Величайший математик
Мученик математики
Мы знаем о жизни Архимеда очень мало. Доподлинно известно, что в 212 г. до н. э., когда Архимед был уже стариком, его убил какой-то римский солдат. В тот год Сиракузы, где жил Архимед, были в ходе Второй Пунической войны захвачены Римом. Однако то, что в тот момент Архимеду было 75 лет, – всего лишь предположение. Также красивой легендой является рассказ о том, что убийца обнаружил ученого сидящим в атриуме дома и размышляющим над геометрическими фигурами, начерченными на песке. Солдат по неосторожности наступил на чертеж. Архимед будто бы прикрикнул на римлянина: «Не топчи мои круги!» Взбешенный этим замечанием солдат тотчас схватился за меч. В более трогательном варианте рассказывают, что Архимед, чтобы успеть закончить доказательство, просил солдата подождать, но жестокий варвар все равно сразу его убил.
Собственно, солдат нарушил недвусмысленный приказ своего командующего, римского полководца Марцелла, который желал захватить Архимеда живым. Греческий ученый построил для защиты Сиракуз невероятно эффективные боевые машины, которые долго удерживали вдали от берегов пытавшиеся прорваться к пристаням города римские суда. Рассказывают, что вдоль берега были расставлены огромные краны, выставившие свои стрелы далеко в море и с помощью хитроумных систем блоков способные поднимать очень большие грузы. Когда римские корабли приблизились к городу, стрелы кранов протянулись в их сторону. Со стрел были спущены на прочных тросах огромные крюки. Крюки зацеплялись на носовые части судов, а затем, по команде Архимеда, греческие воины начинали вращать лебедки, поднимая вражеские корабли над водой. Римские солдаты, в полном вооружении, скатывались на корму и падали в море. Рим потерпел жестокое поражение.
Во время второй попытки на римлян с городских стен полетели огромные камни. Архимед, воспользовавшись открытым им законом рычага, сконструировал гигантские катапульты. Громадные куски скал взмывали над городскими стенами и, перелетев через них, падали в море, поднимая волны, переворачивавшие приближавшиеся римские суда.
Есть исторически не подтвержденная легенда о том, что Архимед смог победить римский флот с помощью искусно расположенных зеркал. Однако этот рассказ нельзя считать полным вымыслом, ибо геометрические основания такого оборонительного маневра были хорошо известны великому греку: Архимед вполне мог предложить так установить зеркала относительно друг друга, чтобы их отражающие поверхности образовали параболу. Эта геометрическая кривая обладает замечательным свойством – параллельные лучи света, падающие на внутреннюю поверхность параболы, отразившись от нее, собираются в фокусе, так называемой точке зажигания. В таком возможном сценарии Архимед велел прикрыть зеркала и ждать, когда римская армада окажется в рассчитанном им месте фокуса параболы. Когда корабль оказывался на этом месте, Архимед приказывал поднять покрывала с зеркал, и лучи, отраженные от зеркал, фокусировались на корабле. Сухие, пропитанные пылью паруса разогревались сконцентрированными солнечными лучами и моментально вспыхивали. Суеверные римляне приписали это, как им казалось, страшное чудо гневу богов и спешно ретировались.
Марцелл смог взять Сиракузы лишь с суши, прибегнув к военной хитрости: после победы над римским флотом сиракузцы предались празднествам и до глубокой ночи отмечали свой триумф. Однако подкупленные римлянами стражники открыли ворота и впустили врага в город. Взять его не составляло труда, ибо защитники, опьяненные вином, мирно спали в своих домах. Марцелл отдал приказ живым привести к нему инженера Архимеда с тем, чтобы Рим мог воспользоваться его талантами в конструировании боевых машин для завоевания мирового господства.
Я уже рассказал, что сделать это не удалось. Возможно, что Архимед, движимый патриотическими чувствами, отказался следовать за солдатом. И вместе с тем вполне возможно, что он действительно был настолько поглощен решением математической задачи, что требование солдата спешить к Марцеллу показалось ему досадным и докучливым. Охваченный яростью от такого дерзкого неповиновения, римлянин выхватил меч и нанес Архимеду смертельный удар. Он просто не мог понять, почему старик не желал выполнить его приказ из-за каких-то непонятных фигур на песке.
Гениальная идея
Второе допущение более правдоподобно и больше соответствует образу Архимеда. Сиракузцы называли его «мечтателем». Если он начинал заниматься какой-то проблемой, то его было практически невозможно от нее отвлечь. Он забывал даже о столь дорогой сердцу греков гигиене и чистоте. Греческие граждане любили ходить в бани, где принимали ванны, а рабы часами массировали их тела и умащали маслами и благовониями, а сами они предавались беседам на политические и торговые темы или просто болтали о пустяках. Но не таков был Архимед, особенно если его ум был занят решением какой-либо математической головоломки. Даже сопровождая своих друзей в баню, Архимед, прежде чем лечь в ванну, захватывал пальцами горсть золы, а потом писал на плитках стены математические символы и чертил геометрические фигуры. На все остальное он просто не обращал внимания.
Этот образ заставляет вспомнить известную историю о том, как был открыт закон о выталкивающей силе, действующей на погруженное в воду тело. Рассказывают, что, открыв эту закономерность, Архимед, забыв одеться, выпрыгнул из ванны и поспешил домой, крича: «Эврика! Нашел!» Открытие закона помогло ему решить задачу, предложенную тираном Сиракуз Гиероном II, который, между прочим, приходился родственником Архимеду. Гиерон попросил Архимеда выяснить, сделана ли заказанная у золотых дел мастера корона из чистого золота, или в ней есть примеси неблагородных металлов. Ученый целыми днями мучительно ломал голову над задачей. Архимеду запретили царапать корону или расплавить ее кусочек, чтобы такими радикальными способами выяснить ее состав. Нет, корона должна была остаться неприкосновенной, но при этом следовало установить, не фальшивая ли она.
Ответ на этот вопрос Архимед смог дать с помощью закона о выталкивающей силе воды, действующей на погруженное в нее тело. Он открыл этот закон благодаря наивному детскому удивлению, заметив, что, погружаясь в теплую ванну, испытывает необычайную легкость. Решение было найдено быстро: мое тело при погружении в воду вызывает повышение ее уровня. Другими словами, погруженный в воду объем вытесняет вверх такой же объем воды. Вес вытесненной мною воды в точности равен той силе, которая делает меня легче, ибо это я, погрузившись в воду, поднял ее уровень. Другими словами, в воде я не так тяжел, как на весах. Из моего веса на весах надо вычесть вес того объема воды, которую мое тело вытеснило вверх при моем погружении в ванну.
Можно легко представить себе, что Архимед после того, как эта мысль пришла ему в голову, несколько мгновений лежал в ванне, словно пораженный молнией. Интуитивно он сразу понял, что этот закон вытеснения даст ему в руки ключ к решению задачи о короне. Внезапно эта догадка превратилась в твердое знание. Он выпрыгнул из ванны и, подгоняемый своим открытием словно демоном, совершенно голый бросился домой. Поспешно, но с врожденной тщательностью он провел дома следующий эксперимент: на одну чашу рычажных весов положил корону, а на другую – столько чистейшего золота, чтобы уравновесить тяжесть короны. Рычаги весов установились точно горизонтально, а чаши оказались на одном уровне. Позади взвешенной короны и позади взвешенного золота Архимед поставил по одному большому горшку, наполненному водой. Потом он осторожно поднял весы и поднес чаши к горловинам горшков, а затем погрузил оба веса в воду, аккуратно поставив весы на пол. Коромысло весов покачалось, а потом остановилось, причем плечи коромысла уже не находились на одном уровне. Чаша с короной оказалась выше, чем чаша с чистым золотом.
Таким образом, стало ясно, что в короне содержался, помимо золота, какой-то неблагородный, более легкий металл. Теперь Архимед был в этом уверен. Дело в том, что добавление неблагородного металла с меньшей плотностью придало короне больший объем по сравнению с объемом чистого золота. При погружении в воду сила, вытесняющая корону, была поэтому больше силы, вытесняющей золото, потому что корона вытеснила больший объем воды, чем золото.
Больше, чем сам физический закон, открытый и тотчас примененный на практике Архимедом, впечатляет в этой истории то, что она позволяет нам почувствовать, как гении приходят к своим открытиям. Внешние обстоятельства очевидны: замысловатая задача, поставленная Гиероном; отвлечение от проблемы при погружении в ванну, в которой Архимед забыл и о задаче, и о короне; во время отдыха, праздного лежания в ванне, в голове Архимеда созрела идея, приведшая Архимеда к открытию закона вытеснения воды; а затем этот закон стал ключом к решению поставленной Гиероном задачи.
Если бы во времена Архимеда существовали современные диагностические приборы, позволяющие регистрировать физиологические процессы в головном мозге, и если бы такой аппарат можно было надеть Архимеду на голову, когда он лежал в ванне, и записать электрическую активность нейронов, то мы получили бы запись нейронной бури. Это оказалось бы истинным золотым дном для нейрофизиологов, которые смогли бы проследить образование сетевых связей между самыми разными отделами головного мозга.
Однако какими бы ценными ни были такие исследования и какую бы пользу ни принесли они в будущем в деле лечения поражений мозга и душевных расстройств, всплеск гениальности будет всегда скрыт, несмотря на применение самой совершенной техники. Это можно сравнить, например, с исследованием концертного рояля, на котором пианист играет бетховенскую сонату. С помощью тончайших сенсоров можно зарегистрировать амплитуды колебания каждой отдельной струны, измерить силу ударов по ним молоточков, записать резонанс дивных звуков. Если ввести в компьютерный анализатор соответствующую программу, то прибор сможет определить, в какую эпоху было написано исполняемое произведение. Такие исследования, несомненно, были бы очень полезны для оценки качества каждого данного инструмента и его настройки. Но все эти данные не имеют ничего общего с тем, что мы, слушатели, испытываем во время прослушивания произведения – трепет или банальную скуку, ибо музыка таится не в инструменте, откуда она, по видимости, льется.
Она также пребывает не в мозге или в руках пианиста и не в ушах или мозгах тех, кто эту музыку слушает, и уж меньше всего в колебаниях воздуха, распространяющихся от инструмента по концертному залу. Все это необходимо для звучания, но музыка не в нем. Для примера приведем простую в исполнении, но прекрасную прелюдию до мажор из «Хорошо темперированного клавира» Иоганна Себастьяна Баха. Музыка не в нотах, которые, словно отпечатки пальцев, остались на бумаге после того, как Бах записал эту музыкальную идею. Было бы смехотворным абсурдом пытаться зафиксировать эту прелюдию где-то и когда-то в пространстве и времени. Бах и сам превосходно осознавал абстрактную сущность своего произведения. В «Хорошо темперированном клавире» он даже отказался от обычных предписаний исполнять его на клавесине или на органе. В принципе, любой инструмент – это лишь слабая подпорка для музыки, ее костыль, «мучительно несущий бренную оболочку»[10], немного перефразируя слова Гёте.
То же самое касается и математических идей. Естественно, математическая идея связана с определенной нейронной активностью, распределенной по мозгу, и вообще идея становится возможной, если анатомическое строение мозга и его физиологическое состояние позволяют человеку думать, мыслить. Несмотря на это, математическую идею невозможно зафиксировать в каком-то определенном месте времени и пространства; она может стать полностью независимой от человека, которому она пришла в голову.
Тем более становится понятным, почему Архимед ни минуты не медлил после того, как его озарила мысль о том, как можно применить закон вытеснения в решении задачи о короне Гиерона. Дело в том, что, когда Архимед пришел к решению, оно так отчетливо и наглядно предстало перед его внутренним взором, что он тотчас испугался: почему до сих пор эта идея никому не пришла в голову – ведь эта идея, как удачно говорят, просто витала в воздухе. В этот момент честолюбивым Архимедом овладел страх. Он испугался, что кто-то может его опередить и отнять пальму первенства. Этот страх едва ли был обоснован в меркантильных Сиракузах, населенных по преимуществу купцами и крестьянами, не интересовавшимися наукой вообще, а уж тем более математикой. Но кто может знать! Архимед, как все честолюбивые математики мира до него и после него, был убежден в том, что слава ученого состоит в том, чтобы стать первым, кто явит миру существование решения какой-то важной проблемы.
Гёттингенский математик Ганс Грауэрт однажды сказал о своей профессии: «Математика – не естественная и не гуманитарная наука. Математики – люди искусства: они создают духовное». Разумеется, «духовное», о котором ведет речь Грауэрт, не зависит от личности, которая его «творит». На самом деле личности, занимающиеся математикой, напоминают – даже когда они вторгаются в область неведомого – воспроизводящих, а не творящих художников. Даже Гаусс, величайший математик Нового времени, который снабжал свои глубочайшие прозрения такими звучными названиями, как theorema egregium (замечательная теорема), theorema elegantissimum (изящнейшая теорема), theorema aureum (золотая теорема), был скорее открывателем, а не творцом. Во всяком случае, они, эти открытия, так и выглядят в представлении Гаусса. Ситуация несколько иная, чем с шедеврами художников-творцов: произведение искусства неотделимо связано с личностью его автора. Иоганн Себастьян Бах самостоятельно принял решение построить гармонию «Хорошо темперированного клавира» именно так, как он ее построил, и никак иначе. Теперь же мы слушаем эти пьесы в исполнении Розалин Тюрек, Фридриха Гульды или Тиля Фельнера, и каждая из этих творческих личностей открывает в музыке каждый раз что-то новое, неожиданное и делится с нами своими открытиями. Достижения этих интерпретаторов можно сравнить с деяниями математиков, если говорить о математике как об искусстве.
В любом случае в большом искусстве граница между «творением» и «толкованием» зыбка и расплывчата. Подумать только: Толстой, убив в конце своего романа Анну Каренину, горько плакал, так близко к сердцу принял он смерть героини, которая была лишь плодом его собственного воображения. Моцарт сочинял свои произведения так, словно они возникали перед его мысленным взором, как законченные пьесы, и ему оставалось только переписать в тетрадь ноты. Микеланджело сразу разглядел в мраморной глыбе, принесенной в мастерскую рабочими, прячущегося в ней Давида, которого оставалось только освободить из каменного плена.
В математическом знании есть, правда, одна особенность: к личности, первой нашедшей это знание, приходит слава первооткрывателя. Этой славы жаждут все математики, даже в тех случаях, когда их открытия не сотрясают основы мироздания. Я и сам в юности испытал нечто подобное, когда представил пришедшую мне в голову идею своему учителю, Эдмунду Главке, одному из ведущих австрийских математиков. То, что я ему рассказал и записал на доске, было на самом деле новым, но не особенно значимым открытием. Тем не менее Главке понравились мои идеи, однако после того, как я изобразил на доске все свои выкладки, он велел мне их стереть, потому что после нашего ухода в аудиторию мог кто-нибудь войти и украсть мою оригинальную идею…
Быть вторым – не считается
О том, насколько ожесточенным бывает спор из-за приоритета, можно судить по спору, потрясшему в свое время математический мир. Речь шла о том, кого следует называть первооткрывателем «исчисления», как в старину называли математический анализ бесконечно малых величин. Речь, между прочим, шла о поистине великом открытии.
«Исчисление» позволило вычислять скорость неравномерного криволинейного движения. С помощью «исчисления» можно выяснять, как ведут себя так называемые динамические системы – в астрономии планетные системы, в технике – механические или электрические колебания, в метеорологии потоки воздушных масс в атмосфере, в экономике – биржевые курсы валют. «Исчисление» дает возможность вычислять площадь поверхностей, ограниченных кривыми линиями, объемы фигур, ограниченных криволинейными поверхностями. На все эти вопросы дает ответ анализ бесконечно малых величин.
Так кто же открыл «исчисление»?
В Англии XVIII в. ответ был ясен: сэр Исаак Ньютон, величайший сын Британии. Единственный, кого Гаусс, говоря о математиках, называл «clarissimus» (славнейший). В 1666 г., когда в Англии свирепствовала чума, Кембриджский университет был закрыт, и двадцатитрехлетний Ньютон вернулся в свою родную деревню Вулсторп. В течение года, что он пробыл там, Ньютон разработал «исчисление». После этого, как рассказывает величайший почитатель Ньютона, французский философ Вольтер, Ньютону на голову упало с дерева яблоко, из-за чего он посмотрел наверх, увидел Луну, и это зрелище навело его на мысль о том, что движение падающего яблока, Луны и планет подчиняется одному-единственному математическому закону. Теперь можно было с помощью «исчисления» выразить этот закон формулой.
Но Ньютон медлил с публикацией своего открытия. Он панически боялся критики со стороны своих кембриджских коллег, особенно со стороны Роберта Гука, низкорослого, тщеславного, настроенного против Ньютона ученого, которого он (Ньютон) ненавидел всей душой. Многие годы записи Ньютона пролежали в запертом ящике его письменного стола. Только близким друзьям он смутно намекал на то, что у него в руках находится математический ключ к пониманию движения небесных тел, и с помощью этого ключа можно будет показать, что допущение его врага Гука о том, что планеты с Солнцем связывают силы, подобные силе натянутой пружины, является ошибочным и порождает множество заблуждений.
Даже в «Математических началах натуральной философии», в книге, которую Ньютон решился опубликовать только после многолетних уговоров своего почитателя, астронома, геофизика и картографа Эдмунда Галлея, Ньютон изложил суть «исчисления» лишь в самом необходимом объеме. Публикация состоялась лишь после того, как в уравнения Ньютона были подставлены новые результаты измерения расстояния от Земли до Луны и было подтверждено совпадение расчетных результатов с данными астрономических наблюдений.
Ньютон так до конца и не осознал, почему «исчисление» так хорошо работает. «Исчисление» представляло собой рафинированный и изящный способ вычисления скоростей, площадей и объемов, но неисследованными остались основания, на которых покоилось само «исчисление».
Однако Ньютон мог быть доволен уже тем, что общество – не только коллеги по университету, но и все мировое научное сообщество того времени, и даже интересующиеся естественными науками любители – признало его книгу о началах натуральной философии вехой, открывающей новую эру. Ньютон был посвящен в рыцари, получил дворянский титул, стал президентом Королевского общества – самого уважаемого научного общества в мире. Как только Ньютон достиг всех этих высот, он позаботился о том, чтобы были уничтожены все портреты ненавистного коллеги Роберта Гука, до которых Ньютон смог дотянуться. Когда Ньютона однажды спросили, как ему удалось открыть математику движения планетных систем и практически заново создать механику, он ответил: «Если я и видел дальше других, то лишь потому, что стоял на плечах гигантов». Это звучит скромно; Ньютон утверждал, что только благодаря своим предшественникам он смог заглянуть так далеко. На самом деле в этом ответе можно было увидеть намек на Гука, который отличался очень малым ростом.
И все же презрению, каковое Ньютон испытывал к Гуку, было далеко до всепроникающей ненависти, которую Ньютон питал к Готфриду Вильгельму Лейбницу, величайшему ученому континентальной Европы. Лейбниц не был лично знаком с Ньютоном и лишь в молодости обменялся с ним несколькими короткими письмами. Отчего же Ньютон так его ненавидел? Лейбниц опубликовал в журнале Acta eruditorum несколько статей, в которых представил основы «исчисления», той математической теории, открывателем которой Ньютон считал себя. Возможно, думал подозрительный Ньютон, этот немец извлек свои знания об «исчислении» из писем Ньютона, то есть фактически украл у него открытие. Самое же досадное заключалось, с точки зрения Ньютона, в том, что статьи в Acta eruditorum появились намного раньше публикации книги о началах натуральной философии. На континенте в научных кругах господствовало мнение о том, что – не умаляя заслуги Ньютона в физике – первооткрывателем «исчисления» был Лейбниц.
То, что последователи Ньютона при каждом удобном случае подчеркивали, что он был первым, не могло удовлетворить честолюбивого ученого. В этом вопросе была сильно задета его честь. Он хотел, чтобы раз и навсегда было документально подтверждено, что ему, и только ему, сэру Исааку Ньютону, принадлежит заслуга открытия «исчисления». Делить эту славу со вторым соискателем казалось ему делом немыслимым, ибо этот второй, то есть Лейбниц, был не первооткрывателем, а коварным и хитрым плагиатором. По настоянию Ньютона в Королевском обществе была создана комиссия, которая должна была провести расследование и установить, кто первым изобрел «исчисление». Ходили слухи, что Ньютон, как президент Королевского общества, распоряжался членами комиссии, как марионетками, и убедил их в справедливости своей точки зрения. Окончательный вывод, сделанный якобы беспристрастной и независимой комиссией, был от первого до последнего слова продиктован самим Ньютоном. Карл Джерасси, выдающийся американский химик с австрийскими корнями, став впоследствии драматургом, очень эффектно описал этот грязный балаган в пьесе «Исчисление».
Конец ознакомительного фрагмента.