Вы здесь

Что ответить дарвинисту? Часть I. 4. Молекулярная биология не может доказать дарвинизм (Илья Рухленко, 2016)

4. Молекулярная биология не может доказать дарвинизм

Всё то же самое можно сказать и в отношении данных молекулярной биологии. Пусть эти данные – все как один «поют в унисон» и не противоречат друг другу, свидетельствуя именно об эволюции (биологических таксонов друг из друга).

Хотя на самом деле, часто всё бывает с точностью до наоборот – при попытке состыковать полученные генетические факты с моделями эволюционного развития того или иного биологического таксона – некоторая часть генетических фактов обычно не хочет вписываться в предложенную модель. А в какую-нибудь другую эволюционную модель – не вписываются уже другие генетические факты. И получается «генетический ребус», из которого можно выйти, только проигнорировав одни факты в пользу других.

Но пусть (еще раз) генетические факты вообще все дружно свидетельствуют именно о происхождении одних таксонов из других, без всяких противоречий, нестыковок, неувязок, парадоксов и друг их генетических сюрпризов, обнаруживающихся с завидным постоянством.

Однако даже в этом случае, вопрос о конкретной силе (или механизме), которая привела к соответствующим изменениям в отдельных генах, к появлению новых генов или даже целых генетических комплексов… прямой ответ на этот вопрос мы из данных молекулярной биологии извлечь не сможем. А сможем только высказывать предположения. Появились ли какие-то генетические изменения именно в ходе естественного отбора случайных мутаций? Или же как-то иначе? Как, например, отличить действие естественного отбора на гены от действия какого-либо разумного агента на эти же самые гены?

С начала 20 века почему-то так повелось, что ссылаться на действие разумной силы для объяснения тех или иных свойств живых существ – стало как-то неудобно. В течение всего 20 века эта тенденция постепенно усиливалась, и в конце концов, дошло до того, что помянув возможность Разумного Замысла сегодня, вы рискуете стать белой вороной в глазах «всех нормальных ученых» навсегда. Дело дошло до открытой публичной травли и увольнений с работы, организованных самыми активными «прогрессивно мыслящими учеными». То есть, мы сегодня наблюдаем такой классический «эффект толпы», новый вариант средневековой инквизиции, только теперь уже с обратным знаком – теперь публично «казнят» тех, кто осмеливается напомнить про разумный замысел. Примеры таких «публичных казней» ученых, которые имели наглость высказаться в пользу разумного замысла в природе, сегодня широко известны.

А вот дарвинизм поминать (без всяких доказательств) сейчас пока еще модно. Какие бы различия в генах организмов сегодня ни обнаруживались, эти различия сразу же приписываются действию естественного отбора (или нейтральных случайных мутаций). То есть, случайные мутации + естественный отбор сегодня принимаются без всяких доказательств, по сути, став некоей биологической религией нашего времени.

Ах, один вид пчелы генетически отличается от другого вида пчелы? Так это просто «естественный отбор поработал в ходе эволюции». А почему именно естественный отбор, а не что-нибудь другое? Ну, батенька, всем же известно, что движущей силой эволюции являются именно случайные мутации и естественный отбор.

К сожалению, когда «всем известно», найти кого-нибудь конкретного, кто бы это действительно доказал, становится практически невозможно.

Допустим, у нас имеется расшифровка геномов следующих живых существ: Николь Кидман, шимпанзе, кролик, колибри, древесная лягушка (Рис. 13):


https://goo.gl/eUyEe8


Рисунок 13. Микроскопический кусочек потрясающего разнообразия жизни на Земле.


Почему эти живые существа такие разные? Вам ответят:

Всем известно, что это именно случайные мутации и естественный отбор так хорошо поработали в ходе эволюции. И в результате получились такие разные животные.

А в качестве «доказательства» подобной идеи Вам предложат пример «эволюции» каких-нибудь бактерий, у которых… нет, не отрасли крылья, и даже не изменилась форма носа. У этих бактерий не возник ни один новый ген, а просто сломались один-два старых (уже имевшихся) гена. И эта генетическая поломка оказалась полезной в каких-нибудь специфических условиях. Например, в лаборатории, где имеется изобильная питательная среда, бактерии, у которых сломается какой-нибудь ген жгутика, наверное, начнут быстрее размножаться. Потому что им теперь не надо тратить дополнительную энергию на движения этого жгутика. Поскольку в дарвинизме приспособленность организма определяется через его способность размножать свои копии, то в данном случае как раз и получится, что «эволюционировавшая» бактерия со сломанными генами… повысила свою приспособленность.

Вот на примере «эволюции» такой бактерии (в бактерию со сломанным жгутиком) Вам и предложат считать доказанным, что примерно таким же способом из лягушки постепенно появилась Николь Кидман.


Не верите, что в науке возможны столь необоснованно смелые спекуляции? Хорошо, давайте почитаем свежую научно-популярную новость (Наймарк, 2014). Привожу её только потому, что увидел прямо сейчас, перед тем, как писать эти строки. Читаем:

Новое исследование становления эусоциальности у пчел построено на сравнении генов, работающих по-разному в двух пчелиных кастах. Выяснилось, что гены, которые экспрессируются больше у рабочей касты, прошли сильный положительный отбор. Показатели интенсивности отбора среди активных генов рабочей касты оказались выше, чем у активных генов королев. Это означает, что для родственного отбора важны как размножающиеся особи, так и те, которые сами не размножаются, а лишь способствуют выживанию сестер и братьев, причем бездетные особи важны для отбора даже больше. Гипотеза родственного отбора, таким образом, получила еще одно мощное подтверждение.

Я привел лишь резюме этой заметки. И уже в таком коротком отрывке слово «отбор» автор умудрилась повторить пять раз. А ведь по правилам, принятым в науке, она не должна была употреблять это слово вообще ни разу. Во всяком случае, в утвердительном наклонении. Потому что на самом деле, в исследовании был обнаружен, конечно же, не «отбор». А был установлен факт, что определенные гены, активно работающие у рабочих пчел, различаются у разных видов больше, чем гены, активно работающие у пчелиных маток этих же видов.[21] Вот и всё.

Кажется, ну и при чём здесь «отбор»? А при том, что установленные различия между генами были просто взяты, и приписаны именно действию естественного отбора.


Это классическое доказательство по кругу:

1. Сначала (в уже поросшем мхом 19 веке) дедушка Дарвин предположил, что наблюдаемые различия между живыми существами – это результат естественного отбора случайных наследственных изменений (оказавшихся полезными).

2. А сегодня верующие дарвинисты находят (генетические) различия между пчелами, и на основании самого факта таких различий заявляют, что здесь имел место «сильный положительный отбор».

Получается какой-то хоровод.

Но каким бы завораживающим этот хоровод ни выглядел, хотелось бы всё-таки получить доказательства исходного тезиса. То есть, сначала свидетели Дарвина должны предъявить народу хотя бы несколько строгих примеров, где было бы установлено, что какие-то признаки биологических видов возникли именно под действием естественного отбора (а не как-то иначе). И только потом уже водить хороводы.

Таких (строго установленных) примеров в живой природе до сих пор не найдено (см. ниже). Тем не менее, верующие дарвинисты решили почему-то пропустить скучный момент доказательств, и сразу перейти к «танцам». То есть, просто объявлять найденные генетические различия между живыми существами именно результатом естественного отбора.

Но это ведь всё равно, что установить факт различия между колёсами легкового автомобиля и самосвала… и на основании этих различий заявить, что колеса самосвала «прошли сильный положительный отбор». Или увидеть разницу между исходным куском мрамора и той статуей, которую скульптор выточил из этого куска мрамора. И на этом основании заявить, что статуя прошла «сильный положительный отбор». Действительно, каким еще способом мог бы превратиться кусок мрамора в статую? Очевидно, что только путем естественного отбора и никак иначе.

И, наконец (совсем близко к нашему примеру) можно проанализировать исходные тексты двух похожих компьютерных программ, найти в них определенные различия, и на основании этих различий прийти к выводу, что компьютерные программы приобрели эти различия благодаря случайным мутациям и естественному отбору (в ходе борьбы за существование). Действительно, ведь компьютерные программы только так и приобретают отличия друг от друга. Только путем чисто случайных замен букв в операторах, функциях и переменных. И естественного отбора этих изменений.

А какие-то там мифические «программисты» – это просто выдуманные персонажи. Наподобие лесных фей.


Остановимся на примере с программами более подробно, потому что именно компьютерное программирование близко к тем принципам записи информации, которые используются в живых системах.

При создании компьютерных программ используются разные языки программирования, например, бейсик, паскаль, С++. Но для того, чтобы компьютер понял, что именно хочет от него конкретная компьютерная программа, программы, написанные на этих языках, «перед употреблением» переводятся в машинный код. Машинный код является двоичным – здесь имеется только 0 (бит не включен), либо 1 (бит включен). С помощью такого двоичного кода, в принципе, можно передать любую информацию. Точно так же, как можно передать любую информацию с помощью знаменитой азбуки Морзе, где, как известно, тоже используется только два символа: «.» или «-». Единственным недостатком такого выражения информации является то, что строчки получаются очень длинными.


В живом организме для записи информации о разных биологических признаках и свойствах, используется специальная органическая молекула, которая имеет очень большую длину и сокращенно называется ДНК. Информация в ДНК тоже записывается с помощью особого кода. Удобно представлять себе ДНК, как аналогию компьютерной программы. Только в компьютерной программе для записи информации используются два символа («0» и «1»), а в генетической программе для записи используются четыре символа – это особые химические вещества (нуклеотиды), содержащие следующие азотистые основания: Аденин, Гуанин, Тимин[22] и Цитозин (сокращенно А, Г, Т, Ц). Например, мы можем наблюдать какую-нибудь молекулу ДНК, где озвученные нуклеотиды будут соединены следующим образом в линейную цепочку:

А-Г-Т-Ц-Ц-Ц-Ц-Ц-Г-Г-Т-А-А-Т-Г-А-Ц-А-Т-Ц-А-Т-А-Т-Г-Т-Г-Г-Г-Г-Г-Т-А

И в этой последовательности нуклеотидов вполне может быть зашифровано что-нибудь биологически полезное. Как это может быть?

Дело в том, что в генетической программе любого живого организма используется специальный генетический код – для того чтобы перевести информацию, записанную в ДНК, в конечный продукт. Конечным продуктом здесь являются, в основном, белки. Как известно, белки – это длинные органические молекулы, состоящие из аминокислот.[23] В любой живой клетке много разных видов белков. И все они выполняют там разнообразную полезную работу. Например, одни белки ответственны за сокращение наших мышц (белки актин, миозин). Другие белки выполняют структурную функцию, например, делают прочными нашу кожу, кости, волосы или ногти (коллаген, кератин). Третьи белки проводят необходимые химические реакции, которые нужны нашим клеткам для успешной жизнедеятельности.[24] Четвертые белки транспортируют необходимые вещества по организму или через клеточную мембрану. Определенные белки защищают нас от болезнетворных микробов. И так далее.

Столь разнообразные способности белки имеют благодаря тому, что они сами, в свою очередь, являются неким подобием конструктора. Белковые нити собираются из 20 разных аминокислот, которые можно соединять в произвольном порядке. В результате получаются разные белковые нити, обладающие разными свойствами. То есть, соберем белковую нить, выстраивая аминокислоты одним способом – получим, допустим, инсулин, фермент, который расщепляет сахар у нас в крови и бережет нас от сахарного диабета. А соберем (те же самые 20 аминокислот) в другом порядке – и получим, например, актин – белок, который помогает сокращать наши мышцы. А соберем третьим способом, и получим кристаллин – удивительно прозрачный белок, входящий в состав хрусталика нашего глаза.

Получается, что если мы знаем, в какой последовательности и сколько раз нужно соединить между собой определенные аминокислоты, то мы сможем получить такой белок, который будет выполнять ту или иную полезную работу в организме. А вот если мы не знаем этого правильного рецепта, то скорее всего, вместо полезного белка мы получим какую-нибудь «абракадабру», то есть, тоже белковую нить, но не выполняющую никакой полезной работы, а лежащую в организме «мертвым грузом».

И вот чтобы такого не происходило, все правильные рецепты всех нужных белков – записаны в ДНК живых существ, в виде последовательности нуклеотидов.

Например, в ДНК имеется следующая последовательность нуклеотидов:

Т-Т-Т-Г-Т-Г-Г-А-Ц-Г-А-А-Ц-А-Т-Ц-Т-Г

На самом деле, здесь записана информация. Информация об определенной последовательности аминокислот, в которую эти аминокислоты должны выстроиться (на конкретном участке белковой нити), чтобы соответствующий белок мог успешно выполнять свою работу в организме. Последовательность нуклеотидов (в ДНК) переводится в точный порядок аминокислот (в белке) с помощью генетического кода в специальных органоидах живой клетки – в рибосомах.

Это делается так. Сначала с ДНК снимается копия, так называемая информационная РНК (иРНК). Копирование производится по матричному принципу (матрица/оттиск). Где А комплементарен У; Т комплементарен А; а Г комплементарен Ц (и наоборот). В результате, снятая копия иРНК будет иметь такую последовательность нуклеотидов:

А-А-А-Ц-А-Ц-Ц-У-Г-Ц-У-У-Г-У-А-Г-А-Ц

То есть, получается как бы «оттиск» с исходной матрицы ДНК (сравните с приведенной выше строчкой ДНК).

Далее эта нить (иРНК) попадает в рибосому. Рибосома – один из самых замечательных органоидов клетки. Она является, по сути, аналогом компилятора компьютерной программы. В компиляторе компьютерной программы язык программирования высокого уровня (например, бейсик или паскаль) переводится в язык машинного кода, то есть, в машинные команды, предписания компьютеру выполнить какие-то действия. Аналогично и в рибосоме – язык нуклеотидов переводится в язык аминокислот. А именно, в рибосоме идет построение определенного белка по той самой информации, которая закодирована в последовательности нуклеотидов. После этого созданный белок начинает выполнять какие-то полезные действия в организме.

Генетический код, используемый рибосомой, можно посмотреть здесь (Рис. 14):


Рисунок 14. Наиболее распространенный вариант генетического кода живых организмов. Таблица соответствия кодонов (последовательностей из трёх конкретных нуклеотидов) конкретным аминокислотам. Английские буквы A, G, C, U соответствуют аденину, гуанину, цитозину и урацилу.


Здесь определенная последовательность из трёх нуклеотидов (так называемый кодон) соответствует одной определенной аминокислоте. Например, в нашем случае (расшифровываем нашу иРНК) последовательность из первых трех аденинов (ААА) соответствует аминокислоте лизину. Следующий кодон САС – соответствует аминокислоте гистидину. Следующий кодон СUG – это аминокислота лейцин. Далее CUU – это тоже аминокислота лейцин (такие взаимозаменяемые кодоны можно назвать синонимичными). Далее кодон GUA – обозначает аминокислоту валин. И наконец, кодон GAC обозначает аспарагиновую кислоту.

В результате, если в рибосоме окажется иРНК с последовательностью нуклеотидов:

А-А-А-Ц-А-Ц-Ц-У-Г-Ц-У-У-Г-У-А-Г-А-Ц

то на выходе рибосома выдаст следующую белковую цепочку (названия аминокислот сокращены):

Лиз-Гис-Лей-Лей-Вал-Асп

Таким образом, рибосома создаёт нужные организму белки строго по рецепту, записанному в ДНК в виде последовательности нуклеотидов. А сами белки, в свою очередь, отвечают за разные признаки и свойства конкретного живого организма.

Получается серьезная аналогия с компьютерной программой.[25] Допустим, целью и результатом работы какой-нибудь компьютерной программы является построение определенного изображения на компьютерном мониторе. Пусть это будет «прорисовка» какого-нибудь виртуального игрового персонажа. Например, какой-нибудь виртуальной девушки. Помимо прорисовки соответствующего виртуального объекта, будет неплохо, если компьютерная программа обеспечит еще и правильное «функционирование» этого изображения на компьютерном мониторе – запрограммирует соответствующие движения игрового персонажа, обеспечит целесообразное взаимодействие этой виртуальной девушки с окружающим её игровым миром. И тому подобное.

Точно так же, целью и результатом работы генетической программы, записанной в ДНК, является построение конкретного живого существа. И поддержание его существования. То есть, результатом работы генетической программы является не только построение тела живого существа (инфузории, дождевого червя или колибри), но еще и то, как это тело будет взаимодействовать с миром: избегать опасностей, искать источники пищи и т. п.

Таким образом, определенные аналогии между компьютерной и генетической программой очевидны.[26]

Ну а отличием между этими программами (генетической и компьютерной), является, во-первых, природа носителей информации (там намагниченные жесткие диски, а здесь длинные органические молекулы). Во-вторых, генетическая программа отличается от нашей (даже самой современной) компьютерной программы – запредельной сложностью. Наши компьютерные программы пока еще примитивны в сравнении с генетическими программами, по которым строятся живые организмы. Генетические программы живых существ (отдельные их части нередко называют генными сетями) насыщены генами-«включателями», «выключателями» и «переключателями», которые контролируют подотчетные им отдельные гены или целые генные каскады, а так же друг друга.[27] В результате получается примерно вот что (Рис. 15):


Рисунок 15. Генная сеть, то есть комплекс генов, так или иначе взаимодействующих с геном FOXP2, одним из ключевых генов, ответственных за формирование речи (Konopka et al., 2009). Здесь показаны только те гены, которые активно реагируют на разные модификации гена FOXP2 (человеческий или шимпанзиный). Есть еще и другие гены, тоже связанные с геном FOXP2, но работающие с ним независимо от того, какой конкретный вариант гена FOXP2 перед ними.[28]


Понятно, что разобраться в таких генетических программах очень непросто. Легче всего установить, что с чем взаимодействует. А вот для чего взаимодействует – здесь еще пока, как говорится, «черт ногу сломит» (С).

Так же запредельно сложны и сами живые существа (на организменном, тканевом, клеточном и молекулярном уровнях организации). Организация жизни на молекулярном уровне вообще представляет собой, по сути, чрезвычайно продвинутые нано-технологии. Даже в простейшей живой клетке успешно работают конвейерные линии из нано-машин и нано-механизмов, о которых мы пока можем лишь мечтать в смелых проектах. Например, знаменитый фермент АТФ-синтаза является самым маленьким роторным мотором в природе. Понятно, что сделаны все эти нано-машины из органики.

И самым замечательным свойством живых систем является их способность непрерывно и самостоятельно чинить самих себя (непрерывно самовоспроизводиться). Например, чтобы заменить мотор у вашей машины, Вы должны, во-первых, поставить вашу машину в гараж и выключить. И потом Вы будете заменять ей мотор (а не она сама). А вот воробей летит себе по своим делам, но прямо в это время в его сердце «отработанные» белки сердечной мышцы постепенно заменяются на новые. То есть, сердечная мышца сама себя всё время отстраивает и обновляет прямо в ходе работы. И таким образом непрерывно самовоспроизводится не только сердечная мышца, но и вообще всё тело воробья.


Однако вернемся к ДНК. Другими аналогиями ДНК могут являться: чертеж, рецепт или книга. Но аналогия с компьютерной программой, всё-таки, ближе всего к сути дела. Итак (еще раз) имеется определенная генетическая программа, согласно которой строится (и существует) тот или иной организм.[29] Эта программа записана на специальном носителе – длинных органических молекулах ДНК с помощью специального языка (генетического кода).

Эту программу можно разбить на некоторые отрезки, участки молекулы ДНК, которые ответственны за тот или иной конкретный признак организма. И эти отрезки, отвечающие за конкретные признаки, называются генами. А вся совокупность имеющихся генов (то есть вся генетическая программа отдельного организма в целом) называется генотипом. В качестве аналогии с компьютерными технологиями, отдельные гены можно уподобить отдельным программным функциям в общей компьютерной программе.


И вот теперь представьте. Допустим, я изучаю несколько генов уже упомянутой выше Николь Кидман, и несколько аналогичных генов кролика. И вижу, что в целом, эти гены похожи друг на друга. То есть, общая последовательность нуклеотидов сходна и у Николь Кидман, и у кролика на целом ряде отрезков ДНК. Но я вижу и серьезные отличия. Многие нуклеотиды заменены на другие. В результате, на выходе должен получаться несколько другой белок (с другой последовательностью аминокислот).

Изобразим это наглядно. Допустим, первая строчка – нуклеотидная последовательность одного из генов Николь Кидман, а вторая строчка – нуклеотидная последовательность такого же гена кролика (я выделил жирным шрифтом отличающиеся участки):


АГТЦЦЦЦЦГГТААТГАЦАТЦАТАТГТГГГГГТАГАЦАТГТЦЦЦЦГТАААГТЦЦГТАГ

АГААААЦЦТТТААТГТТТТТАТАГГТГЦЦГГТАГАТАТГГААЦЦАТАААГТЦЦГТТТ


При этом мы еще не конца понимаем, есть ли в этих (зафиксированных) различиях какой-то биологический смысл, и если есть, то какой именно? Ведь мы пока научились только читать генетические «тексты». А вот до понимания этих текстов нам пока еще далеко. То есть, важны ли эти различия для того, чтобы в первом случае получилась (и успешно функционировала) именно Николь Кидман, а во втором – именно кролик? Или эти различия не важны?

Хотя приблизительные методики для определения таких вещей уже есть. Например, для того, чтобы сделать вывод, важны ли установленные различия, или нет, сравнивается доля так называемых синонимичных замен по отношению к не синонимичным.

Синонимичные замены – это такие замены нуклеотидов, которые вообще не приводят к замене аминокислоты в белке. Это получается за счет вырожденности генетического кода. Посмотрите на таблицу генетического кода выше (Рис. 14). Вы увидите, что, например, аминокислоту пролин может кодировать сразу четыре разных кодона: ЦЦУ, ЦЦЦ, ЦЦА, ЦЦГ. По сути, аминокислота пролин кодируется только двумя первыми нуклеотидами «ЦЦ». А вот какой там будет третий нуклеотид – уже не важно. Каким бы этот третий нуклеотид ни был, всё равно рибосома на выходе выдаст именно аминокислоту пролин, если прочитает в двух первых «буквах» этого кодона «ЦЦ».

Поэтому если мы увидим, например, в гене Николь Кидман в определенном месте ЦЦЦ, а у кролика в этом же месте мы увидим ЦЦУ, то это значит, что конечные продукты (белки) Николь Кидман и кролика – не будут различаться по этой аминокислоте. Такая замена нуклеотидов называется – синонимичной.


В результате может получиться даже вот что. Допустим, и у Николь Кидман, и у кролика имеется похожий белок, состоящий из 100 аминокислот (соединенных между собой в строго определенной последовательности). Поскольку каждая из этих аминокислот кодируется с помощью кодона из 3 нуклеотидов, то получается, что для записи «рецепта» этого белка в ДНК необходимо задействовать 300 нуклеотидов. И допустим, примерно треть из этих нуклеотидов у Николь Кидман и у кролика – различаются. То есть, различия, казалось бы, большие (100 из 300 нуклеотидов). Но если это будут только синонимичные замены, то получится, что у Николь Кидман и кролика обсуждаемые белки будут вообще идентичны по своим аминокислотным последовательностям. То есть, будут совпадать на 100 %.

Какие выводы можно отсюда сделать? Во-первых, отсюда можно предположить, что данный белок – чрезвычайно важен для обоих организмов. Причем важна даже каждая аминокислота. То есть, каждая аминокислота должна в этом белке находиться именно там, где она и находится. Иначе белок сразу же потеряет свою работоспособность.

Поэтому такие случайные мутации, которые приводили к замене той или иной аминокислоты – гарантированно приводили к гибели мутантной особи. И поэтому ни одна из таких мутаций не смогла закрепиться в данном белке.

А смогли закрепиться только такие мутации, которые вообще не изменяли аминокислотный состав данного белка. В результате, смогли закрепиться только те самые синонимичные замены, о которых мы только что говорили. Таким образом, когда мы наблюдаем именно описанную картину – идентичность аминокислотного состава белка, при наличии только синонимичных замен, мы можем сделать следующие выводы:

1). Первичное строение данного белка вообще нельзя изменить (чтобы не нарушить его функцию). На «языке» теории эволюции в таком случае говорится, что данный ген находится под очень мощным давлением стабилизирующего отбора.

2). Число синонимичных замен может указывать на время существования (линии предков) данных существ. Если синонимичных замен – много, то значит, данная линия организмов существует на Земле уже долгое время. Ведь точечные мутации – это достаточно редкое событие. И если значительная часть синонимичных замен уже успела случиться, то значит, прошло уже достаточно большое время (с некоего момента X). Если же число даже синонимичных замен – невысоко, то, следовательно, линия предков этих существ тоже имеет скромную историю (по длительности).


Но чаще всего наблюдаются другие варианты различий в генах и белках.

Допустим, мы видим, что обсуждаемый белок, состоящий из 100 аминокислот (соответственно, записанный в ДНК на 300 нуклеотидах), различается у Николь и кролика в 30 местах (по 30 нуклеотидам). Причем имеют место 50 % синонимичных замен, и еще 50 % не синонимичных замен (так называемые значимые замены). То есть, 15 нуклеотидов не приводят к замене аминокислоты в белке, но другие 15 нуклеотидов заставляют рибосому встроить в белок уже другую аминокислоту.

Что можно предположить в этом случае?

Во-первых, мы можем предположить (в рамках теории эволюции), что прошло еще не слишком много времени после расхождения линии предков, которые в конечном итоге привели к Николь Кидман, от линии предков, которая привела к кроликам. Потому что за это время успела накопиться только небольшая часть синонимичных замен (из всех возможных).

Во-вторых, мы можем сделать вывод, что и сам этот белок – достаточно «демократичен» (терпим) к собственному аминокислотному составу. То есть, аминокислотный состав данного белка вполне может измениться (например, на озвученные 15 аминокислот), но, тем не менее, этот белок всё равно останется способным выполнять свою работу. А раз так, тогда и эти (значимые) мутации тоже являются биологически нейтральными. И тоже могли накопиться за это время чисто случайным образом.

Или мы можем высказать, наоборот, противоположную гипотезу. Мы можем предположить, что эти белки у Николь Кидман и кролика различаются отнюдь не случайно, а как раз потому, что они и должны различаться. То есть, эти белки должны работать по-разному, чтобы Николь Кидман была именно Николью, а кролик – оставался кроликом.

Чтобы определить, какое из двух последних предположений более верно, нужны дополнительные исследования. Например, изучение специфики работы конкретно этого белка у кролика и у Николь.


И наконец, третий случай. Допустим, у нас всё тот же белок, состоящий из 100 аминокислот. Но мы видим, что только 10 нуклеотидных различий в соответствующем гене (кодирующем этот белок) – имеют синонимичный характер (не приводят к замене аминокислоты), а вот другие 40 отличий в нуклеотидном составе – являются не синонимичными. То есть, мы видим резкое преобладание значимых замен над синонимичными. Какой вывод можно сделать из такого расклада?

В данном случае становится ясно, что исследуемые белки у Николь и у кролика работают, действительно, по-разному. Может быть даже, вообще выполняют разные функции. И эти белки и должны работать по-разному. То есть, становится понятно, что этот конкретный белок как раз и относится к тем признакам и свойствам, которые (в том числе) делают из Николь Кидман именно Николь, а из кролика – именно кролика.

На случайность мы здесь можем списать сравнительно небольшое число всех отличий, пропорциональное числу синонимичных замен. А вот оставшуюся часть различий, найденных между этими генами, на случайность уже списать нельзя. Ведь не синонимичных замен в данном случае намного больше, чем синонимичных. Отсюда следует вывод, что ген подвергся не случайным изменениям, а направленной модификации под действием определенной силы.


И вот на роль этой силы, модифицирующей гены в тех или иных направлениях, в современной биологии по умолчанию (без каких-либо особенных доказательств) назначается именно естественный отбор.

То есть, если обнаруживаются серьезные различия между генами разных организмов, и если эти различия подпадают под только что описанный нами случай (преобладание значимых замен над синонимичными), то делается вывод, что это исключительно результат естественного отбора. И ничего другого.

Вот наш очередной биолог-популяризатор и пишет соответствующую фразу (Наймарк, 2014):

…Выяснилось, что гены, которые экспрессируются больше у рабочей касты, прошли сильный положительный отбор

Чувствуется, что данный автор настолько привык к мысли, будто изменять гены может только естественный отбор и ничего больше, что даже не замечает, как озвучивает совершенно недоказанные вещи. На самом деле, установленным фактом здесь является только то, что обсуждаемые гены – различаются (определенным образом). А рассуждения про «положительный естественный отбор» – это просто домыслы, сделанные чуть ли не автоматически в рамках принятой (сегодня) теории эволюции.

Давайте попробуем посмотреть, как бы всё это выглядело в компьютерной области. Допустим, какой-нибудь «сумасшедший биолог» сел за пустующее рабочее кресло рядом с чужим включенным компьютером, и решил исследовать на предмет сходства и различия не генетические программы разных живых существ, а загадочный набор символов, которые он увидел записанными на мониторе этого компьютера. Загадочные символы, которые привлекли внимание биолога, были записаны в текстовом редакторе в виде двух похожих строчек:


753.11F.FF7.F13.FF1.1BQ.1H1.811.WA8.2G9.2G6.555

753.11F.FF7.F1W.FF1.1HQ.1HU.811.WAC.2G8.2G6.555


Напоминаем, что наш «сумасшедший биолог» до этого привык работать вот с такими генетическими текстами, например, у двух разных видов синиц (Рис. 16):


Рисунок 16: Изображены представители двух видов синиц (слева большая синица, справа лазоревка). Показан (воображаемый) участок ДНК этих двух видов – последовательность нуклеотидов, которая с одной стороны, весьма схожа у этих видов, но в то же время несколько различается (отличающиеся нуклеотиды выделены красным цветом).[30]


Биолог привык выискивать в таких строчках черты сходства и различия. И обнаруженное сходство списывать или на «общего предка» (этих двух синиц), или на «стабилизирующий отбор». А обнаруженные различия – либо на результат «положительного отбора», либо на «нейтральные мутации», которые успели накопиться у этих двух видов синиц со времени их расхождения от общего эволюционного предка.

А на экране компьютерного монитора наш биолог видит несколько другие строчки:


753.11F.FF7.F13.FF1.1BQ.1H1.811.WA8.2G9.2G6.555

753.11F.FF7.F1W.FF1.1HQ.1HU.811.WAC.2G8.2G6.555


Биолог замечает, что значительная часть этих двух строчек идентична друг другу. Естественно, наш биолог сделает вывод, что это получилось благодаря общему происхождению этих двух кусков текста (от некоего общего предка). Ну а найденные различия (выделены жирным шрифтом) между этими двумя строчками наш биолог, наверное, спишет на то, что один из этих участков «прошёл сильный положительный отбор» (в ходе борьбы за существование). Биолог подсчитает, что число точечных замен во второй строчке по сравнению с первой составляет 5 из 36. То есть, имеет место примерно 14 % замен. Следовательно, данные строчки гомологичны друг другу на 86 %.

И всё будет очень здорово, пока на своё рабочее место не вернется хозяин этого компьютера, и не выгонит из-за стола нашего сумасшедшего биолога.

При этом хозяин компьютера объяснит биологу, что в этих строчках, на самом деле, закодированы черты лиц двух виртуальных девушек, которые были созданы (хозяином компьютера) в качестве двух разных героинь известной компьютерной игры Mass Effect 3.

Хозяин компьютера объяснит, что в этой игре при создании лица компьютерного персонажа используется специальный набор символов, с помощью которого кодируются разные черты (признаки) лица. Поэтому любое созданное лицо в этой игре можно просто записать в виде закодированной строки символов. И если это лицо понравится, то можно потом использовать этот код в любое время, при создании новых персонажей. Конкретно, те лица, которые соответствуют двум написанным выше кодовым строчкам, в этой игре выглядят вот так (Рис. 17):


Рисунок 17. Два женских лица, созданных в редакторе персонажей компьютерной игры Mass Effect 3 в соответствии со следующими кодовыми строчками (отличающиеся места выделены курсивом):

753.11F.FF7.F13.FF1.1BQ.1H1.811.WA8.2G9.2G6.555 (слева)

753.11F.FF7.F1W.FF1.1HQ.1HU.811.WAC.2G8.2G6.555 (справа)


Сумасшедший биолог, конечно же, поинтересуется у хозяина компьютера, каким образом эти лица появились? Наверняка ведь отличающиеся символы в кодовой строчке заменялись чисто случайным образом, а потом этот игровой персонаж проходил естественный отбор в самой игре, и в конце концов, отобрались такие лица, каждое из которых лучше подходило для той роли, которую играли в этой игре данные девушки?

На что хозяин компьютера ответит, что эти виртуальные девушки, действительно, играли в игре разные роли. Девушка справа при столкновении с противником использовала специальные способности разведчицы. А девушка слева, сталкиваясь с противником, начинала исполнять убийственные (в этой игре) способности штурмовика. Таким образом, получились совершенно разные игровые персонажи, с совершенно разными стилями игры.

Вот только хозяин компьютера скажет биологу, что создавал он этих персонажей, конечно, не методом «случайного тыка» (слепо заменяя буковки в той строчке, которая кодирует черты лица). А создавал он эти лица в специальном редакторе, предоставленном самой игрой, подбирая такие черты (например, длину носа, размер губ, высоту глаз, ширину челюсти), какие ему нравились. А что там отмечала при этом сама компьютерная программа (какую закодированную строчку записывала вслед за создателем этого лица) – это уже было дело самой программы.

И остановился он именно на этих лицах не потому, что такие лица больше всего подходили для той «среды обитания», в которую были помещены эти виртуальные девушки. А просто потому, что в конечном итоге, именно такие лица его устроили. И создал он именно штурмовика и разведчицу не потому, что к этому призывал его какой-то там «естественный отбор более приспособленных», а потому, что ему просто захотелось создать именно таких персонажей (с разными стилями игры).


Не знаю, сумел ли я сейчас впечатлить читателя аналогией между созданием разных компьютерных персонажей (методом разумного дизайна) и генетическим программированием разных видов синиц (см. рисунок выше).

Если не сумел, то значит, просто не хватило писательского таланта. Потому что на самом деле, аналогии здесь весьма серьезные.[31]

Уже 200 лет назад было известно, что живые организмы – это сложные функциональные системы. В этом отношении они очень напоминают хитроумные технические устройства, созданные человеком. Поэтому еще Уильям Пейли использовал этот аргумент для доказательства создания живых существ Разумом. Двести лет назад в своей «Естественной теологии» Уильям Пейли писал (Paley, 1802):

«Если вы споткнулись о камень и вам скажут, что этот камень лежал здесь давным-давно, с незапамятных времен, вы не удивитесь, и легко поверите сказанному. Но если рядом с камнем вы увидите часы, то ни за что не поверите, если вам скажут, что они здесь были всегда. Их сложное устройство, разумная целесообразность, согласованность различных частей натолкнет вас на мысль о том, что у часов есть создатель…

…ухищрения природы превосходят ухищрения (человеческого) искусства, в сложности, тонкости восприятия, сложности механизма … они совершеннее, чем все произведения человеческой изобретательности…»

На всякий случай, разжую мысль Уильяма Пейли. Например, перед нами два объекта – камень и воробей (Рис. 18):


https://goo.gl/o1P7EY


Рисунок 18. Важное отличие живого от неживого – функциональность и целесообразность.


Если мы спросим у какого-нибудь собеседника – а зачем этому камню вон та трещина, которая проходит у него посередине? Или спросим – а зачем этому камню выступ в левой нижней части? То получим в ответ, скорее всего, недоуменное молчание собеседника. Но потом, после того, как недоумение пройдет, последует ответ – ни за чем. Просто так получилось, что камень треснул посередине. Или что там еще с этим камнем случилось.

А вот стоит нам спросить собеседника – а зачем воробью глаза? Или зачем воробью лапы? Или зачем воробью крылья? Как мы сразу же получим незамедлительные и уверенные ответы: 1) для того чтобы видеть, 2) для того чтобы прыгать, 3) для того чтобы летать…

Очевидно, что всё живое – функционально. Каждая его часть целесообразна, и предназначена для выполнения какой-то функции. Причем это относится как к внешнему, так и к внутреннему строению живого организма (Рис. 19):


https://goo.gl/ofvewf


Рисунок 19. Внешнее и внутреннее строение разных живых существ.


Каждая деталь нужна для выполнения какой-то определенной функции, вплоть до клеточного и молекулярного уровня организации живого.

Понятно, что такая удивительная продуманность устройства живых существ не могла не поражать внимание людей (практически во все исторические периоды). И естественно, люди приходили к закономерному выводу, что столь целесообразные и функциональные объекты могли быть созданы только с помощью разумного планирования.

Тем более что люди сами создают функциональные системы, поэтому знают на практике, как функциональные системы создаются с помощью разумного планирования. Аналогии живых существ c функциональными системами, созданными людьми, нередко просто напрашиваются (Рис 20):


https://goo.gl/x4JuEn


Рисунок 20. Напрашивающиеся аналогии между функциональностью живых организмов и функциональностью машин, созданных человеком.


Однако 150 лет назад Чарльз Дарвин опубликовал теорию, в которой предложил такой механизм эволюции, который позволял объяснить, каким образом эта удивительная функциональность и целесообразность могла появиться сама собой, естественным образом. То есть, без всякого разумного дизайна. Дарвин предложил на эту роль случайные (наследственные) изменения, проходящие проверку естественным отбором в ходе борьбы за существование. В результате чего биологическая целесообразность организмов сначала возникала, а затем постепенно оттачивалась из поколения в поколение в ходе эволюции. И в конце концов, доходила до совершенства. Эта идея показалась настолько простой и очевидной, что сразу же нашла достаточно много сторонников.

С тех пор в биологии появилась не одна, а уже две возможные версии причин столь явно наблюдаемой целесообразности живых существ:

1). Разумный дизайн.

2). Естественная эволюция по механизму случайные изменения + естественный отбор.


А вот дальше начало происходить что-то непонятное. Идея Дарвина, вообще-то, теперь требовала каких-нибудь доказательств своей справедливости. Однако вместо того, чтобы заняться поисками реальных примеров в свою пользу (в природе), эта идея почему-то начала вытеснять первый вариант (разумный дизайн) вообще без всяких доказательств. И постепенно стала настолько доминирующей в биологии, что в конце концов про разумный дизайн и упоминать то стало как-то неудобно в приличном биологическом обществе. Несмотря на то, что для столь поразительно сложных систем, какими являются живые организмы, разумное планирование, конечно, является более правдоподобным объяснением.

Итак, за те 200 лет, которые прошли с того времени, как Уильям Пейли написал свой знаменитый аргумент про «часы на траве», одна из возможных гипотез появления таких «часов» была незаслуженно забыта, а другая – бездоказательно принята на вооружение.


Но прошло 200 лет. Человечество шагнуло в эпоху компьютерных технологий. И выяснилось – в дополнение к тому, что живые организмы являются сложнейшими функциональными устройствами, они еще к тому же и кодируют информацию (о себе) с помощью примерно таких же принципов, какие используются сегодня в современных компьютерах. То есть, выяснилось, что живые существа – не только функциональные, но еще и информационные системы, использующие принцип кодирования информации.

Казалось бы, после подобных открытий, первое, что мы должны сделать – это срочно реанимировать идею разумного дизайна. А об идее естественной эволюции либо вообще забыть, либо очень серьезно в ней засомневаться. Потому что столь бронебойные дополнительные свидетельства в пользу разумного дизайна, казалось бы, должны окончательно склонить чашу весов именно в эту сторону.

Но нет. Большинство биологов, как ни в чем не бывало, просто перенесли свои рассуждения про «естественный отбор» и на генетические тексты тоже. И теперь у них еще и генетические тексты тоже стали «проходить сильный положительный отбор» или «подвергаться мощному стабилизирующему отбору». А про версию разумного дизайна (этих генетических текстов) – полный молчок. Или даже всеобщий бойкот. Доходящий до странных резолюций ПАСЕ «об опасности креационизма для образования».[32] Такое ощущение, что люди по этому вопросу решили выступить в роли страусов, засовывая голову в песок, лишь бы только не видеть и не слышать наиболее напрашивающиеся выводы.


Но мы не дадим людям вести себя подобным образом. Мы повторим еще раз.

Итак, когда у каких-то двух генов имеются серьезные различия, и в результате эти гены работают по-разному (но в обоих случаях работают «хорошо весьма»), то здесь имеются две возможные версии, а отнюдь не только одна:

1. Разумный дизайн (через создание или редактирование разных геномов).

2. Естественный отбор случайных мутаций.

Причем первая версия – предпочтительней, потому что такие вещи мы наглядно наблюдаем при создании каждой компьютерной программы. А вот со строго установленными примерами второго варианта – в науке очень туго (см. ниже).

Таким образом, никакие «генетические доказательства эволюции», на самом деле, конкретно дарвинизм доказать – не могут. На основании одних только генетических фактов нельзя сделать вывод, что установленные различия в генах произошли именно в результате случайных мутаций и естественного отбора. Потому что всегда остаётся другая возможность – что эти же изменения произведены чем-то (или кем-то) гораздо более разумным.

Тем более что мы точно знаем – при написании сложных компьютерных программ, роль интеллекта программиста имеет подавляющий характер. В то время как роль (разрекламированных) «генетических алгоритмов» в том же компьютерном программировании, кажется, близка к минимальной, сводясь к самым легким задачам (например, к параметрической оптимизации в довольно узком коридоре возможных значений).


Вообще, если человек верит, что чисто случайные мутации и автоматический естественный отбор (этих мутаций) способен, в конце концов, создать такие шедевры природы, как например: гепард, стриж или рыба-меч, то верить в столь чудесные вещи данному человеку никто не запрещает. Даже если этот человек не имеет никаких эмпирических фактов, на которые можно было бы опереться в этой вере. Непонятно только одно – каким образом этот человек умудряется игнорировать самую очевидную в данном случае версию – возможность разумного планирования (например, разумного редактирования соответствующих генетических программ). И пропуская самую очевидную версию, останавливается на самой невероятной. Давайте процитируем по этому поводу Ричарда Докинза. Ведь раньше[33] Ричард Докинз нередко озвучивал весьма здравые мысли (Докинз, 2010):

«Проектировщики первого реактивного двигателя начинали проектирование, как говорится, с чистого листа. Представьте себе, что бы они напроектировали, если б были вынуждены «развивать» первый реактивный двигатель, отталкиваясь от существующего винтового, изменяя за один раз один компонент – гайку за гайкой, болт за болтом, заклёпка за заклёпкой. Реактивный двигатель, созданный таким способом, был бы, право сверхъестественным и хитроумным снарядом. Трудно представить себе, чтобы самолёт, разработанный таким эволюционный способом, когда-либо смог оторваться от земли. Более того, чтобы приблизиться к биологической аналогии, мы должны ввести ещё одно ограничение. Мало того, что результирующее изделие должно отрываться от земли; отрываться от земли должно каждое промежуточное звено этого проекта, и каждое промежуточное звено должно превосходить в чём-то своего предшественника. В этом свете никак нельзя ожидать от животных совершенства, можно лишь удивляться тому, что у них что-то работает вообще»


«Аналогия с реактивным двигателем предполагает, что животные должны были быть смехотворными уродцами сиюминутных импровизаций, непропорциональными и гротескными реликтами с антикварными заплатками. Как можно согласовать это разумное ожидание с неописуемой грацией охотящегося гепарда, совершенной аэродинамической красотой стрижа, скрупулезно прописанными деталями маскировочного рисунка насекомого на листе?»

И действительно, здесь с Докинзом трудно не согласиться. Вместо «смехотворных уродцев сиюминутных импровизаций», которых нам следовало бы ожидать в случае слепой эволюции методом «случайного тыка», мы видим перед собой самые настоящие шедевры природы. Такие шедевры, без сомнения, больше всего ожидаются в рамках самого тщательного разумного дизайна. И судя по результатам, эта интеллектуальная деятельность была такой мощной, что нам остаётся пока лишь завидовать белой завистью.

И в довершение всего, разумный дизайн живых существ недавно… был доказан математически.

4.1 Революция, о необходимости которой так долго говорили большевики, свершилась!

Недавно была опубликована научная статья (shCherbak, Makukov, 2013), где авторы попробовали применить методику поиска (и распознания) разумного сигнала во Вселенной (исследовательская программа SETI) не к дальним и бескрайним просторам Космоса… а к нашему земному генетическому коду.

И вот авторы исследования обнаружили в генетическом коде (живых организмов) целый ряд чисто математических и идеографических соотношений, которые нельзя интерпретировать только случайностью. Это можно интерпретировать, только как разумный сигнал.

Авторы пишут (в резюме) буквально следующее:

…Ниже мы показываем, что земной код демонстрирует с высокой точностью упорядоченность, которая удовлетворяет критериям информационного сигнала. Простые компоновки (упорядочивания) кода обнаруживают стройное целое из арифметических и идеографических паттернов одного и того же символического языка. Точные и систематичные, эти паттерны представляются скорее как продукты точной логик и, и нетривиального вычисления, нежели стохастических процессов (нулевая гипотеза о том, что это есть результат случая вместе с эволюцией отвергается со значением P<10-13). Паттерны показывают легко распознаваемые печати искусственности, среди которых символ нуля, привилегированный десятичный синтакс и семантические симметрии. Кроме того, экстракция сигнала включает в себя логически прямолинейные, но вместе с тем абстрактные операции, что делает эти паттерны существенно несводимыми к естественному происхождению.

Получается, что генетический код – это не только код, используемый для записи информации, но еще и некий математический ребус, вероятность случайного возникновения которого меньше 10-13. Что практически безальтернативно указывает только на разумный источник создания генетического кода.

Конкретно, авторы статьи обнаружили, что молекулярные веса аминокислот и те кодоны, которые кодируют эти аминокислоты – подобраны друг к другу отнюдь не хаотично (как следовало бы ожидать в рамках гипотезы о случайном возникновении генетического кодирования на каком-то этапе абиогенеза).[34] А связаны между собой достаточно строгими математическими соотношениями, которые сохраняются при одних и тех же симметричных преобразованиях, производимых с кодонами генетического кода. Таким образом, это самый настоящий ребус. То есть, «кто-то неизвестный» не просто создал генетический код (язык программирования всего живого), но еще и выполнил этот код в виде математического ребуса.[35]

Интересно, что сторонники концепции Разумного Замысла всегда указывали на генетический код, как на одно из самых убедительных свидетельств разумного планирования при создании жизни. И понятно, почему. Потому что информация, записанная в виде условных знаков – это стопроцентный показатель присутствия разума. Во всех без исключения случаях (когда происхождение нам известно) закодированная информация всегда является неизменным индикатором присутствия интеллекта. И поскольку в живых организмах информация хранится в закодированной форме, то сторонники разумного замысла всегда и указывали на это обстоятельство, как на доказательство разумного планирования при создании живых существ.

Поэтому озвученная статья, которая доказала это еще и математически (обнаружив в генетическом языке еще и разумное послание, «существенно несводимое к естественному происхождению»), по сути, является сбывшимся предсказанием сторонников концепции Разумного Замысла.

То есть, сейчас мы имеем ту же ситуацию, как когда-то с Лениным на броневике. Когда-то Ленин на броневике сказал следующее:


– Революция, о необходимости которой так долго говорили большевики, свершилась!


Сегодня мы можем смело перефразировать эту фразу таким образом:


– Разумный дизайн генетического кода, о необходимости которого так долго говорили сторонники Разумного Замысла, математически доказан.


Без всякого сомнения, обнаружение интеллектуального ребуса в генетическом коде является одним из самых крупных открытий последнего времени.

Интересно, как повели себя в отношении этого открытия верующие дарвинисты.

Они молчат. Как в рот воды набрали. Будто никакого открытия не было. Никто не пытается комментировать, опровергать или хотя бы говорить на эту тему. Как это ни удивительно, но «в Багдаде всё спокойно» (С). В связи с этим возникает ощущение, что «Багдад» уже вообще ничем не проймешь.

Впрочем, я знаю, что ответят мне на это верующие дарвинисты. Они, как всегда, сделают вид, что вопрос происхождения жизни их не интересует. А интересует их только, по каким законам эта жизнь (однажды появившаяся) дальше начала развиваться. То есть, дарвинист сделает вид, что вполне готов допустить (в душе) разумное создание первых живых организмов. Хотя на самом деле (скажу Вам по секрету) такое «допущение» для активного дарвиниста почти равносильно физическому удушению.

Тем не менее, обнаружение ребуса в генетическом коде, действительно, имеет мало отношения к теории эволюции. Ведь даже если жизнь было создана каким-то разумом, дальше она, в принципе, могла развиваться естественным образом в ходе естественной эволюции.

Хотя, конечно, эта версия сразу же значительно обесценивается. Потому что возникает вопрос – если вначале всё равно был Разум, тогда зачем так уж сильно цепляться за непременную естественность эволюции во все остальные моменты времени?

Тем не менее, многие дарвинисты – цепляются еще как. Потому что на самом деле, они всё-таки в тайне надеются на чудо… пардон, на самозарождение жизни в грязной луже. Несмотря ни на какие факты,[36] дружно говорящие о невозможности естественного самозарождения жизни, и даже (вот теперь уже) несмотря на факты, прямо указывающие на разумный дизайн генетического кода.

И мы, следуя за этими дарвинистами, тоже должны быть последовательными – несмотря на то, что генетический код – явно искусственное образование, мы должны признать, что из этого факта еще не следует невозможность эволюции по дарвиновским механизмам.

Однако и дарвинисты тоже должны быть последовательными. Они тоже должны осознать, что с помощью молекулярно-генетических фактов доказать справедливость именно дарвиновских механизмов эволюции тоже невозможно. Потому что всегда остаётся возможность разумного создания (или редактирования) тех самых генетических программ организмов, в которых дарвинисты выискивают следы эволюции под действием «естественного отбора».


Единственное, что здесь можно сделать – это попытаться обосновать с помощью филогенетики сам факт эволюции как таковой. То есть, что живые существа происходили именно друг из друга. А не выпадали (допустим) из сингулярности.[37] Вот в этом смысле, молекулярно-генетические факты становятся весьма серьезными свидетельствами в пользу эволюции (появления одних групп живых существ из других).


Давайте вернемся к геномам всё тех же живых созданий, которых я уже озвучил выше: Николь Кидман, шимпанзе, кролик, колибри, лягушка.

Допустим, мы анализируем эти геномы по степени их схожести друг с другом и видим, что больше всего геном Николь Кидман походит на геном шимпанзе. На втором месте (после шимпанзе) сходны с генами Николь Кидман – гены кролика. На третьем месте (уже серьезно непохожи, но некоторое сходство всё же определенно угадывается) – гены колибри. И наконец, меньше всего гены Николь Кидман похожи на гены лягушки.

Но самое главное, что примерно то же самое видно даже по синонимичным заменам. Например, между генами Николь Кидман и шимпанзе – даже синонимичных замен – раз-два и обчёлся. А вот между генами Николь и кролика – синонимичных замен уже гораздо больше. Наиболее правдоподобным объяснением для таких фактов, действительно, является эволюционное объяснение. Что и Николь Кидман, и шимпанзе, и кролики имели в прошлом некоего общего предка. Но потом линия, которая в итоге привела к Николь Кидман, разошлась с линией кроликов. Причем разошлась уже сравнительно давно. А вот с линией шимпанзе – совсем недавно. Настолько недавно, что даже синонимичные замены еще не успели как следует «набежать» в эти два генома.

В итоге я, допустим, соглашаюсь, что постепенно убывающее сходство геномов свидетельствует в пользу эволюции от общего предка. То есть, озвученные факты лучше всего объясняются тем, что линия, породившая (в конце концов) Николь Кидман, отделилась от линии, приведшей к древесной лягушке – когда-то очень давно. Много-много миллионов лет назад. И за это время и в геноме Николь Кидман, и в геноме лягушки накопилось много случайных мутаций. Поэтому исходные (когда-то) гены стали теперь почти непохожими.

А вот от линии колибри, линия предков Николь Кидман отделилась уже позже, поэтому и гены сохранили более высокую степень сходства. От кроликов – еще позже, следовательно, и гены отличаются меньше. И наконец, линия Николь Кидман отделилась от линии шимпанзе совсем недавно (согласно современным представлениям, примерно 6 млн. лет назад). Поэтому гены Николь Кидман и шимпанзе имеют так много общего – случайные мутации еще почти не успели «испортить» исходно единый генетический «текст», который имелся у недавнего общего предка Николь и шимпанзе.

Итак, эта (гипотетическая) ситуация четко демонстрирует нам убывающее сходство геномов и доказывает, что Николь Кидман произошла (в конечном итоге) от какой-то древнейшей лягушки.

К сожалению, в реальности всё обстоит далеко не так радужно, как это описывают верующие дарвинисты – «убывающее сходство» часто не хочет красиво убывать, а вместо этого выписывает удивительные «зигзаги», которые на языке современной генетики называются филогенетическими конфликтами. «Филогенетические конфликты» – это такие факты (из той же молекулярно-генетической области), которые не укладываются в принятые эволюционные схемы, а наоборот, противоречат этим схемам (см. ниже).


Кроме того, необходимо отметить, что «нейтральные» мутации, возможно, не так нейтральны, как о них принято думать. Удивительно, но даже синонимичные замены (о которых я уже немало написал выше) могут быть вовсе не нейтральными, а иметь вполне определенный биологический смысл. На такую возможность указывает целый ряд биологических открытий.

Например, в работе (Cuevas et al., 2002) было показано, что синонимичные замены, скорее всего, играют какую-то биологическую роль. Правда, показано это было косвенно, но зато вполне наглядно. В этой работе разные линии вирусов независимо «содержались» в одних и тех же условиях среды на протяжении ряда поколений. И в результате, в разных линиях вирусов стала наблюдаться повторяемая картина одних и тех же генетических изменений («конвергенция» по выражению авторов). В том числе, и синонимичных замен. Естественно, авторы сделали вывод, что такая закономерность указывает на какую-то биологическую роль синонимичных замен. При этом авторы сослались еще и на другие научные работы с аналогичными результатами.

Вообще, было уже давно замечено, что в геномах разных организмов может иметь место «перекос» в пользу того или иного синонимичного кодона (см. например, Grantham et al., 1980; 1981). Что было бы невозможно, если бы кодоны были равнозначны. Ведь тогда бы их замена была равновероятной. Следовательно, в этом «перекосе» имеется какой-то биологический смысл.

И чем дальше, тем всё яснее становилось, что подобные «перекосы» (неравное распределение синонимичных кодонов) достаточно широко распространены в живой природе. Это явление получило название «предпочтения кодонов» (в английском варианте «codon usage bias»).

Интересно, что однотипное предпочтение именно определенных кодонов может быть характерно сразу для большинства генов конкретного биологического таксона. Получается как бы характерный «профиль» синонимичных предпочтений этого таксона в целом (см. например, Grantham et al., 1980). Что в свете представлений о случайной и независимой эволюции синонимичных замен (в разных генах) кажется весьма странным.

Очень интересно, что таким образом «перекашивать» может даже близкие биологические виды. Когда у одного вида (из конкретного биологического рода) наблюдается общий «перекос» (по большинству генов) в сторону одних синонимичных кодонов. А другой вид из этого же рода (!) предпочитает уже другие синонимичные кодоны.

Такой же феномен нередко наблюдается и на уровне биологического рода. Когда однотипный «профиль синонимичных предпочтений» имеется у близких видов одного рода, при этом отличаясь от предпочтения кодонов уже в «соседних» биологических родах (Grantham et al., 1980).

Например, в результате обширного исследования[38] было показано, что геномы 11 из 12 видов плодовых мушек рода Drosophila – ясно показывают однотипное предпочтение кодонов (заканчивающихся на G или C) по всем аминокислотам, за исключением серина. То есть, здесь четко наблюдаётся однотипное предпочтение кодонов в рамках биологического рода (Vicario et al., 2007). Но вот конкретно у плодовой мушки Drosophila willistoni почему-то наблюдается преобладание уже других кодонов, которые заканчиваются на Т или А вместо С (Vicario et al., 2007). То есть, этот пример демонстрирует отличия в предпочтении кодонов даже у разных биологических видов в рамках одного и того же рода. Почему это так, остаётся лишь гадать.[39]


Интересно, что такие генетические особенности организмов (разные предпочтения синонимичных кодонов в разных биологических группах) уже давно учитываются генетиками в их практической деятельности. В биотехнологических разработках, при внедрении чужого гена в новый организм, синтез белка с этого гена может оказаться не эффективным (или недостаточно эффективным). В том числе, из-за резкой разницы между «профилями синонимичных предпочтений» у модифицируемого организма и внедряемого гена. В таком случае приходится делать либо соответствующий редизайн нуклеотидной последовательности целевого гена, то есть, переделывать этот ген таким образом, чтобы его синонимичные предпочтения подошли к синонимичным предпочтениям «хозяина» (см. например, Gustafsson et al., 2004). Или наоборот, можно предложить генетическую модификацию соответствующих генов «хозяина», таким образом, чтобы уровень синтеза его транспортных РНК подошел бы к синонимичным предпочтениям внедряемого гена (см. например, Kane, 1995).

В связи с такими фактами (наблюдаемой неслучайности распределения синонимичных замен), была озвучена гипотеза, что эволюция организмов должна протекать в пользу тех синонимичных замен, которые могут обеспечить, например, более быстрый синтез белка. Вот поэтому мол, у многих организмов и наблюдается явный «перекос» в пользу определенных синонимичных замен. То есть, естественный отбор поддерживает такие случайные мутации, которые приводят к синонимичным заменам, ускоряющим синтез белков.[40] Однако другие случайные мутации и дрейф генов вмешиваются в ход этого отбора, снова и снова встраивая в гены организмов не-оптимальные синонимичные кодоны.[41] В результате мы и наблюдаем неравномерное распределение синонимичных кодонов у многих биологических видов – естественный отбор постепенно создаёт неравное распределение, а случайные мутации и дрейф генов пытаются всё это «сгладить» обратно.

Однако такую гипотезу можно упрекнуть в упрощении ситуации. Ведь далеко не всегда организму требуется именно быстрый синтез белка (в большом количестве). Допустим, какой-то синонимичный кодон является более «медленным», чем другой. Тогда, используя в разных случаях «быстрые» и «медленные» кодоны, мы получим, соответственно, более мощный или менее мощный синтез одного и того же белка (см. напр., Stenico et al., 1994). Но если этот белок является регуляторным (участвующим в развитии организма), тогда такие различия могут легко изменить развитие целого организма в ту или другую сторону. Даже самым радикальным образом.[42]


Можно придумать и какие-то другие теоретические случаи, в которых организму был бы полезен строго «дозированный» синтез белка (а не максимально эффективный).

И действительно, в сравнительно недавней работе (Xu et al., 2012) было прямо показано, что искусственная замена у цианобактерии Synechococcus elongate её родных «неоптимальных» (более медленных) кодонов на «оптимальные» (более быстрые)[43] – вовсе не повысила приспособленность этой бактерии. Наоборот, проделанные генетические изменения (с синонимичными кодонами) так изменили «биологические часы» этой бактерии, что её приспособленность снизилась.[44] В результате, авторы написали прямо в резюме, что они обнаружили прямой эффект от использования конкретных синонимичных кодонов на приспособленность организма. И что установленный ими биологический факт является ключевым примером, показывающим биологическую значимость даже «неоптимальных» синонимичных замен (Xu et al., 2012).[45]

В другой, аналогичной по смыслу работе (Zhou et al., 2012), искусственно созданные «оптимальные» синонимичные замены тоже нарушили нормальную жизнедеятельность плесени Neurospora. Причем нарушили в еще большей степени, чем у цианобактерий из предыдущего исследования. Более того, замена «не-оптимальных» синонимичных кодонов на «оптимальные» в этом случае даже привела к изменению конформации соответствующего белка (Zhou et al., 2012).

Это еще одна интересная фактическая подробность, которая показывает роль даже таких (казалось бы, ничтожных) генетических различий, как синонимичные замены. Причем тот факт, что определенное сочетание «быстрых» и «медленных» кодонов может помогать белку сворачиваться именно правильным образом – был отмечен и в других научных работах (см. например, Marin, 2008). Вот тебе и «нейтральные мутации».


К сожалению, факты, показывающие биологическую роль даже синонимичных кодонов – не укладываются в уже общепринятое мнение о нейтральности подобных различий. Более того, такие факты подрывают доверие к «генетическим доказательствам эволюции» в целом.[46] Наверное поэтому о существовании таких фактов от «теоретиков эволюции» можно услышать не часто. Несмотря на то, что некоторым опубликованным работам, посвященным явлению неравного распределения синонимичных кодонов (что указывает на возможный биологический смысл) – уже более 30 лет. Тем не менее, большинство «эволюционных теоретиков» продолжают игнорировать такую возможность, рассуждая о синонимичных заменах исключительно как о равнозначных, случайных и не имеющих особого биологического смысла «нейтральных мутациях».

Именно в таком ключе я говорил о синонимичных заменах чуть выше. Но если определенная часть синонимичных замен всё-таки имеет биологический смысл, тогда значительная часть моей речи про Николь Кидман, кроликов и «нейтральные мутации» – теряет всякий смысл. Потому что становится опять неизвестно, то ли синонимичные замены – это свидетельство миллионов лет эволюции, когда между неисчислимыми эволюционными предками Николь Кидман и кроликами постепенно накапливались нейтральные мутации (в том и числе и синонимичные)… А то ли эти «нейтральные мутации» – вовсе не нейтральные, и даже совсем не мутации. А вполне определенные генетические различия, которые имеют определенный биологический смысл, и все вместе служат для того, чтобы Николь Кидман была именно Николью, а не кроликом.


Однако такие тонкости, как возможная не нейтральность «нейтральных замен» (даже синонимичных, не говоря уже о значимых), а также многочисленные «филогенетические конфликты» – это всё уже приземленная реальность, к которой мы вернемся чуть позже. Пока же давайте просто проигнорируем эту приземленную реальность, и продолжим витать в тех упрощенных теоретических облаках, в которых витает большинство дарвинистов (не ведающих о перечисленных выше подробностях). То есть, представим, что никаких «филогенетических конфликтов» вообще не обнаружено (ни одного). И что «нейтральные мутации», действительно, нейтральны. Вот тогда красивая «сказка про лягушку, превратившуюся в царевну», становится былью. В рамках современной теории эволюции это чудесное событие, действительно, состоялось. Только происходило оно очень медленно и постепенно.

Однако всё тот же вопрос – каков же был механизм изменения генов, который привел от древней амфибии к Николь Кидман?

Можно, конечно, верить, что так получилось благодаря случайным мутациям, некоторые из которых оказывались полезными и поэтому подхватывались и закреплялись естественным отбором. И в конце концов, «лягушка» превратилась в принцессу (за сотни миллионов лет).

Но сегодня мы всё-таки живем уже в век генной инженерии и компьютерных технологий. Поэтому хорошо представляем себе и другие теоретические возможности. Например, возможность направленной (разумной) модификации геномов для получения нужного результата.

Мы понимаем, что если определенным образом (направленно) изменить генотип древесной лягушки, то мы вполне можем получить… даже Николь Кидман. Технически это, конечно, еще невозможно. Ведь мы еще только совсем недавно вошли в век генной инженерии. Еще лет 60 лет назад мы не представляли, какова вообще роль ДНК в живой клетке (считалось, что ДНК имеет запасающую функцию, что-то типа зерен крахмала). А сегодня мы уже уверенно вставляем гены человека в ДНК бактерий и дрожжей. И понятно, что это только начало. Пока еще мы не доросли до того, чтобы с помощью генетических модификаций получать принцесс из древесных лягушек. В то же время, мы хорошо понимаем – «то ли еще будет». Вряд ли кто-нибудь сомневается, что ученые со временем будут добиваться всё больших успехов в этой области.

В качестве конкретного примера приведу характерную цитату из соответствующей научно-популярной заметки. Сама заметка, в свою очередь, посвящена очередному научному исследованию, в котором была проделана (очередная) генетическая модификация организмов. Здесь биологи взяли гены цианобактерии, отвечающие за механизм биологических часов (который имеется у этих бактерий), и встроили эти гены в другую бактерию (сенную палочку), которая до этого не имела подобного механизма (Chen et al., 2015). Привожу короткую цитату для того, чтобы Вы сами смогли прочувствовать весь оптимизм автора, пищущего о возможных перспективах подобной модификации организмов (Кондратенко, 2015):

Генетически модифицированные бактерии, снабженные часами, смогут поддерживать правильные суточные ритмы, какой бы образ жизни ни вел хозяин. Другие потенциальные области применения – доставка лекарств в определенное время дня, а также лечение болезней, связанных с нарушением циркадных ритмов. В общем, каждому живому организму – по хорошим часам!

Как видим, нас (людей) оптимизм по поводу возможностей генетической модификации организмов – уже переполняет (хотя прошло всего 60 лет).


А теперь, если попытаться представить себе кого-нибудь разумного, который тренировался в генной инженерии не 60 лет (как мы), а допустим, 5000 лет или (гулять так гулять) 500.000 лет? Вряд ли тогда стоит отказывать этому «кому-нибудь разумному» в возможности создать из лягушки Николь Кидман.

Ну а если мы представим себе некий сверхестественный Разум, который сам по себе в миллионы раз мощнее нашего, и при этом еще и существует бесконечно долгое время… то создание принцесс из лягушек (а может быть и из «праха земного») покажется, наверное, просто детской забавой такому Разуму.

Понятно, что наивные верующие дарвинисты, наполовину застрявшие где-то в середине 20 столетия, такие теоретические возможности рассматривать не хотят. Им всё еще кажется невероятным искусственное создание миров. Или искусственное создание жизни. Или искусственная эволюция, например, по модели непрерывного творения (см. ниже).

Но мы то с Вами – просвещенные люди 21 века. Мы хорошо знаем и о существовании генной инженерии, и о стремительном прогрессе в области искусственного создания миров (правда, пока лишь виртуальных, в компьютерной индустрии). Да что уж мелочиться? Уже пошли разговоры о теоретических возможностях создания новых Вселенных.

Понятно, что в связи со столь быстрым прогрессом идей в таком направлении, концепция «случайных изменений организмов, отбираемых естественным отбором» выглядит уже далеко не так свежо и мудро, как это когда-то показалось нашим прадедам в теперь уже позапрошлом 19 веке. Разумная (генетическая) модификация организмов и создание новых миров сегодня вновь становятся актуальными и ясными идеями для общества.

Даже отдельные аспекты деятельности по созданию миров теперь становятся более понятными. Особенно людям, занятым в индустрии компьютерных игр. Например, в рамках разумного дизайна совершенно ясно, почему окружающая нас живая природа столь потрясающе разнообразна и богата самыми удивительными формами. Разработчики компьютерных игр быстро поняли это «первое правило создания миров» – чем разнообразнее мы создаём мир (виртуальный или реальный), чем больше внимания уделяем всяким мелочам – тем более привлекательным становится этот мир для игроков. И тем дольше люди играют в эту игру (и тем выше становятся денежные сборы от продажи этой игры).

Однако одного только разнообразия здесь недостаточно. Нужны еще и талантливые художники, которым удастся создать игровой мир в виде цельного дизайнерского проекта (несмотря на разнообразие). С гармоничными пейзажами, с различными эстетически привлекательными объектами (в том числе). В этом плане мы теперь понимаем, почему в нашем мире столько красивых птиц, бабочек, рыб и других красивых созданий. Ну а уж Николь Кидман – вообще одно из лучших тому подтверждений.

А вот с позиций чисто биологической целесообразности, все эти «красивости» и «излишества» всегда объяснялись «со скрипом». Потому что они в лучшем случае не полезны. А в худшем, наоборот, снижают эффективность выживания организма. В связи с этим, «проблема красоты» всегда висела над теорией эволюции как «дамоклов меч». Впервые эта проблема была озвучена самим же Дарвиным в разделе «Трудности теории». И похоже, в настоящее время как раз «проблема красоты» успешно хоронит теорию естественного отбора.[47]

Однако это очень большая тема. Мы обязательно поговорим об этом, но в следующей книге, которую полностью посвятим этому вопросу. Ведь это уже будут аргументы в пользу разумного дизайна. А мы сейчас разбираем аргументы, которые насобирали верующие дарвинисты в пользу своей веры.

Кстати, в рамках теории о случайной эволюции, которая направляется лишь «преимущественным выживанием более приспособленных», эволюция Николь Кидман из кроликов – не совсем понятна. Потому что «более приспособленные» в рамках теории Дарвина – это те, кто оставляет больше потомства. Но ведь за плодовитостью кроликов Николь Кидман никогда не сможет угнаться. Да и другие выше перечисленные животные тоже вроде бы не собираются вымирать от недостатка приспособленности. Так стоило ли настолько «перетряхивать» исходный геном какой-то древней лягушки случайными мутациями, чтобы в итоге получить Николь Кидман… которая ничуть не плодовитей исходной лягушки – по факту?

Опережая возмущенные крики верующих дарвинистов, сразу скажу, что несмотря на это саркастическое замечание, теоретически объяснить, почему Николь Кидман появилась из лягушки в рамках теории Дарвина – всё-таки можно, хотя и спекулятивно.[48]

Но вот чего уж точно не получается – так это доказать именно дарвиновские механизмы эволюции, опираясь лишь на факты молекулярной генетики. Потому что (последний раз) эти данные указывают только на общность происхождения (в тех случаях, когда не вступают в привычные конфликты друг с другом). А вот по поводу возможного механизма генетических изменений, которые привели от лягушек к принцессам – молекулярная биология молчит точно так же, как и палеонтология.

4.2. Когда молекулярная биология не молчит, о чем она говорит?

Предыдущий большой раздел текста я посвятил тому, чтобы объяснить (и потом еще много раз повториться), что никакие факты молекулярной филогенетики не могут свидетельствовать в пользу того или иного механизма, которые привели к генетическим изменениям. Была ли это интеллектуальная модификация геномов, или же это был результат естественного отбора случайных мутаций – филогенетика на этот счет уверенно ответить не может. Однако дело в том, что в некоторых случаях, кажется, всё-таки может.

Речь идет о тех случаях, когда биологи находят, будто бы, пути эволюции самих белков – когда белок сначала, вроде бы, выполнял одни функции, а потом, после некоторой генетической модификации, стал выполнять другие функции.

Например, мы видим, что аминокислотная последовательность в каком-то белке, который выполняет, допустим, функцию «переваривания пищи» – очень похожа на аминокислотную последовательность другого белка, но который занимается уже совершенно другим делом. Например, предохраняет организм от переохлаждения – от образования льда внутри тканей организма.

Это я сейчас озвучиваю получивший широкое распространение пример с так называемыми белками «антифризами» у полярных рыб. Понятно, что этот факт был открыт в ходе узко специфичных биологических исследований. Однако дарвинисты-миссионеры постарались сделать эту информацию широко известной. Логика их вполне понятна – ведь этот факт, вроде бы, куда больше свидетельствует в пользу случайной эволюции (методом случайных мутаций), чем в пользу разумного планирования.

Действительно, белки «антифризы» некоторых антарктических рыб имеют сходство аминокислотной последовательности с другим белком – панкреатической трипсиногеноподобной протеазой, который занимается совершенно другой деятельностью – «перевариванием пищи» (расщеплением пептидной связи). С точки зрения разумного планирования, переделывать имеющийся белок в какой-то другой, чтобы он выполнял совершенно другую функцию, кажется, не слишком логично. Правильнее, наверное, было бы создать отдельный белок, который бы сразу (исходно) выполнял возложенную на него специальную задачу. Но нет. Мы ясно видим именно следы «переделки». В этом переделанном белке сохранились даже некоторые участки от прежнего белка, которые, вроде бы, не нужны новому белку для выполнения его работы. А достались ему просто «в наследство» от исходного белка.

То есть, здесь мы, кажется, имеем такую ситуацию, про которую было хорошо спето в одной популярной песенке:

Я его слепила из того, что было, а потом что было, то и полюбила (С)

Понятно, что такое положение дел больше всего свидетельствует в пользу версии случайной эволюции. Действительно, именно от случайной эволюции, прежде всего, можно ожидать «творений» по принципу «слепила из того, что было». Ведь естественная эволюция слепа, а выживать рыбам в антарктических водах как-то было надо. Особенно если предположить, что эти антарктические воды несколько миллионов лет назад начали постепенно охлаждаться. Вот слепая эволюция в этих условиях и стала подхватывать такие аминокислотные изменения в любых случайных белках, которые позволяли этим белкам «прилипать» к нарождающимся кристалликам льда, не давая этим кристалликам разрастаться дальше и разрушать живые ткани. И таких подхваченных случайных решений оказалось довольно много. Например, белки-антифризы из группы АФГП были обнаружены у антарктических рыб семейства нототениевые (Nototheniidae) и как уже говорилось, предположительно являются эволюционной «переделкой» какой-то трипсиногеноподобной протеазы. Причем у одного из видов нототениевых рыб (антарктического клыкача) найден химерный ген с промежуточными свойствами, кодирующий как АФГП полипротеин, так и протеазу (Бильданова и др., 2012). То есть, найдена как бы переходная форма между белком трипсиногеном и белком-антифризом.

А вот белки-антифризы группы АФП I (характерные уже для других рыб) похожи на продукт переделки уже других белков – установлена гомология между геном АФП I типа рыб и генами белков хориона и кератина липариса атлантического (Бильданова и др., 2012). А белки-антифризы группы АФП II, возможно, произошли от какого-то лектиноподобного предкового белка (Бильданова и др., 2012). Наконец, белки-антифризы группы АФП III (имеющиеся у антарктических бельдюговых рыб) произошли, скорее всего, от древнего гена синтазы сиаловой кислоты, путем дивергенции и дупликации (Бильданова и др., 2012).

Как видим, решений получилось много. И все эти решения в итоге позволили разным рыбам выживать в очень холодных арктических и антарктических водах.

Но и это еще не всё. Разнообразные белки «антифризы» были обнаружены еще и у насекомых (причем в разных таксонах насекомых – разные белки-антифризы). Еще у антарктической нематоды (круглый червь), у грибов, у диатомовых водорослей, в разных таксонах растений (разные белки антифризы), у бактерий (Бильданова и др., 2012).

В общем, такое ощущение, что молекулярная филогения именно белков-антифризов четко вписывается в сценарий естественной эволюции (т. е. дарвинизма). Например (рисуем возможный сценарий), антарктические воды стали постепенно охлаждаться, и сразу у разных групп антарктических рыб естественный отбор начал отыскивать разные мутации в разных белках, лишь бы эти изменения подходили для выполнения «антифризной» роли. И естественный отбор находил то, что ему было нужно – отдельные особи, у которых происходили такие мутации (неважно в каких генах), где аминокислотная последовательность мутантного белка начинала «липнуть» к кристалликам льда (препятствуя их объединению и росту), получали преимущество в выживании. И в конечном итоге получилось то, что получилось – во-первых, разнообразие антифризных белков у разных групп арктических и антарктических рыб, а во-вторых, явно «переделочный» характер этих белков.

Причем такую же картину мы видим и по белкам-антифризам в других биологических таксонах – у насекомых, или, например, у растений – белки-антифризы тоже отличаются разнообразием и нередко демонстрируют гомологию (сходство) с какими-то другими белками, выполняющими какие-то совершенно другие функции.

В общем (еще раз) создаётся такое ощущение, что здесь всё прямо по Дарвину. Так неужели это как раз тот случай, когда факты молекулярной филогенетики говорят (свидетельствуют) именно в пользу дарвиновских механизмов эволюции?


Хотя окончательным доказательством такие факты всё-таки не являются. Потому что это всё же мог быть разумный дизайн. Но тогда это был весьма специфичный разумный дизайн. Который, с одной стороны, можно было бы назвать в высшей степени «ленивым». Ведь этот дизайн был выполнен по принципу «из того, что было». И еще, кажется, по принципу «тяп-ляп и готово».

С другой стороны, «ленивым» этот дизайн тоже никак нельзя назвать. Ведь хотя белок-антифриз создаётся как бы «из того, что было», но зато у разных рыб это «из того что было» каждый раз оказывается разным. А ведь если бы дизайнер был ленив, то он бы, наверное, поленился переделывать каждый раз разные белки (превращая их в разные белки-антифризы), а воспользовался бы каким-нибудь единственным (единожды созданным) белком-антифризом, снабдив им (и только им) все имеющиеся виды рыб, которые сталкиваются с проблемой переохлаждения. Однако такое ощущение, что гипотетический дизайнер просто забавлялся, «вылепляя» белки антифризы каждый раз из разных (имевшихся под рукой) белков независимо для каждой отдельной группы рыб. Такое поведение уже трудно назвать «ленивым». В общем, получается какая-то ерунда – наш воображаемый дизайнер получается как бы и ленив и не ленив одновременно.

Тем не менее, даже такие причуды, в принципе, дизайнеру делать не запретишь. Ведь на то он и дизайнер, чтобы поступать, как хочет.

Кроме того, можно предположить и некоторые другие гипотезы, связанные с дизайном. Например, дизайнеров могло быть много. И каждый дизайнер занимался проектом какого-то своего (конкретного) таксона рыб, особо не вникая в то, что там творили его «соседи-дизайнеры» с другими таксонами рыб.

Еще можно предположить, что дизайнеры пользовались «языком программирования» очень высокого уровня, где даются лишь общие указания, «что нужно сделать», а не «как это сделать». Программисты поймут, что я имею в виду, потому что именно такой принцип используется сегодня в некоторых языках программирования сверхвысокого уровня.

То есть, дизайнеры могли давать своим «программам редактирования живых существ» лишь самые общие указания – например: «Пусть эта рыба станет жить в холодной воде». И далее «программа редактирования живых существ» уже сама реализовывала эту инструкцию тем или иным способом (может быть, не самым мудрым из всех возможных).

Наконец, можно предположить, что дизайнер вообще не «заморачивался» с каждым конкретным белком и каждой конкретной рыбой, а просто встроил некий «решатель проблем» в геномы самих рыб. И в результате сами рыбы оказались способны решать некоторые простые вопросы своего выживания – допустим, самостоятельно приспосабливаться к охлаждению воды, или, наоборот, к её потеплению. Например, позвоночные животные имеют аналогичный «встроенный решатель проблем» в своей иммунной системе. Когда организм позвоночного животного сталкивается с инфекцией, в клетках его иммунной системы происходит быстрый подбор нужного антитела к этой инфекции. За счет того, что имеющаяся (от рождения) «база данных» антител подвергается очень быстрому перебору и модификации с целью поиска нового варианта антитела, подходящего конкретно в данной ситуации. Это осуществляют специальные ферменты, обеспечивающие гипер-мутирование на нужных участках ДНК. В результате, организм подбирает нужный «ключ» к напавшей на него инфекционной болезни. Это весьма эффективный механизм иммунитета, хотя, конечно, возможности его тоже не безграничны. Примерно так же может быть и в разбираемом нами случае – в принципе, рыбы могут иметь какие-то встроенные в их геномы генетические подпрограммы, специально предназначенные для решения некоторых частных проблем их выживания. Хотя возможности этих генетических подпрограмм тоже не беспредельны.

Я не знаю, убедительно ли прозвучали для читателя только что перечисленные гипотезы с участием разумного дизайна в появлении белков-антифризов. Лично мне эти гипотезы самому показались неубедительными. Создаётся ощущение, что озвученные варианты «притянуты за уши», лишь бы только в них всё-таки фигурировал разумный дизайн (а не естественный отбор).

Гораздо проще согласиться, что белки-антифризы полярных рыб – больше всего свидетельствуют именно в пользу естественной эволюции по дарвиновским механизмам. Потому что именно от естественной эволюции по (слепым) дарвиновским механизмам, прежде всего, ожидается именно такая картина – разные белки-антифризы в разных группах рыб, полученные в результате переделки других белков. Всё это очень похоже именно на результат независимых естественных эволюционных процессов (на молекулярно-генетическом уровне) под давлением одних и тех же факторов среды и соответствующего естественного отбора в этой среде.

Тем не менее, озвученные выше версии разумного дизайна, хотя и выглядят откровенными спекуляциями, теоретически всё же не исключены. Поэтому после долгих колебаний я всё-таки решился почитать про эти белки-«антифризы» более подробно. Дело в том, что, не являясь генетиком, я обычно стараюсь избегать погружения в такие вопросы, и поэтому долго не решался на чтение оригинальных публикаций в этой области. Но наконец решил, что это сделать всё-таки надо.

И сразу же выяснились чрезвычайно интересные вещи.

Итак, открываем соответствующий обзор и начинаем читать (Бильданова и др., 2012:250):

Первые АФП описаны более 40 лет назад (DeVries, Wohlschlag, 1969).[49] С тех пор выявлено множество их типов у представителей разных таксонов (табл. 1) (Jia, Davies, 2002). Судя по вариабельности связывающихся со льдом белков и их неупорядоченному филогенетическому распространению, эти белки возникали независимо, в основном как инструмент приспособления вида к новой экологической нише или в связи с изменениями климата (Cheng, 1998; Doucet et al., 2009; Deng et al., 2010).

Пока всё вроде бы выглядит так, как мы и писали выше – «вариабильность» и «неупорядоченное филогенетическое распространение» этих белков свидетельствует в пользу их независимого возникновения в ходе (видимо) случайной эволюции. То есть, начинается, вроде бы, «за здравие». Однако посмотрим, чем всё закончится.

В разделе «Происхождение и эволюция АФП» читаем (Бильданова и др., 2012:262):

Группа АФП характеризуется недавним эволюционным происхождением, множественностью компонентов у одного организма, независимым происхождением у представителей близкородственных таксонов и конвергентным сходством у неродственных групп организмов (Barrett, 2001)…

Вот как только я прочитал фразу про «конвергентное сходство», так сразу же и насторожился. Потому что «конвергентное сходство» – это, на самом деле, такая штука, которая на дарвинистском языке означает явление, не слишком хорошо объяснимое в рамках дарвинизма, но зато прекрасно объясняемое в рамках разумного дизайна.

И предчувствия нас не обманули. Начинаем читать про антифризные белки первой группы, и выясняем, что белки этой группы обнаружены у антарктических нототениевых рыб… но не только у них! Сходные антифризные белки обнаружены еще и у сайки (Boreogadus saida). А ведь сайка (полярная тресочка) принадлежит вообще к другому семейству (тресковые) и даже к другому отряду рыб (трескообразные). Более того, сайка вообще не пересекается с представителями семейства нототениевые еще и географически, поскольку плавает не в холодных антарктических водах южного полушария (где обитают нототениевые рыбы), а населяет столь же холодные арктические воды северного полушария. То есть, обитает, в буквальном смысле, на другом конце Земного шара.

Получается, что «почти идентичные АФГП» (Бильданова и др., 2012:262) имеются у разных (независимых) семейств рыб (нототениевых и тресковых), которые еще и обитают на противоположных концах Земли.

Как это понимать? Почему наша «случайная эволюция», о которой мы только что говорили, как о наиболее правдоподобном объяснении «эволюции белков-антифризов», совершила столь странное «совпадение»? Где, собственно, заявленная случайность этой эволюции? Мы только что, вроде бы, пришли к выводу, что белки-антифризы лепились из других белков по случайному принципу (помните: «я его слепила из того, что было»), как средство «экстренной эволюционной помощи при похолодании или смене экологической ниши». Но когда мы перешли к изучению конкретных фактов, неожиданно оказывается, что эта «лепка» совсем не выглядит случайной – она была повторена в совершенно независимых таксонах рыб.

Но ведь мы только что озвучили практически то же самое в версии про «ленивого дизайнера». Помните? Мы предположили, что «ленивый дизайнер» вылепил бы нужный белок из первого же более-менее подходящего (для этой цели) другого белка… а потом бы распространил такое же решение на другие таксоны рыб, которые сталкиваются с такими же экологическими проблемами. Но мы отбросили эту версию, как «притянутую за уши». Помните?

И вот оказывается, что необходимый АФГП был «вылеплен» из другого белка, и задействован в двух совершенно разных таксонах рыб, которые сталкиваются с одинаковыми экологическими проблемами. То есть, наше рассуждение про «ленивого дизайнера»… неожиданно подтвердилось с точностью до буквы.

Вот так неожиданно ситуация развернулась ровно на 180 градусов. Буквально только что (пока мы не вдавались в подробности) эта ситуация выглядела совершенно как «эволюция случайных генов под действием сходных условий среды». А разумный дизайн плёлся где-то на задворках в качестве «притянутой за уши невероятной спекуляции». Но стоило нам ознакомиться с конкретными фактами, как теперь нам уже необходимо защищать нашу теорию о «случайной эволюции из случайных генов», изобретая дополнительные объяснения, почему это наша «случайная эволюция» демонстрирует столь серьезные повторы своих «случайных решений».

И объяснения этому факту, конечно, приводятся (в рамках дарвинизма). Считается, что это была действительно независимая эволюция, которая, тем не менее, привела к конвергентному (генетическому) сходству. На независимый характер этой эволюции указывает то, что несмотря на общее большое сходство, между АФГП нототениевых и тресковых имеется и целый ряд отличий (Бильданова и др., 2012:262):

…гены АФГП нототениевых и тресковых имеют отличия, которые убедительно показывают независимую эволюцию АФГП-генов трески: а) различные сигнальные пептидные последовательности; б) разные последовательности спейсеров, соединяющих отдельные гены АФГП в полипротеине, что приводит к различным механизмам процессинга предшественников полипротеина; в) разные последовательности, кодирующие повторы Thr-Ala/Pro-Ala; г) геномные локусы АФГП гена трески и нототениевых АФГП тоже отличаются (Cheng, 1998)…

В результате авторы обзора приходят к выводу:

Таким образом, почти идентичные АФГП двух не связанных групп рыб представляют собой пример конвергенции белковых последовательностей, т. е. развитие аналогичного белка из разных предков в результате воздействия одинаковых условий окружающей среды.

Ну что же. Эволюционное объяснение найдено. Оказывается, почти идентичные белки вполне могут возникать из разных предковых белков, если того требуют одинаковые условия среды. Действительно, можно предположить, что функция связывания со льдом требовала примерно сходных аминокислотных последовательностей в белке. Вот в результате этих требований (и соответствующей эволюции под действием естественного отбора) и получилось итоговое сходство обсуждаемых белков.

Правда, мы совсем недавно писали, что имеется большое разнообразие белков-антифризов. Поэтому, казалось бы, АФГП тресковых и нототениевых было бы совсем не обязательно становиться почти идентичными в ходе «случайной эволюции». Но вот теперь, оказывается, что обязательно. Ну что же, простим этот маленький каприз нашей «случайной эволюции». Ведь, как известно, неисповедимы пути её.

Тем не менее, еще раз отметим, что версия «случайной эволюции» становится уже далеко не такой «очевидной», какой она выглядела до ознакомления с конкретными антифризами тресковых и нототениевых рыб. В то же время такие (почти идентичные) решения, применённые в разных (независимых) биологических таксонах – уже гораздо лучше вписываются в концепцию разумного дизайна этих таксонов, чем это выглядело вначале.[50]

Но может быть, «почти идентичность» АФГП тресковых и нототениевых – это просто такое случайное исключение из правил? Может быть, АФП других организмов ясно демонстрируют совершенно случайный характер своего образования?

Ну что же, давайте посмотрим. Читаем про антифризные белки следующей группы (Бильданова и др., 2012:262):

АФП I типа рыб являются полифилетическими по происхождению, они обнаружены у представителей трех неродственных отрядов костистых рыб и представляют собой пример конвергентной эволюции (Hobbs et al., 2011).

Вот это да! Оказывается, удивительная ситуация со странными повторами… повторяется снова. Причем теперь уже в более тяжелом варианте. В данном случае получается, что антифризные белки АФП I имеются уже у трех неродственных отрядов рыб. Конкретно в работе озвучивается керчак (скорпенообразные), зимняя камбала (камбалообразные) и губан (окунеобразные) (Бильданова и др., 2012:252).

Как объяснить теперь уже эти независимые повторы? Если это не «разумный дизайн» (сходные инженерные решения, примененные для выполнения сходных задач в совершенно разных биологических таксонах), то тогда что же это такое?

В рамках эволюционных воззрений – это тройное (!) совпадение опять «списывается» на конвергенцию. То есть, антифризные белки этой группы так похожи друг на друга у представителей трех разных отрядов рыб просто потому, что… так получилось. Может быть, на роль будущих антифризных белков были избраны похожие исходные белки (чисто случайно, конечно). Например, вышеупомянутые белки хориона или кератина во всех трех отрядах рыб (просто случайно так совпало). Или же исходные белки были разные, но одинаковые требования к этим белкам (реагировать с кристаллами льда) в итоге привели к сходной аминокислотной последовательности в исходно разных белках. Несмотря на то, что те же самые требования к белкам привели (почему-то) к другой аминокислотной последовательности у тресковых и нототениевых. А у сельди и корюшки – к третьей аминокислотной последовательности (см. ниже). И у диатомовых водорослей – тоже к другой. У пшеницы – еще к другой. У моркови – тоже к другой. У грибов – опять к другой. У бабочек – снова к другой. У жуков – снова к другой. И у бактерий… правильно, тоже к другой. Итак, у всех вышеперечисленных организмов, «одинаковые требования среды» привели к другим антифризным белкам. А вот в трех независимых отрядах рыб (скорпенообразных, камбалообразных и губановых) эти же требования среды почему-то потребовали от аминокислот выстроиться именно в определенные (сходные) аминокислотные последовательности. Которые сами же дарвинисты непременно объявили бы гомологичными (т. е. происходящими от одного предка), если бы эти белки не были найдены в трех независимых таксонах рыб.

Да, именно так нас и учит теория эволюции (даёт вот такие объяснения). В одних случаях случайная эволюция совершенно свободно «вылепляет» самые разные антифризные аминокислотные последовательности из самых разных белков. И у неё всё получается. А в других случаях эта же случайная эволюция не может поступить никак иначе, кроме как повторить сходную антифризную аминокислотную последовательность три независимых раза подряд.

Но может быть, это совсем не совпадение? Может быть, для такого решения имелись какие-то резонные основания? И именно поэтому наша «случайная эволюция» и прошла по одному и тому же пути три раза подряд? Но если мы сделаем такое предположение, то сразу же поймем, что точно такое же предположение можно сделать и в рамках концепции разумного дизайна. Что имелись какие-то (резонные) основания создать именно такую (а не какую-то другую) антифризную аминокислотную последовательность в этих трех конкретных случаях. И именно поэтому некий разумный дизайнер так и сделал – применил сходное решение три раза подряд в тех независимых отрядах рыб, которым это решение подходило (по каким-то причинам).

Однако мы пока делаем вид, что как бы верим эволюционным объяснениям (про многочисленные «конвергенции»). Действительно, пока еще ничего особо невозможного не было озвучено. Ну, совпало так три раза подряд, что «мишенями» для случайных мутаций при создании белков-антифризов в трех разных отрядах рыб послужили какие-то, допустим, исходно похожие белки. Поэтому продолжаем читать соответствующий обзор.

Переходим к чтению про белки-антифризы следующей группы… И теперь уже падаем со стула. Читаем (Бильданова и др., 2012:263):

Независимое появление АФП II типа в трех неродственных ветвях костистых рыб (сельди, корюшки и морского ворона) является экстраординарным по нескольким причинам (Graham et al., 2008a). Эти гомологи лектинов являются единственными лектинами, у которых пятый дисульфидный мостик специфически локализован, и они гораздо более похожи друг на друга, чем на любой другой гомолог лектинов. Их сходство распространяется и на уровень последовательности ДНК, где даже интроны имеют до 97 % гомологии. В базах данных не были обнаружены родственные аминокислотные последовательности других видов с гомологией более 40 %. Это согласуется с данными геномной Саузерн гибридизации, которая показала отсутствие гомологов АФП второго типа у других видов рыб. Консервативность интронов и экзонов, отсутствие корреляции между эволюционным расстоянием и скоростью мутаций, соотношение синонимичных и несинонимичных замен в кодонах не соответствуют гипотезе о существовании предшественника этих генов, который был элиминирован во всех таксонах костистых рыб.

Некоторые авторы считают, что горизонтальный перенос гена АФП II типа является наиболее вероятным объяснением большой гомологии аминокислотной последовательности (до 85 %), низкой частоты синонимичных мутаций и высокой консервативности числа, положения и последовательности интронов (Graham et al., 2008a).

То есть, ситуация становится уже просто скандальной. АФП II типа точно так же как и предыдущие (АФП I типа) обнаружены у представителей сразу трех неродственных отрядов рыб (сельдеобразные, корюшкообразные и скорпенообразные). Причем сельдеобразные принадлежат даже к другому надотряду (Clupeomorpha).

Между тем, уровень гомологии аминокислотной последовательности доходит до 85 %. И это сходство распространяется даже на интроны!

Понятно, что лучше всего наличие столь сходных генов в разных таксонах рыб объясняется в рамках разумного дизайна. Как я уже говорил, для разумного дизайна совершенно естественно, что одинаковые инженерные решения (одинаковые гены) используются в разных таксонах рыб для решения одних и тех же задач.

А вот в рамках теории естественной эволюции, очевидно, что такое сильное сходство белков и генов уже нельзя списать ни на какую «конвергенцию». Потому что такой уровень сходства уже слишком невероятен для любых случайных совпадений.

И вот нашей многострадальной «теории эволюции» в данном случае приходится «доставать из широких штанин» (С) уже другую дополнительную (ad-hoc) гипотезу для объяснения еще и этого факта сходства белков и генов в трех совершенно неродственных таксонах. Как видно из приведенной цитаты, некоторые авторы предлагают применить здесь объяснение «горизонтальным переносом». Это значит, что нам предлагают считать следующее – данные рыбы просто «нахватались» друг у друга соответствующих генов. Правда, нахватались они этих генов таким способом, который пока неизвестен современной науке. Ведь науке пока известен только один способ «пересадки» генов от одних эукариотических организмов к другим – это методы генной инженерии. Однако рыбы перечисленных выше отрядов (сельдеобразные, корюшкообразные и скорпенообразные) вряд ли владеют методиками генной инженерии. У этих рыб нет соответствующего оборудования. И даже нет рук, чтобы на этом оборудовании работать.

Поэтому считается (теоретически), что случайную пересадку гена мог бы произвести какой-нибудь вирус, который, во-первых, случайно «выхватит» нужный ген из ДНК организма-хозяина и случайно встроит в свою ДНК. После этого (во-вторых), этот вирус должен случайно заразить не того хозяина, к которому он приспособлен (например, атлантическую сельдь), а какую-нибудь совершенно постороннюю рыбу, например, азиатскую корюшку. В-третьих, этот вирус должен заразить не абы какую клетку нового организма-хозяина, а именно его половую клетку. Ведь если вирус встроит своё ДНК в клетку какой-нибудь мышцы, или в клетку крови, или печени, то пересаживаемый ген там так и останется, и умрет вместе с данной рыбой. И наконец, встроенный ген (после столь удачного попадания в нужное место), должен каким-то образом еще и начать там удачно работать. То есть, когда он начнет работать, это должно оказаться полезным (а не вредным) для организма. Поэтому он должен начать работать именно там где нужно, и в то время, когда это нужно. Ведь что получится, если этот ген «врубится» в тот момент, когда, допустим, рыбий эмбрион только начал формировать себе мозг… И в это время включается ген, штампующий в этом мозгу белки-антифризы… Что из этого получится, знает только один Ричард Докинз. Наверное, данная рыба сразу же перейдет на совершенно новый этап эволюции.

Естественно, воочию таких чудес («горизонтальных переносов у эукариот») не видел еще ни один биолог. Но поскольку «чужие» гены обнаруживаются (в самых разных организмах) всё чаще и чаще, то биологам и приходится теоретически допускать возможность таких вот чудес. Действительно, не допускать же в качестве объяснения разумный дизайн. Ведь это так невероятно – редактирование генетических программ методами генной инженерии. Несмотря на то, что мы (люди) уже сами занимаемся подобной деятельностью (спустя всего 60 лет после того, как разобрались, что такое ДНК). Но допускать, что подобной деятельностью мог бы заниматься кто-нибудь еще (кроме нас), мы не хотим ну прямо вот никак.

В общем, давайте подводить итоги.

Сначала вспомним, как прекрасно всё начиналось – при взгляде на белки-антифризы «с высоты птичьего полёта» наша любимая теория естественной эволюции так хорошо подтверждалась… А несчастный разумный дизайн выглядел так наивно.

А теперь давайте посмотрим, к чему мы пришли в итоге:

1. Совпадение АФГП у нототениевых и тресковых рыб – выглядит, конечно, похожим на разумный дизайн, но это не разумный дизайн, а просто «результат конвергенции в ходе случайной эволюции».

2. Совпадение АФП первого типа у скорпенообразных, камбалообразных и окунеобразных – это, конечно, тоже похоже на разумный дизайн. Но мы не будем «верить глазам своим», а будем тоже считать это «результатом конвергентной эволюции».

3. Ну а совпадение АФП второго типа у сельдеобразных, корюшкообразных и скорпенообразных – это уже вообще, настолько похоже на разумный дизайн, что, собственно, и не отличить. Это явные следы генной инженерии. Однако мы и это тоже не будем считать разумным дизайном. А объясним теперь уже «горизонтальным переносом» соответствующих генов. Потому что предыдущее объяснение про «результат конвергентной эволюции» тут уже явно не «катит».

Итак, что мы наблюдаем в итоге? В итоге мы наблюдаем, что начали мы «за здравие», да вот только закончили «за упокой». Вначале у нас нарисовалась такая красивая картинка по эволюции белков-антифризов, причем именно методом естественного отбора случайных мутаций (у случайных белков). Однако эта благостная картинка буквально рассыпалась в прах, стоило ей соприкоснуться с конкретными фактами. Получилось, что реальные установленные факты по белкам-антифризам не столько «подтверждают эволюцию», сколько задают загадки и создают парадоксальные ситуации.

Причем то же самое распространяется не только на рыб, но и на другие таксоны, и даже на целые царства живых существ. Читаем (Бильданова и др., 2012:263):

В последнее время были клонированы АФП диатомовых водорослей (Janech et al., 2006) и антарктической бактерии (Raymond et al., 2007), эти белки показали высокую гомологию с АФП грибов (Xiao et al., 2010). Есть все основания считать, что гомологи АФП грибов широко распространены в нескольких царствах, благодаря возможному горизонтальному переносу генов между эукариотическими микробами и прокариотами (Raymond et al., 2007).

Как говорится, «совсем приехали». Теперь уже АФП совпадают у диатомей, бактерий и грибов. Что заставляет привлекать палочку-выручалочку с «горизонтальным переносом» еще и для этих таксонов. То есть, на самом деле, столь разрекламированные (некоторыми проповедующими дарвинистами) белки-антифризы не только не «подтверждают эволюцию», а наоборот – эту бедную «теорию эволюции» приходится буквально спасать от тех фактов, которые открылись при изучении белков-антифризов. Спасать при помощи дополнительных гипотез про «горизонтальные переносы» между разными царствами живых существ. Причем мы видим, что для спасения теории эволюции (от наступающих на неё фактов) применение гипотезы «горизонтального переноса» должно иметь массированный характер.

Но и это еще не всё. Помните, рассуждая выше о том, как мог бы осуществляться разумный дизайн белков-антифризов, я высказал (в том числе) мысль о возможном наличии некоего готового «решателя проблем», встроенного в геномы соответствующих животных. Вспомнили?

А теперь давайте прочитаем следующую цитату (Бильданова и др., 2012:263):

АФП III и АФГП отличаются по составу и структуре, они выявлены в различных систематических таксонах, однако сходная структура генов этих АФП свидетельствует о наличии у рыб общего механизма организации участков геномов, отвечающих за приспособление к экстремальным условиям полярных ареалов (Deng et al., 2010).

То есть, это либо свидетельство прямого разумного дизайна, проявившее себя в организации сходной структуры генов при решении сходных «технических» задач в разных биологических таксонах. Либо у рыб имеется встроенный «автоматический решатель» подобных экологических проблем (тоже, видимо, «заботливо предоставленный производителем»).


Да и вообще. Сегодня уже понятно, что многочисленные парадоксальные ситуации складываются постоянно не только при попытках проследить пути генетической эволюции рыб (или их белков), но и в любых других биологических таксонах. Это и есть та самая суровая реальность, которую выше я упомянул, но пока обещал игнорировать. А может быть, хватит уже игнорировать?

Ведь из простого перечисления установленных (к сегодняшнему дню) генетических конфликтов можно уже, наверное, составить целую книгу.

Прежде всего, это будет длинный перечень генетических фактов, которые резко конфликтуют с морфологическими фактами. Еще хуже получается, когда генетические исследования, проведенные по одним генам, вступают в конфликт с результатами таких же генетических исследований, но проведенных по другим генам этих же самых (!) организмов. То есть, генетические факты («доказывающие эволюцию»?) на самом деле, весьма часто противоречат: 1) друг другу, 2) общепринятым сценариям эволюционного происхождения биологических таксонов.[51]


Для любопытствующих приведу типичный пример – резюме очередной научно-популярной заметки, с говорящим названием «Игуаны голосуют против молекулярной филогенетики» (Наймарк, 2012):

Одновременно опубликованы две работы, касающиеся филогении чешуйчатых (ящериц, змей, амфисбен и их родичей). Одна из них реконструирует молекулярную эволюцию ядерных генов, вторая – сравнивает морфологические признаки вымерших и ныне живущих представителей. Два филогенетических дерева оказались принципиально несхожи. В особенности это касается игуан, имеющих множество примитивных черт, но оказавшихся на молекулярном дереве среди своих продвинутых четвероюродных кузин. Этот методологический конфликт пока не удается разрешить.

Это пример филогенетического конфликта на уровне разных биологических семейств. Но еще более интересны такие генетические конфликты, которые обнаруживаются на уровне биологических родов, и даже биологических видов. Такие примеры интересны потому, что на самых «мелких» уровнях таксономической иерархии эволюционные связи между живыми существами, казалось бы, должны быть видны наиболее отчетливо.

Действительно, если мы сравниваем между собой таксоны, далекие друг от друга, то здесь филогенетические взаимоотношения как бы «размываются». Становясь тем более неопределенными, чем выше ранг этих биологических таксонов. Ведь далекие биологические группы серьезно отличаются друг от друга по целому комплексу признаков (морфологических, анатомических, физиологических, экологических, биохимических). Одновременно, гены этих (далеких друг от друга) биологических групп тоже демонстрируют весьма серьезные различия в своих нуклеотидных последовательностях. В значительном числе случаев «родство» этих генов угадывается лишь на уровне самых консервативных отдельных участков. В то время как остальная (наибольшая) часть их нуклеотидных последовательностей – вообще не имеют между собой ничего общего. В этом случае становится не слишком понятно, считать ли это результатом глобального расхождения нуклеотидных последовательностей (от исходных генов «общего предка») в ходе очень долгой эволюции? Или же так и было задумано сразу – чтобы эти белки были разными у столь разных организмов? То есть, сила «генетических доказательств эволюции» в случае далеких биологических таксонов серьезно снижается (во всяком случае, в глазах критиков).

И совсем другое дело, когда мы наблюдаем весьма близкие нуклеотидные последовательности в близких биологических таксонах. Например, у разных биологических видов в рамках одного и того же рода. В этом случае становится, действительно, непонятно, зачем гены, почти идентичные друг другу и выполняющие у этих близких видов одинаковые функции, тем не менее, всё-таки немного различаются? Напрашивается мысль, что эти различия (между почти одинаковыми генами) не имеют никакого биологического смысла, а были приобретены просто случайно, в результате мутаций, накопленных за определенный период времени.

Но ведь мы наблюдаем, что между разными биологическими видами в пределах одного и того же рода – гены различаются меньше, чем между видами, принадлежащими к разным родам (и тем более, к разным семействам). Именно этот факт, «помноженный» на постулат о чисто случайном («накопительном») характере подобных различий – и приводит нас к выводу об имевшей место эволюции. Где разные биологические виды в рамках одного и того же рода имеют меньше отличий (в почти одинаковых генах) потому, что эти биологические виды разделились от общего эволюционного предка сравнительно недавно (и поэтому успели накопить меньше различий в генах). А биологические виды из разных биологических родов имеют больше отличий (в сходных генах) потому, что они отделились от общего эволюционного предка раньше (и поэтому успели накопить больше различий в соответствующих генах).

Таким образом (еще раз) свидетельства эволюции, «добытые» из геномов близких биологических видов и родов, казалось бы, должны быть наиболее яркими. Тем не менее, филогенетические конфликты встречаются даже на этом уровне. Причем регулярно.


В качестве «легкой разминки», приведу двух разных сомиков из рода Prietella. На этот пример я натолкнулся чисто случайно, когда знакомился с таксономическим разнообразием пещерных животных.

Изучая видовой состав пещерных рыб Мексики, я узнал о существовании двух видов слепых мексиканских сомиков – Prietella phreatophila и Prietella lundbergi. Эти два пещерных создания по комплексу морфологических признаков весьма близки друг к другу. Понятно, что значительная часть их сходных признаков связана с пещерным образом жизни (Walsh & Gilbert, 1995).[52] Однако, помимо чисто «пещерных» признаков, у обоих видов сомиков Prietella имеется и ряд специфических общих морфологических черт, которые не имеют прямого отношения к обитанию в пещерах. Эти специфические признаки, характерные для обоих видов рода Prietella, отсутствуют у представителей других родов этого семейства (в том числе и у других пещерных видов из этого же семейства).

Очевидно, что такие признаки могли появиться (сразу у обоих видов рода Prietella) либо в результате сходного дизайна (в рамках концепции разумного дизайна), либо в результате эволюции от общего предка – просто в качестве морфологического наследия, доставшегося им от этого предка.

Поэтому авторы соответствующей работы пришли к выводу, что род сомиков Prietella имеет монофилетическое происхождение. То есть, оба вида этого рода происходят от общего эволюционного предка (Walsh & Gilbert, 1995).


Однако такой эволюционный сценарий, построенный на совершенно очевидной морфологической близости двух видов сомиков… подвергся неожиданной атаке со стороны генетических фактов. В более поздней работе (Wilcox et al., 2004) авторы исследовали митохондриальную ДНК двух разных видов рода Prietella. И оказалось, что два обсуждаемых сомика по митохондриальной ДНК – не родственны друг другу. То есть, не имеют общего предка. Один из видов сомиков (P. phreatophila) оказался генетически ближе к роду Ameiurus (другому роду сомов из этого же семейства Ictaluridae, кошачьи сомы). А второй слепой пещерный сомик, Prietella lundbergi, оказался генетически ближе уже к роду Ictalurus (тоже из этого же семейства).

Более того, авторы предыдущей работы (Walsh & Gilbert, 1995) по совокупности морфологических признаков сделали вывод о родстве всего рода Prietella к роду Noturus (еще одному роду из этого семейства). А вот генетические исследования озвучили уже другие родственные роды: Ameiurus и Ictalurus (Wilcox et al., 2004).

Интересно, что авторы генетического исследования (Wilcox et al., 2004) признают сильную морфологическую близость видов P. phreatophila и P. lundbergi. Но предлагают считать эту близость результатом конвергенции. То есть, результатом независимой эволюции, которая, тем не менее, привела к очень сходным биологическим формам.

Однако конвергенцию (независимое приобретение морфологического сходства) в рамках дарвинизма объясняют давлением одинаковых условий среды. Но в нашем случае так можно объяснить только часть общих признаков обсуждаемых сомов. А с другими морфологическими признаками, которые у этих видов тоже общие, но не связаны с пещерными условиями, так и остаётся непонятно, что делать.[53]

В своё оправдание авторы «генетической» работы отмечают (Wilcox et al., 2004):

«Независимое происхождение P. lundbergi и P. phreatophila удивительно на основе морфологии, но зато имеет значительный смысл в отношении биогеографических перспектив»

Здесь авторы работы намекают еще на одно интересное обстоятельство. Дело в том, что ареалы этих двух пещерных сомиков – географически разнесены друг от друга на очень значительное (по меркам пещерных видов) расстояние. Между крайними точками этих ареалов пролегает, как минимум, 600 км засушливой территории. Причем подземные ареалы этих сомиков относятся к бассейнам разных рек, которые разделены между собой горным массивом (Walsh & Gilbert, 1995). Поэтому представить себе, каким образом эти виды пещерных сомиков (или общий пещерный предок этих сомиков) попали в те подземные комплексы, в которых они обитают сейчас – очень трудно. Этот факт представляет собой определенную биогеографическую загадку, над которой раздумывают авторы сразу трех работ, посвященных этим рыбкам (Walsh & Gilbert, 1995; Hendrickson et al., 2001; Wilcox et al., 2004).

Вот поэтому авторы работы (Wilcox et al., 2004) и пишут (см. цитату выше) о том, что генетические факты противоречат морфологическим фактам, но зато становится менее загадочным географическое распространение этих видов рыб (поскольку генетические факты указывают на их независимое происхождение).

Таким образом, здесь переплетаются в узел разные группы фактов, конфликтующие между собой – морфологические, генетические и биогеографические.


Но зачем мы сейчас копаемся в таких мелочах, как генетические и биогеографические странности двух несчастных видов сомиков? В конце концов, не все ли равно, происходят эти сомики от общего предка (на что указывает их морфология) или от разных предков, относившихся к разным родам этого же семейства (как показало генетическое исследование).

Еще раз повторюсь – нет, такие примеры, наоборот, очень интересны. Например, свидетели Дарвина постоянно рассказывают о том, что в результате генетических исследований, наиболее близкими к роду человек (Homo) в генетическом плане оказались обезьяны из рода шимпанзе (Pan). Но, как известно, род шимпанзе содержит два разных вида этих обезьян: обыкновенный шимпанзе (Pan troglodytes) и карликовый шимпанзе (Pan paniscus).

И вот интересно, что было бы, если бы в результате генетических исследований вдруг выяснилось, что озвученные виды шимпанзе произошли совсем не от какого-то общего предка, а один вид шимпанзе (Pan troglodytes) произошел, например, от гориллы (Gorilla), в то время как другой вид шимпанзе (Pan paniscus) – произошел, допустим, от человека (Homo)? При этом явное морфологическое сходство между двумя видами шимпанзе было бы предложено считать результатом конвергенции, то есть результатом независимой эволюции в сходных условиях.

Давайте посмотрим на эту картину (Рис. 21):


https://goo.gl/PscJnq


Рисунок 21. Слева-направо: горилла, обыкновенный шимпанзе, карликовый шимпанзе (бонобо), человек.


Интересно, что бы сказали о подобных «генетических доказательствах родства» сами свидетели Дарвина? И куда бы они послали подобные «результаты генетических исследований»?


Кстати, конфликтующие факты в вопросе о «ближайших эволюционных родственниках человека», действительно, имеются. Молекулярно-генетические исследования четко указывают на шимпанзе в качестве «ближайшего родственника». То есть, генетически, шимпанзе ближе к человеку, чем например, к горилле. В то время как по комплексу морфологических признаков человек оказывается наиболее удаленным от всех человекообразных обезьян в целом: и от шимпанзе, и от гориллы, и от орангутана (Gura, 2000).[54]


Еще один аналогичный пример конфликта генетических и морфологических фактов на уровне разных родов и видов. Как известно, сегодня к роду Пантера (Panthera) специалисты относят следующих крупнейших представителей семейства кошачьих: лев, тигр, леопард и ягуар. Эти виды крупных кошек морфологически довольно близки друг к другу. Интересно, что черепа льва и тигра (крупнейших представителей рода Panthera) вообще трудно отличимы друг на друга.

Помимо льва, леопарда и тигра, сегодня в Старом Свете обитает еще одна крупная кошка – снежный барс (Uncia uncia). Видимо, из-за его крупных размеров, первоначально зоологи отнесли снежного барса тоже к роду пантер. Но потом разобрались, и выделили эту кошку в отдельный род (Uncia). Потому что, несмотря на сходство в размерах, морфологически и экологически (а также поведением), снежный барс серьезно отличается от всех современных представителей рода Panthera. Например, по строению черепа снежный барс отличается от всех видов рода Panthera больше, чем все они между собой в любой комбинации (Гептнер, Слудский, 1972). Более того, целый ряд морфологических и поведенческих признаков сближает снежного барса с мелкими кошками рода Felis (Гептнер, Слудский, 1972). То есть, снежный барс (род Uncia) является как бы «переходным» таксоном между крупными и мелкими кошками.

Казалось бы, если снежный барс заметно отличается от представителей рода пантер морфологически, экологически и этологически, то это означает, что он прошел больший путь независимой эволюции (по сравнению с эволюцией разных видов рода пантер от их общего предка). Следовательно, генетически, снежный барс тоже должен отличаться от пантер несколько больше, чем они друг от друга.

Однако филогенетические исследования опять преподнесли сюрприз. После их проведения оказалось, что генетически, снежный барс настолько близок к разным представителям рода Panthera, что его следует располагать прямо в их рядах. То есть, генетически, снежный барс является пантерой.

В связи с таким сюрпризом, начались серьезные попытки «впихнуть» снежного барса обратно в род пантер. Но поскольку снежный барс заметно отличается от любого другого представителя этого рода целым рядом признаков, часть специалистов пока упорно сопротивляются подобным «попыткам изнасилования» системы классификации кошек.[55]

И такие вещи (еще раз) творятся на уровне разных родов и видов, где казалось бы, всё должно быть наиболее ясно.


Последний аналогичный пример на эту же тему приведу из работы (Verheyen et al., 2003). В этом исследовании авторы на основании молекулярно-генетического анализа пытались разобраться в путях эволюции сотен видов цихлидовых рыб из африканского озера Виктория и других окрестных озер. И в результате, авторы сделали вывод, что степень генетических различий между разными видами цихлид не отражает степень их морфологических различий (Verheyen et al., 2003). То есть, генетически удаленные виды могут быть близки по внешнему виду, а генетически близкие виды могут иметь существенные морфологические отличия друг от друга.

Что уж тогда говорить об уровне семейств и отрядов. Здесь уже можно писать целые обзоры на тему «неожиданных открытий чудных». В этом удивительном мире, созданном молекулярно-генетическими исследованиями, соколиные и ястребиные птицы перестают быть близкими родственниками (Hackett et al., 2008). В то время как, например, совершенно разные (во всех отношениях) совы и птицы-мыши оказываются примерно на таком же генетическом расстоянии (друг от друга), как представители разных семейств отряда куриные (Hackett et al., 2008). Примерно такие же чудеса творятся и в мире рыб – тунцы (подотряд скумбриевидные, Scombroidei) и морские коньки (подотряд игловидные, Syngnathoidei) вдруг становятся генетическими родственниками (Betancur-R. et al., 2013). В то время как тунцы и рыбы-парусники (тоже скумбриевидные), наоборот, перестают быть родственниками, превращаясь в очередную «жертву конвергенции» (Betancur-R. et al., 2013). При этом рыбы-парусники (самые быстрые рыбы в природе), с точки зрения генетической близости вдруг уютно располагаются рядом с разными группами камбалообразных (Betancur-R et al., 2013).

У млекопитающих – тоже праздник какой-то. Генетическими родственниками становятся: сирены, слоны, златокроты, прыгунчики, трубкозубы, даманы и тенреки. Причем в наиболее близкие родственники к «водоплавающим» сиренам набиваются даманы… А сразу же за даманами идут слоны (Bininda-Emonds et al., 2007). В то время как златокроты и прыгунчики оказываются очень далеки от других насекомоядных (на которых они похожи куда больше, чем на слонов или сиренов). Бегемоты становятся генетическими родственниками китов (de Jong, 1998).

У беспозвоночных – тоже полный генетический беспредел.

Многоножки вдруг становятся родственниками хелицеровым, одновременно «открещиваясь» от какого-либо родства с насекомыми… с которыми их, на самом деле, роднит целый комплекс общих морфологических признаков, из-за чего многоножек и насекомых всегда объединяли в одну общую группу (неполноусых). При этом сами насекомые оказываются настолько генетически близки к ракообразным, что некоторые особо продвинутые генетики теперь предлагают считать насекомых просто одной из групп этих самых ракообразных. Невзирая на огромные различия в морфологии и анатомии.


Впрочем, «эволюционные» деревья, построенные по генетическим данным, хотя и выглядят (нередко) забавными, но раскритиковать их на этом основании вряд ли получится. Прежде всего, потому что предполагаемая эволюция биологических таксонов – это «дела давно минувших дней» (С). Поэтому точно сказать, кто там от кого произошел на самом деле (и произошел ли) уже не представляется возможным. Даже самые неожиданные сценарии эволюционного родства, тем не менее, не исключены. Например, даже если считать стремительных тунцов родственниками неторопливых морских коньков, а еще более стремительных парусников – родственниками камбалообразных… то ведь теоретически, действительно, не исключена возможность, что за 50 млн. лет какие-то отдельные линии отклонились от своих неторопливых предков и стали эволюционировать в сторону быстро плавающих пелагических рыб. И в конечном итоге, одна такая линия породила, допустим, тунцов. То же самое независимо могло произойти еще и с предками рыб-парусников (близких к камбалообразным). И таким образом, рыбы-парусники и тунцы в итоге приобрели конвергентное сходство (хотя произошли от разных эволюционных ветвей).

Кроме того, в построенных «эволюционных деревьях», на самом деле, речь идет о степени вероятности того или иного эволюционного сценария. То есть, на конкретном «эволюционном древе» (нарисованном в очередной молекулярно-генетической работе), просто показан наиболее вероятный сценарий эволюционной истории тех или иных биологических групп, вычисленный на основе усредненного подобия исследованных генов. Поэтому если появляется какой-то факт, который совсем уж не хочет вписываться в этот эволюционный сценарий, то ничего не мешает немного изменить этот сценарий, просто перерисовав предполагаемые «ветки» и «развилки» эволюционной схемы таким образом, чтобы туда стал вписываться и новый факт тоже.

Допустим, лично мне не нравится вывод, сделанный в работе (Hackett et al., 2008), что соколиные и ястребиные птицы приобрели хищнический образ жизни независимо друг от друга (согласно молекулярно-генетическим данным). И допустим мне есть, что сказать по этому поводу. И пусть я буду даже прав. Но разве это как-то скомпрометирует «генетические доказательства эволюции»? Если в рамках этой же самой работы, сценарий единого (общего) происхождения соколиных и ястребиных птиц – тоже не исключен, а просто менее вероятен.

В общем, факты резкого расхождения между степенью генетического и морфологического (и любого другого) сходства – могут сильно удивлять, однако не опровергают молекулярно-генетические исследования как таковые.

Но можно ли тогда назвать подобные построения – «доказательствами эволюции»? Если используемая методика настолько всеобъясняющая, что способна «проглотить» вообще любые сценарии (вплоть до противоположных) – тогда какое же это «доказательство эволюции»? Это уже из серии тех «доказательств», в которых вообще всё на свете «доказывает эволюцию». На самом деле, здесь речь идет уже не о «генетических доказательствах эволюции», а о том, что в рамки эволюционной теории можно уложить почти любые генетические факты. Но между фразой «эти факты можно уложить в рамки данной концепции» и фразой «эти факты доказывают данную концепцию» – огромная разница.

Действительно, если «генетически родственные таксоны» не имеют больше ничего общего (ничего, кроме сходных генов), неужели этот факт будет «доказывать эволюцию»? В качестве «доказательства эволюции» подобные факты выглядят весьма забавно. Разве можно говорить, что молекулярно-генетические факты доказывают эволюцию, если эти факты нередко не вписываются в ранее принятые эволюционные схемы, а предлагают систематикам совершенно новые, неожиданные эволюционные сценарии, к которым этим систематикам (специалистам по соответствующим таксонам) теперь приходится привыкать. Причем некоторые предложенные генетические сценарии «эволюционного родства» оказываются настолько необычными (настолько противоречат всем другим фактам), что специалисты по конкретным биологическим группам просто не принимают от генетиков подобные схемы (несмотря ни на какое «родство генов»). И продолжают придерживаться либо прежних методов классификации, либо предлагают что-то новое, альтернативное молекулярно-генетическому подходу.

Просто в качестве конкретного примера (Расницын, 2006):

«…предлагаемый здесь тест или его более совершенные аналоги могут помочь в разрешении нынешней скандальной ситуации, когда молекулярные методы указывают на единство групп, которые по другим признакам не имеют ничего общего или почти ничего общего (знаменитые афротерии, объединение многоножек и хелицеровых и т. п.)»

Наконец, в продолжение разговора о чрезмерной пластичности «генетических доказательств эволюции», следует отметить, что примирять несоответствия между генетическими и морфологическими фактами могут еще и теоретические рассуждения о возможности разных скоростей эволюции в разных биологических таксонах.

Например, можно предположить, что один биологический таксон претерпел сравнительно быстрые генетические изменения в связи с освоением новой экологической ниши (переходом к принципиально новому образу жизни). А эволюция другого биологического таксона, наоборот, была медленной, потому что этот таксон всё время продолжал оставаться в уже освоенной им экологической нише. То есть, можно рассудить следующим образом – при быстрой смене образа жизни, возможно, те гены, которые окажутся задействованными в новом «экологическом имидже» данного таксона, будут подвергаться повышенному действию естественного отбора (и как следствие, ускоренному изменению). В то время как другие гены, не затронутые изменением образа жизни – могут и не претерпеть такого же объема изменений за то же время. В результате, данный биологический таксон, серьезно изменившись морфологически, физиологически и экологически, тем не менее, в среднем (по всей совокупности анализируемых генов), может остаться всё еще близким к какому-нибудь медленно эволюционировавшему соседнему таксону. И в итоге, допустим, быстро эволюционировавшая линия рыб-парусников оказывается всё еще генетически близкой к (теперь уже) морфологически далекой линии камбалообразных рыб (см. выше).

Однако здесь следует четко понимать, что разница в скоростях эволюции между разными биологическими группами – не может быть слишком значительной (в свете представлений о естественной эволюции, конечно). Потому что в рамках естественной эволюции, любые изменения в генах появляются случайным образом. Вследствие этого, полезные случайные мутации, необходимые для изменения соответствующих генов в нужную сторону, не могут появляться существенно чаще, чем нейтральные мутации во всех остальных генах. Полезные мутации (случайно появившись) могут только закрепляться быстрее, будучи поддержаны соответствующим естественным отбором. Но каким бы мощным ни было давление естественного отбора, всё равно, полезная мутация в определенном гене – это само по себе, весьма редкое событие. Которое происходит гораздо реже, чем нейтральные мутации, под непрерывным «дождем» из которых находятся в это время все остальные гены. Таким образом (еще раз), в рамках представлений о естественной эволюции, скорость молекулярной эволюции каких-нибудь одних генов не может намного превышать скорость молекулярной эволюции всех остальных генов (в этой же линии организмов). Так же как не могут слишком уж сильно различаться между собой и скорости эволюции в разных биологических группах.

Подобные факты гораздо лучше объясняются в рамках концепции разумного дизайна. Действительно, если произвести направленные изменения именно в тех генах, которые ответственны за новую внешность или новую биологию какой-нибудь рыбы, то и получится, соответственно, рыба с новой внешностью и новой биологией. Но в среднем (по всей совокупности генов) эта рыба всё еще будет оставаться генетически близкой к тому таксону, из которого её создали.

Так что тем верующим дарвинистам, которые пытаются объяснять, почему же генетическая близость организмов нередко конфликтует с резкими морфологическими отличиями между ними – следует быть осторожными и не постулировать слишком уж большой разницы «в скоростях эволюции» как между разными биологическими таксонами, так и между разными группами генов.

Впрочем, кажется, до сих пор никто не указал, какую же точно степень конфликта между генетическими и морфологическими фактами еще можно «простить» теории естественной эволюции, а какую – уже нельзя. И этим дарвинисты, конечно, пользуются, и продолжают уверенно списывать любые подобные факты на «неисповедимость путей эволюции».


Интересно, что уловка с постулированием «разных скоростей эволюции в разных таксонах» помогает выйти из положения не только при несоответствии генетических фактов морфологическим, но еще и в случае конфликта генетики и палеонтологии.

Вот, например, какая прекрасная фраза была написана в одной научно-популярной заметке, посвященной проблеме создания эволюционного древа млекопитающих (Наймарк, 2011):

…Как показали расчеты, скорости молекулярной эволюции в разных локусах и разных ветвях в пределах класса млекопитающих различаются не меньше чем на порядок. Именно эти специфичные для каждой ветви оценки и использовали, чтобы расположить узлы на временной оси. В результате авторы работы чуть ли не впервые получили филогенетическое древо, построенное на основе молекулярных данных, не противоречащее палеонтологическим датировкам.

Другими словами, только после тщательной подгонки теоретических «скоростей эволюции» под нужный результат, удалось (наконец-то!) согласовать молекулярно-генетические факты (степень генетических различий между разными группами) с известными палеонтологическими находками.

Если бы я захотел рассказать о том, с помощью каких хитрых приемов можно подгонять молекулярно-генетические исследования под нужные результаты – я бы, наверное, не смог выразиться яснее, чем автор только что приведенной цитаты.

Ну что же, такие приемы, действительно, способны уложить (почти любые) генетические факты в рамки почти любых палеонтологических находок. Однако после подобных откровений будет ли кто-нибудь продолжать настаивать на том, что молекулярно-генетические факты именно доказывают эволюцию?


Кроме того, я уже говорил, что при постулировании разных скоростей эволюции в разных биологических таксонах (или между разными генами) – следует иметь совесть. Потому что слишком сильный упор на такие вещи подрывает теорию естественной эволюции в целом. В рамках концепции «молекулярных часов», скорость накопления нейтральных мутаций должна быть примерно постоянной в генах разных организмов. Особенно у близких видов. И поскольку предполагается, что значительная часть молекулярных различий между генами-аналогами, на самом деле, нейтральна, то, следовательно, скорость изменения разных генов у разных видов (под действием постоянного «дождя» из разных мутаций) тоже должна быть примерно постоянной.

Тем не менее, заявления о большой разнице в скоростях генетической эволюции даже между близкими биологическими видами (!) – регулярно озвучиваются в научной печати. Точно так же, делаются заявления о разнице (иногда десятикратной!) в темпах накопления молекулярных различий между разными генами одного и того же биологического вида.

Например, у фруктовых мух из группы Drosophila melanogaster – «скорость молекулярной эволюции» гена Sod оказалась в два раза выше, чем скорость эволюции этого же гена в группе Drosophila obscura. А в группе Drosophila willistoni скорость молекулярной эволюции этого же гена оказалась уже в десять раз выше (!), чем в группе Drosophila obscura (Rodriguez-Trelles et al., 2001). В то же самое время, скорость молекулярной эволюции другого гена (Xdh) в этих же группах фруктовых мух оказалась примерно одинаковой (Rodriguez-Trelles et al., 2001).

То есть (внимание) здесь мы наблюдаем одновременно и разницу в «скорости молекулярной эволюции» (десятикратную!) даже между близкими биологическими видами (принадлежащими к одному и тому же роду Drosophila), и столь же впечатляющую разницу между скоростями эволюционных изменений у разных генов в пределах генотипа одного и того же биологического вида.

Следует, конечно, понимать, что на самом деле, установленным фактом здесь является только то, что разные варианты гена Sod в разных группах фруктовых мух рода Drosophila – отличаются друг от друга гораздо сильнее, чем разные варианты гена Xdh между собой у этих же видов мух. Вот это, собственно, сам факт в чистом виде. А вот заключение о разных скоростях молекулярной эволюции этих генов – это уже теоретическая интерпретация этого факта. Сделанная в рамках эволюционной концепции.

Несмотря на то, что такой вывод, по сути, противоречит самой же концепции молекулярной эволюции, согласно которой (теоретически), скорости молекулярной эволюции разных генов и разных биологических таксонов должны быть примерно сопоставимы.

Напротив, в рамках концепции разумного дизайна, нет ничего удивительного в том, что одни гены-аналоги у разных организмов отличаются друг от друга в большей степени, чем другие гены-аналоги. Понятно, что при разумном конструировании генотипов разных организмов, подобная разница может быть вообще любой. Если для создания конкретного биологического вида необходимо, чтобы какие-то отдельные гены были более своеобразны, чем другие, то наверное, такое решение и следует ожидать в рамках этой концепции.

Тем не менее, авторы современных статей всё равно предпочитают объяснять подобные факты не следствием разумного конструирования соответствующих геномов, а «разницей в скоростях молекулярной эволюции». Хотя не очень понятно, какая же естественная сила могла бы порождать обсуждаемую разницу (особенно десятикратную). Постулирование «разных скоростей эволюции для разных генов» можно рассматривать, как попытку подгонки под уже принятую теорию. Где факты, не подтверждающие естественно-эволюционный сценарий, тем не менее, всё равно укладываются в рамки именно этого сценария с помощью произвольных допущений. Причем таких допущений, которые в свою очередь (сами) не очень вписываются в концепцию молекулярной эволюции.

Тем не менее, я уже говорил, что до сих пор никто не указал точно, какую же «разницу в скоростях эволюции между разными генами» – еще можно уложить в рамки естественной эволюции, а какое «изменение скорости молекулярной эволюции» – уже никак не лезет в рамки этой концепции. Поэтому такие факты продолжают интерпретироваться в русле эволюционной парадигмы и никак иначе.


Однако дела становятся совсем плохи (для дарвинистов), когда одни генетические факты начинают конфликтовать (с другими генетическими фактами) еще одним способом. А именно, когда сравнение живых существ по одним группам генов предлагает одних «генетических родственников», а сравнение этих же самых живых существ по другим группам генов – выдает уже других «генетических родственников».

Вот это уже тяжелый случай. Потому что в рамках теории эволюции, гены одного и того же организма не могут эволюционировать так, будто эти гены находились в разных биологических видах. То есть, не может организм по одним группам генов являться, например, жвачным парнокопытным млекопитающим, а по другим группам генов – змеёй (представителем чешуйчатых безногих рептилий). Когда коровы начинают «генетически дружить» со змеями (по определенным генам) – то это уже вряд ли можно назвать «генетическим доказательством эволюции». Скорее, такие факты следует назвать «доказательством разумного дизайна живых существ методами генной инженерии».

Тем не менее, согласно результатам работы (Walsh et al., 2012), коровы подружились (по определенным генам) именно со змеями.[56]

Для объяснения этого любопытного факта, авторам работы (Walsh et al., 2012) пришлось предложить тот самый «горизонтальный перенос генов», над которым мы уже посмеивались чуть выше. Причем такие горизонтальные переносы (исследованных) генов, по мнению авторов, должны были произойти не однажды, а целых девять раз! Только тогда факт удивительной близости исследованных генов у самых разных групп животных (в том числе, у коров и змей) получается «уложить» в рамки эволюционного учения (по мнению авторов данной работы).


Что и говорить, интереснейшие «доказательства эволюции» регулярно подсовывают нам молекулярно-генетические исследования. От таких «генетических доказательств» нашу бедную теорию эволюции иногда приходится просто спасать. Спасать с помощью массированного применения тех или иных дополнительных объяснений. Например, уже озвученными «горизонтальными переносами генов». Причем подобные генетические курьезы отнюдь не являются каким-то редким исключением из правил. По мере прочтения все большего числа геномов, такие факты обнаруживаются уже прямо-таки в «товарных количествах».

Вообще, это просто поразительно. Многочисленные верующие дарвинисты на всех углах продолжают уверять окружающих в том, что «генетика доказала эволюцию»… в то время как накопилось столько разных фактов филогенетических конфликтов, что уже, наверное, трудно определиться – а чего же там, собственно, больше – генетических фактов, которые ни с чем не конфликтуют (и как бы «подтверждают эволюцию»), или же генетических фактов, вступающих в разнообразные конфликты друг с другом.

То есть, на самом деле, молекулярно-генетические «доказательства эволюции» сегодня выглядят доказательствами только в сильно «причёсанном» виде – в соответствующих научно-популярных текстах и в учебниках биологии. А вот когда начинаешь читать оригинальные публикации – с завидной регулярностью обнаруживаешь там «филогенетические конфликты», в которых разные группы фактов никак не хотят «дружить» друг с другом.

Итак, давайте еще раз отметим странное поведение активных проповедников дарвинизма. Свидетели Дарвина на всех углах кричат о «генетических доказательствах эволюции», в то время как в последних научных публикациях тон несколько другой (Davalos et al., 2012):

«Несогласие среди филогений, полученных по разным наборам признаков, является распространяющимся (Rokas и др., 2003). Филогенетический конфликт становится всё более острой проблемой в связи с появлением масштабных геномных наборов данных. Эти большие наборы данных подтвердили, что филогенетический конфликт – обычен [распространен] и часто является скорее нормой, чем исключением (Waddell и др., 1999; Leebens-Mack и др., 2005; Jeffroy и др., 2006; Rodríguez-Ezpeleta и др., 2007)»

Получается, что дарвинисты-проповедники рассказывают нам о «генетических доказательствах эволюции» в то время, когда специалисты (профессионально занимающиеся этими вопросами) уже открыто признаются, что молекулярно-генетические факты чаще создают путаницу в эволюционных построениях, чем помогают чего-нибудь распутать.


И вот на этой печальной ноте давайте теперь познакомимся с таким примером «филогенетического конфликта», который резко усугубляет критичность создавшейся ситуации. Потому что, с одной стороны, этот пример тоже не вписывается в сценарий естественной эволюции, а с другой стороны, в отношении этого факта не может быть задействована даже такая спасительная «палочка-выручалочка» современного дарвинизма, как постулирование «горизонтального переноса генов». Да, именно так – сравнительно недавно «генетические доказательства эволюции» получили прямо-таки нокаутирующий удар.

Неожиданно выяснилось, что целый ряд генов у летучих мышей и дельфинов демонстрирует явную гомологию. И генов не каких-нибудь, а очень интересных. Как известно, значительная часть летучих мышей и дельфины – обладают способностью к эхолокации. И вот, чёткое сходство нуклеотидных последовательностей было выявлено сразу в 200 локусах, в многочисленных генах, связанных со слухом или глухотой. Что совместимо с предположением о причастности этих генов к эхолокации (Parker et al., 2013). Кроме того, четкие сигналы сходства были обнаружены еще и в генах, связанных со зрением.

Это уже не лезет ни в какие ворота дарвинизма. Потому что согласно современной теории эволюции, киты и летучие мыши весьма далеки друг от друга, имея родство лишь на уровне весьма древних общих предков. Отсюда следует, что эхолокация у этих таксонов должна была развиться и эволюционировать совершенно независимо. Тем более что среди родственных групп самих летучих мышей имеются виды, как способные к эхолокации, так и неспособные к ней.

Тем не менее, гены, ответственные за эхолокацию, у дельфинов и летучих мышей имеют явное сходство по большому числу участков. Настолько, что эти гены более схожи у дельфинов и тех летучих мышей, которые имеют эхолокацию, чем у летучих мышей, имеющих эхолокацию и летучих мышей, не имеющих её. Поэтому если бы какой-нибудь генетик взял бы для измерения степени родства участки ДНК, содержащие именно эти гены, то у этого генетика получилось бы, что некоторые виды летучих мышей и дельфины происходят от общего предка, в то время как другие виды летучих мышей имеют вообще других предков.

Понятно, что этот факт ну никак не ожидался в рамках дарвинизма, и прямо опровергает тезис о случайности эволюции (случайности мутаций). Потому что в рамках современной теории эволюции, крайне мала вероятность, чтобы при независимом построении сложного признака, эволюция в точности повторила одни и те же случайные мутации. Тем более, не в каком-то одном месте, а сразу во многих участках разных генов. Ну а когда речь начинает идти уже о двухстах генах (!), показывающих четкое сходство нуклеотидных последовательностей (с аналогичными генами совершенно других живых существ), то можно считать, что вывод о «неслучайности случайностей» в данном случае доказан.

Вся ирония ситуации состоит в том, что такие участки генетического сходства всегда трактовались дарвинистами, как происхождение от общего предка. Но в данном случае допускать наличие общего предка (между выборочными видами летучих мышей и дельфинами) ни в коем случае было нельзя. Потому что это значило бы вступить в очередной филогенетический конфликт. Во-первых, против целого ряда других генетических фактов, полученных на другом наборе генов, и «говорящих нам», что дельфины и летучие мыши – не имели близких общих предков. Во-вторых, еще и против явного морфологического различия между летучими мышами и дельфинами. И в-третьих, против общепринятых схем эволюции этих биологических таксонов.

Пресловутым «горизонтальным переносом» этот факт тоже не объяснить. Потому что обнаруженное генетическое сходство имеет чересчур массированный характер. Здесь сходство демонстрируют сразу сотни генов, причем не абы какие, а именно те, которые ответственны за обеспечение слуха. Поэтому если бы в данном случае кто-нибудь решил выдвинуть версию о случайном «горизонтальном переносе», то пришлось бы объявлять миру об открытии горизонтального переноса уже не отдельных генов, а о переносе сразу всех генов слухового аппарата. Понятно, что такой случайный «горизонтальный перенос» (слуховых аппаратов сразу целиком) от одного животного к другому – это фантастика чистой воды. Поэтому версию «горизонтального переноса генов» в данном случае никто и не озвучил.


Какой же выход нашли из всего этого дарвинисты? Может быть, они отказались от своих теоретических эволюционных схем, придя к выводу, что с этими схемами что-то не так? Нет, что Вы. Разве такое вообще возможно?

Верующие дарвинисты просто сделали следующее заключение:

– Ах, оказывается, одни и те же вызовы среды всё-таки могут закреплять одни и те же мутации в одних и тех же генах! (даже если этих генов – две сотни).

То есть, естественный отбор, оказывается, обладает способностью «отлавливать» именно одинаковые мутации, чтобы в совершенно независимых эволюционных случаях создавать сложные признаки одинаковым генетическим способом. Даже столь серьезный признак, как способность к эхолокации, «завязанный» сразу на множество генов. Видимо потому, что «гипотетическое пространство возможных решений» для возникновения соответствующего признака настолько строго ограничено, что здесь могли закрепляться только строго определенные случайные мутации (а другие вообще не закреплялись). Еще раз отметим, что подобные вещи до этого считались невероятными (и правильно считались), а вот теперь сразу стали считаться вероятными.


На самом деле, факт столь удивительной «генетической конвергенции» объясняется в миллион раз правдоподобнее, если признать, что за формирование сложных биологических устройств ответственны отнюдь не случайные мутации, а что-нибудь более предсказуемое. Например, разумный дизайн. Где сходство генов, ответственных за эхолокацию (у столь разных организмов, как летучие мыши и дельфины), объясняется просто применением сходных инженерных решений при создании сходных функциональных устройств.

Поразительно, но дарвинисты эту гипотезу (столь очевидно напрашивающуюся в данном случае) почему-то вообще отбрасывают, да еще и обзывают псевдонаукой. И предпочитают считать подобные совпадения (тысяч нуклеотидов) результатом работы не разумного «генного инженера», а следствием одинакового естественного отбора, произведенного на одни и те же гены, в которых произошли одни и те же случайные мутации. При этом они продолжают спокойно называть себя учеными, а не разносчиками невероятных небылиц.

Но самое смешное здесь в другом. Дело в том, что биологи, обнаружившие факт совпадения (специфических) генов у совершенно разных организмов, и решившие объяснить этот большой сюрприз результатом «обширной генетической конвергенции»… тем самым нанесли страшный удар по своим «братьям меньшим» – по дарвинистам-проповедникам, активно проталкивающим свой дарвинизм в широкие народные массы. Разнообразные «народные просветители», кажется, уже уверили народ в том, что генетические факты всё-таки доказывают происхождение биологических таксонов от общих предков… И тут авторы статьи о летучих мышах и дельфинах, во-первых, «обрадовали» самим фактом установления «генетической конвергенции», а во-вторых, предположили, что этот феномен, может быть, гораздо шире распространен в природе, чем принято было думать (Parker et al., 2013).

Ну и что теперь прикажете делать среднему дарвинисту-проповеднику? Ведь теперь практически любой факт генетического сходства – уже не является серьезным доказательством именно «эволюции от общего предка». Ибо этот факт может оказаться отнюдь не «свидетельством происхождения от общего предка», а просто следствием «одинакового давления естественного отбора, произведенного на одни и те же гены в строго ограниченном пространстве возможных мутаций». То есть, следствием генетической конвергенции (или генетического параллелизма). В общем, попробуй теперь разберись, где здесь генетически доказанная «эволюция от общего предка», а где просто результат «генетической конвергенции».

Более того, после такого страшного удара по молекулярной филогении, к дарвинисту-проповеднику, рассказывающему о том, что «генетика уже доказала эволюцию», теперь ведь обязательно подойдет какой-нибудь коварный креационист, и нагло заявит, что никаких «общих предков, доказанных генетическими исследованиями», на самом деле, не существовало вовсе. А есть лишь факт наличия «генетической конвергенции». Который можно, конечно, объяснить тем, что «одинаковое давление естественного отбора отбирало одни и те же случайные мутации в одних тех же генах»… но гораздо правдоподобней объяснить этот же самый факт – результатом применения сходных инженерных решений при создании сходных функциональных устройств (каким-то разумным агентом).


А теперь давайте вспомним еще и про другие филогенетические конфликты, на которые уже натолкнулась филогенетика. Причем (еще раз) филогенетика стала наталкиваться на такие факты всё чаще. Тем чаще, чем больше генетических данных становится доступно для анализа.

Например, при исследовании генома бделлоидной коловратки[57] вдруг оказалось, что помимо генов животных, у неё присутствуют: 1) гены бактерий, 2) гены растений, 3) гены грибов (Gladyshev et al., 2008). Понятно, что проще всего это интерпретировать, как явное свидетельство прямого дизайна организмов (методами генной инженерии?). Однако дарвинисты предпочли списать такие вещи на «массовый горизонтальный перенос генов». То есть, коловратки просто взяли и заимствовали (самостоятельно) сотни генов у растений, грибов и бактерий, причем заимствовали способом, пока неизвестным современной науке. Видимо, коловратки – это такие талантливые генные инженеры. Интересно, что авторы оригинального исследования, похоже, сами испугались своих удивительных результатов, и бросили это дело, проанализировав всего 1 % генома бделлоидной коловратки. А жаль. Сколько еще «открытий чудных» (наверное) готовили явить миру остальные 99 % генома коловратки.

И вот теперь ко всему этому филогенетическому «беспределу» добавилась еще и «генетическая конвергенция».

Хотя на самом деле, «генетическая конвергенция» начала поражать биологов несколько раньше. Например, ранее уже была установлена удивительная «генетическая конвергенция» между механизмом, обеспечивающим формирование речи у человека, и механизмом, обеспечивающим способность к пению у певчих птиц. Оказалось, что и в том и в другом случае развитие этих способностей опирается на одно и то же молекулярно-генетическое основание, связанное с геном FOXP2 (Bolhuis & Okanoya, 2010). Несмотря на то, что в рамках дарвинизма, эволюция этих механизмов у людей и птиц должна была протекать совершенно независимо. Между тем, генетические механизмы «по странной случайности» оказались сходны. Причем сходство здесь имеется не только на генетическом уровне, но еще и на анатомическом – наблюдается удивительное сходство в анатомии соответствующих зон мозга (Bolhuis & Okanoya, 2010). Кроме того, освоение речи человеческими младенцами и освоение пения птенцами певчих птиц выглядит сходным еще и на поведенческом уровне (Bolhuis & Okanoya, 2010).

Наконец, в совсем уже недавнем исследовании выяснилось, что ген этого же семейства (dFoxP) каким-то образом задействован еще и в высшей нервной деятельности плодовых мушек дрозофил (DasGupta et al., 2014). Причем, похоже, задействован этот ген у плодовых мушек именно там, где мухе необходимо «общаться» с окружающим миром и принимать решения.

Но ведь членистоногие – настолько далеки от позвоночных, насколько вообще может быть удалено одно билатеральное животное от другого. Получается, что либо «последний общий предок» всех билатеральных животных уже был весьма сообразительным парнем, либо это очередное «случайное эволюционное совпадение». Либо (самая простая гипотеза) это результат сходного дизайна разных биологических таксонов.

Кстати, так получается не только по этим генам, но еще и по многим другим. Например, совсем недавно выяснилось, что химические механизмы, ответственные за возникновение тревоги в нервной системе раков и позвоночных животных – тоже одинаковы (Fossat et al., 2014).

Нашлись «случайные эволюционные совпадения» и между нервной системой круглых червей и позвоночных. Конкретно, химический механизм, отвечающий за процессы обучения и полового поведения круглого червя Caenorhabditis elegans, оказался сходен с аналогичным механизмом, играющим важную роль в регуляции поведения (особенно полового и социального) у млекопитающих (Марков, 2012а).

Столь же интригующую информацию выдала нам еще одна научно-популярная заметка (Марков, 2012б). Оказывается, гены, склоняющие психику (того или иного животного) к поиску чего-нибудь новенького… являются сходными у пчел и млекопитающих. Условно назовём эти гены – «генами любопытства». Так вот:

…Самое интересное, что эти гены связаны с поиском новизны также и у позвоночных. Так, в мозге пчел-разведчиц понижена экспрессия гена DopR1, кодирующего дофаминовый рецептор первого типа (D1). У крыс с повышенной тягой к новизне тоже отмечена низкая экспрессия гена рецептора D1 (Viggiano et al., 2002)…

Действительно, очень интересно. Опять получается одно из трех:

1. Или (в свете «единственно верного учения») общий предок всех билатеральных животных был уже не только сообразительным, но и весьма любознательным парнем. И еще он мог тревожиться (по разным поводам). А также обучаться.

2. Или это всё снова «чисто случайные эволюционные совпадения».

3. Или же это хорошие свидетельства сходного дизайна (нервной системы беспозвоночных и позвоночных животных).

Заключение, сделанное автором заметки (глубоко верующим дарвинистом Александром Марковым), следует, наверное, привести прямо отдельными фразами (с комментариями):

«Тот факт, что нейрохимические основы поискового поведения оказались сходными у насекомых и млекопитающих (включая человека), заставляет задуматься о закономерностях эволюции поведения у животных в целом…»

Да уж, заставляет.

«…Последний общий предок пчел и людей жил, по-видимому, 650–700 млн лет назад, в криогеновом периоде. Не исключено, что у этого предка, который, возможно, был похож на сегментированного червячка с парными придатками, уже было что-то похожее на поисковое поведение и дофаминэргическую систему вознаграждения»

А еще, судя по сходству других групп генов (между совершенно разными биологическими таксонами животных), этот загадочный общий предок, помимо развитой нервной системы с механизмами высшей нервной деятельности, тревоги, внутреннего вознаграждения, стремлением к новизне и способностью к обучению… имел еще и глаза, сердце, конечности, половое поведение, механизм развития через метаморфоз и т. п. (см. ниже). В связи с этим хочется спросить, а не курил ли этот «общий предок» еще и трубку?


Продолжаем цитату:

…Может быть, более сложные формы такого поведения вместе с похожими системами его регуляции развивались параллельно на общей, унаследованной от далеких предков нейрохимической основе. Любопытно, что даже у круглого червя C. elegans недавно обнаружена связь между особенностями поведения при поиске пищи и аллельными вариациями гена тираминового рецептора (Bendesky et al., 2011). Тирамин – нейромедиатор из группы катехоламинов, близкий к дофамину и октопамину…[58]

Действительно, любопытно. Значит, сходство с круглыми червями имеется еще и в этом отношении.

…Не выяснится ли в конце концов, что нейронные механизмы, ответственные за принятие решений, мотивацию поведения и даже эмоции, сходны в своей основе у всех билатерально-симметричных животных?

Но когда это выяснится, этот поразительный факт, конечно же, всё равно не будет свидетельствовать в пользу единого дизайна животных. Из этого факта всё равно сделают вывод, что «учение Дарвина всесильно, потому что оно верно».


Если же говорить серьезно, то нервная система членистоногих и позвоночных анатомически различается очень сильно. Отсюда, в рамках самого же эволюционного учения неизбежно следует вывод, что общий предок этих животных мог иметь только очень примитивную нервную систему. Допустим, как у гидры, у которой нервная система представляет собой сеть разбросанных по телу нервных клеток. Или что-нибудь немного более сложное. Например, как у круглых червей. И уже от этого простого исходного состояния, нервная система членистоногих постепенно эволюционировала в одну сторону, а нервная система позвоночных – в другую. При этом нервные системы обоих таксонов в ходе воображаемой эволюции постепенно (и независимо!) усложнялись, вплоть до появления элементов высшей нервной деятельности – специальных механизмов принятия решений и «общения» с миром, механизмов, обеспечивающих любопытство, реакции тревожности и прочее. Казалось бы, в ходе случайной эволюции, эти механизмы в конечном итоге должны были получиться биохимически разными, просто в силу фактора случайности (мутаций). Но нет, эти механизмы вдруг (!) оказались сходными. Если мы не хотим совершать революцию в математике, опровергая теорию вероятностей, но при этом желаем оставаться в рамках дарвиновского учения, нам придется заключить, что членистоногие и позвоночные просто унаследовали механизмы высшей нервной деятельности от некоего общего предка, чья нервная система уже была достаточно совершенной, обладая всеми перечисленными выше свойствами. Но в таком случае мы вступаем в противоречие с только что сделанным (нами же) заключением об исходной примитивности нервной системы этого общего предка, которое следует из наблюдаемых анатомических различий между нервными системами членистоногих и хордовых.

Таким образом, в рамках «единственно верного учения» мы получаем очередную «загадку эволюции». Что не может не забавлять, потому что в свете другой биологической концепции – теории разумного замысла – эта «великая загадка» вообще не представляет никаких проблем, а наоборот, весьма ожидаема. В рамках концепции разумного замысла, подобное сходство объясняется просто сходными творческими решениями, которые были применены при создании одних и тех же вещей (механизмов нервной деятельности) в разных биологических таксонах.

Всё только что сказанное касается и кровеносной системы. Потому что кровеносные системы позвоночных и членистоногих тоже различаются радикальным образом. Тем не менее, определенные гены, отвечающие, например, за развитие сердца – явно сходны друг с другом (Scott, 1994). Несмотря на то, что строение сердца членистоногих радикально отличается от строения сердца позвоночных. Что, казалось бы, свидетельствует о независимом эволюционном происхождении этих сердец.

И наконец, самый поразительный пример – это общность механизмов построения глаза. Дело в том, что у животных из разных биологических таксонов глаза настолько различаются по своему анатомическому строению и принципам работы, что большинство специалистов всегда искренне считало – глаза в ходе эволюции появились независимо в разных эволюционных линиях животных. Возможно, более 40 независимых раз подряд (Жуков, 2010).

Однако результаты генетических исследований поразили всех так, что шум до сих пор не утихает. Например, оказалось, что за «разметку» глаз у членистоногих, позвоночных и даже кишечнополостных (!) отвечают сходные гены из группы Pax.[59] Что представляется фактом, достойным всяческого удивления. Действительно, почему из всего имеющегося разнообразия факторов транскрипции, на роль «разметчика» глаз были выбраны именно гены группы Pax в трех независимых эволюционных случаях? Причем эти мастер-гены оказались настолько сходны, что Pax-6 мыши, «пересаженный» мухе, привел к образованию глаза у этой мухи.

Еще более удивительно, что сходные гены включают формирование глаз еще и у медуз! Конкретно, ген Pax-A отвечает за формирование глаз у гидроидных медуз (Suga et al., 2010). А ген Pax-B «запускает» глаза кубомедузам (Kozmik et al., 2003). Причем эти гены, опять-таки, оказались настолько близки к генам Pax других животных, что Pax-А гидроидной медузы (так же как и Pax-B кубомедузы), «встроенные» в муху, столь же добросовестно вырастили глаза на теле этой мухи (Suga et al., 2010; Kozmik et al., 2003), как и Pax-6 мыши в более раннем исследовании.[60]

И это вообще из ряда вон, потому что медузы – это даже не билатеральные животные (медузы являются радиально-симметричными существами). Представить себе общего предка медузы и билатеральных животных уже глазастым – весьма сложно. Ведь считается, что билатеральные животные произошли от радиально-симметричных чуть ли не на самых ранних этапах эволюции животных, когда представители животного царства были устроены еще очень просто. Тем не менее, глаз кубомедузы «взорвал» теорию эволюции не только общим геном Pax, но еще и сходными белками опсинами, которые оказались даже более близки к опсинам позвоночных, чем, например, к опсинам членистоногих. А ведь кишечнополостные на официальном «эволюционном древе» удалены от позвоночных существенно дальше, чем членистоногие (членистоногие вместе с позвоночными относятся к билатеральным животным). Тем не менее, опсины кишечнополостных, наоборот, ближе к опсинам позвоночных, чем опсины членистоногих. В рамках теории эволюции такого, вроде бы, не может быть. Не может быть потому, что глаза медуз не могли эволюционировать отдельно от самих медуз (примкнув в этом деле к позвоночным). Именно такие «чудеса в решете» сейчас и называются филогенетическими конфликтами. И для объяснения подобных чудес выдумываются специальные теоретические схемы (под каждый отдельный случай), которые позволяют всё-таки объяснить, почему так произошло в рамках дарвиновской теории. Например, конкретно по поводу конфуза с опсинами позвоночных и медуз было выдвинуто предположение, что это они просто так «хорошо сохранились», то есть, опсины позвоночных по какой-то причине остались ближе к «общепредковым» опсинам, чем опсины членистоногих.[61]

Конец ознакомительного фрагмента.