтись самый настырный, который получит результат, далекий от тех десятков и сотен килотонн тротилового эквивалента, о которых он читал в газетах, и, издевательски улыбаясь, потребует объяснений. Далее возможен такой диалог:

– А со скольких нейтронов, по вашим расчетам, начинается цепная реакция?

– С одного.

– Посмотрим, что получится, если реакция в сборке начнется с миллионов нейтронов.

– У вас про миллионы не написано.

– А покажите, где у меня написано, что он – один?

Вообще-то ситуация, которую описал своим расчетом Настырный, возможна: если не сработает или сработает не вовремя источник нейтронов, что повлечет строгую ответственность тех, кто был причастен (а может – и не причастен) к такому безобразию.

Чтобы такой жалкий результат не опозорил самоотверженно трудившийся коллектив, в сверхкритическую сборку в нужную микросекунду надо «брызнуть» нейтронами. Именно – в нужную, а не когда попало.

…Процесс перевода сборки из до критического в сверхкритическое состояние происходит за десятки микросекунд: казалось бы – быстро, но иногда (правда – редко) оказывается, что медленно. Случайный фоновый нейтрон может вызвать цепь делений и в докритической сборке, правда, затухающую, не сопровождающуюся заметным выделением энергии. Но если сборка перейдет критическое состояние пока такая цепь еще не угасла, начнется размножение нейтронов. Вначале, пока деление идет на медленных нейтронах, имплозия будет «сильнее», но, по мере роста сверхкритичности, «в дело» будут вступать все более быстрые (а значит, скорее размножающиеся) нейтроны и деление преодолеет имплозию, «разбросав» сборку. Произойдет «хлопок» – пиррова[44] победа деления: уровень энерговыделения будет на порядки более низким, чем тот, который мог бы быть достигнут. Так что и при безупречной работе заряда и его автоматики существует малая вероятность того, что полноценного ядерного взрыва не произойдет. А будет он таким, если при переводе сборки из докритического в сверхкритическое состояние в ее делящемся материале не будет нейтронов, а вот когда максимум сверхкритичности почти достигнут – их окажется там очень много.

В первых ядерных зарядах для этого использовали изотопные источники: полоний-210 в момент сжатия плутониевой сборки (и только тогда) соединялся с бериллием и своими альфа-частицами (ядрами гелия-4) вызывал нейтронную эмиссию:


Be9 +Не4 → С12 + п.


Но все изотопные источники – слабоваты, а самый интенсивный из них, легендарный[45] полоний – уж очень «скоропортящийся» (всего за 138 суток снижает свою активность вдвое), так что держать его в находящемся на хранении заряде было нельзя, приходилось монтировать «свежий» источник незадолго до боевого применения (рис. 2.12). Поэтому на смену изотопным пришли менее опасные (не излучающие в невключенном состоянии), а главное, более интенсивные ускорительные источники – нейтронные генераторы (рис. 2.16). За несколько микросекунд, которые длится формируемый таким источником импульс, «рождается» примерно столько же нейтронов, что и в мощном ядерном реакторе за такое же время.

«Сердце» генератора – вакуумная нейтронная трубка, в которой ускоряются ионы дейтерия (D) и бомбардируют мишень, насыщенную тритием (Т), в результате чего образуются нейтроны (п) и альфа-частицы:


D + ТНе4 + п + 17,6МэВ


По составу частиц, и даже по энергетическому выходу эта реакция идентична синтезу – процессу слияния легких ядер. Синтезом происходящее в трубке в 50 годах считали многие, но позже выяснилось, что это реакция другого класса – «срыва». Когда разогнанный электрическим полем ион дейтерия попадает в ядро трития, то либо протон, либо нейтрон, из которых состоит дейтерий, «увязает» в ней. Если «увязает» протон, то нейтрон «отрывается» и становится свободным. Эти нейтроны разлетаются в разные стороны (в физике говорят: «пространственное распределение – изотропно»), «собрать» и направить их на сборку – сложно, да и особого смысла не имеет: трубка способна выдать столько нейтронов, что и при изотропном их распределении энергетические возможности сборки будут реализованы полностью.

Конец ознакомительного фрагмента.