Глава 1
Зачем нужна физика элементарных частиц
Мы задаемся вопросом: почему группа талантливых и преданных своему делу людей готова посвятить жизнь погоне за такими малюсенькими объектами, которые даже невозможно увидеть?
Физика элементарных частиц – странное занятие. Тысячи людей тратят миллиарды долларов на строительство гигантских машин длиной в десятки километров, разгоняют в них субатомные частицы до скоростей, близких к скорости света, а затем сталкивают друг с другом – и все это для того, чтобы обнаружить и изучить другие субатомные частицы, которые совершенно никому, кроме физиков элементарных частиц, не интересны и в обычной жизни совершенно не нужны.
Однако это обывательская точка зрения. Можно на все посмотреть и иначе: в этих занятиях физиков элементарных частиц в самом чистом виде проявляется человеческое любопытство и желание узнать, как устроен мир, в котором мы живем. Люди задавали подобные вопросы еще в античные времена – более двух тысячелетий назад, и с тех пор тяга к познанию мира переросла в систематические усилия всего человечества, направленные на то, чтобы найти основные закономерности в устройстве Вселенной. Именно наше непреодолимое желание понять мир породило физику элементарных частиц, ведь ее частицы как таковые интересуют нас – истинной целью является присущее людям желание узнать то, чего мы еще не знаем.
И тут начало XXI века стало переломным моментом. Последний по-настоящему удивительный экспериментальный результат с помощью ускорителей частиц был получен в 1970-х годах, то есть более 35 лет назад. (Точная дата зависит от того, что именно считать «удивительным»). Перерыв возник не потому, что экспериментаторы проспали все то время – это совсем не так. В последние годы экспериментальная техника улучшалась не по дням, а по часам, и достигла такой степени совершенства, которая еще совсем недавно казалась недоступной. Но проблема в том, что на этих замечательных машинах ученые не смогли обнаружить ничего такого, что заранее не предсказали теоретики. Настоящих ученых, всегда надеющихся найти что-то новое и удивительное, такое положение вещей очень раздражает.
Другими словами, проблема не в том, что эксперименты были недостаточно совершенными, а в том, что теория была слишком хороша. Тенденция к узкой специализации современной науки привела к тому, что роли «экспериментаторов» и «теоретиков» стали весьма различными, особенно в физике элементарных частиц. Прошли те времена, когда – еще совсем недавно, в первой половине XX века – какой-нибудь гений, вроде итальяца Энрико Ферми, мог сначала создать новую теорию слабых взаимодействий, а затем взяться за конструирование установки, в которой должна была пройти первая самоподдерживающаяся искусственная цепная ядерная реакция. Сегодня все по-другому: теоретики элементарных частиц пишут свои уравнения и в конце концов доводят их до конкретных моделей, а экспериментаторы для проверки правильности этих моделей собирают данные с помощью сложнейшей экспериментальной аппаратуры. Лучшие теоретики пристально следят за результатами экспериментов, а экспериментаторы обычно в курсе последних достижений теоретиков, но никто из них не является специалистом одновременно и в том, и в другом.
1970-е годы ознаменовались важным событием. Была поставлена последняя точка в создании лучшей теории физики элементарных частиц, получившая совсем не соответствующее ее статусу скучное название «Стандартная модель». Стандартная модель – это именно та теория, которая описывает кварки, глюоны, нейтрино и все прочие виды элементарных частиц, о которых вы, возможно, слышали. Как и голливудские знаменитости или харизматичные политики, научные теории могут по воле судьбы как быть вознесены на пьедестал, так и легко с него низвергнуты. Вы не станете знаменитым физиком, доказав правильность чужой теории, но можете прославиться, доказав, что чья-то теория неверна, и предложив лучшую.
Но Стандартная модель остается незыблемой как скала вот уже несколько десятилетий – все эксперименты, которые ученые смогли провести здесь, на Земле, неизменно подтверждали ее предсказания. Целое поколение физиков, работающих в области элементарных частиц, прошли путь от студентов до профессоров, так и не открыв ни одного нового явления. Больше ждать было невмоготу.
Но теперь все стало меняться – появился Большой адронный коллайдер, который ознаменовал собой новую эру в физике: стало возможно сталкивать частицы при энергиях, прежде недоступных человечеству. И это не просто «высокие энергии». Это энергии, о которых ученые мечтали в течение многих лет и которые, надеемся, позволят обнаружить новые, предсказанные теоретиками частицы. А если повезет, нас ждут сюрпризы – ведь в этом диапазоне энергий прячут свои секреты силы, называющиеся «слабыми взаимодействиями».
Ставки высоки. Когда впервые заглядываешь в неизведанное, всякое может случиться. Существует огромное количество конкурирующих теоретических моделей, пытающихся предсказать то, что обнаружит БАК. Однако никогда не знаешь, что увидишь, пока не посмотришь. В эпицентре всех ожиданий находится бозон Хиггса, непритязательная частица, последний недостающий элемент Стандартной модели, и возможно, свет мира, лежащего за ее, Стандартной модели, пределами.
Большая вселенная, сделанная из маленьких кирпичиков
На берегу Тихого океана в Южной Калифорнии, примерно на расстоянии полутора часов езды на машине на юг от моего дома в Лос-Анджелесе, расположено волшебное место, где оживают мечты – страна Лего, Леголэнд. На острове Дино, в Фан-Тауне и в других уголках этой страны дети восхищаются волшебным миром, искусно выстроенным с помощью элементов конструктора лего – крошечных пластиковых блоков, которые могут быть соединены друг с другом бесконечным количеством способов.
Страна Лего во многом похожа на реальный мир. Окружающая нас среда заполнена воздухом, водой и живыми организмами, а также предметами, сделанными из разных веществ: дерева, пластмассы, ткани, стекла, металла. Эти вещества все очень разные, с очень разными свойствами. Но, приглядевшись к ним внимательнее, мы обнаружим, что в действительности все они по существу не слишком отличаются друг от друга. На самом деле они представляют собой просто-напросто различные комбинации небольшого количества фундаментальных строительных блоков. Эти строительные блоки и есть элементарные частицы. Как и здания в Леголэнде, столы, автомобили, деревья и люди представляют собой самые разнообразные конструкции, которые можно сложить из небольшого набора простых элементов, соединяя их друг с другом различными способами. Правда, атом примерно в триллион раз меньше блока Лего, но принципы построения схожи.
Мы считаем само собой разумеющимся, что вещество состоит из атомов. Это то, чему нас учили в школе, а в химических аудиториях, где мы делали опыты, на стене висела периодическая таблица элементов Менделеева. Есть вещества твердые и мягкие, легкие и тяжелые, жидкости и газы, прозрачные и мутные, а есть еще живые и неживые. Они все такие разные, но по существу, состоят из одних и тех же элементов, и это поразительно! В таблице Менделеева около ста атомов, и все вокруг нас – лишь разные их сочетания.
Идея о том, что строение окружающего мира можно объяснить в терминах нескольких основных элементов, довольно стара. В древние времена мыслители разных народов – вавилоняне, греки, индусы и многие другие – придумали удивительно похожие наборы из пяти «элементов», из которых все сделано. Наиболее известные нам – это земля, воздух, огонь и вода. Но был также пятый – небесный элемент – эфир или, иначе, квинтэссенция. (Да, да, именно он дал название фильма с Брюсом Уиллисом и Милой Йовович – «Пятый элемент».) Как и многие другие идеи, идея о пяти элементах была превращена великим Аристотелем в тщательно продуманную систему. Он предположил, что каждый элемент стремится к своему особому естественному состоянию, например земля стремится к падению, а воздух – к подъему. Смешивая элементы в различных комбинациях, можно получить различные вещества, которые находятся вокруг.
Греческий философ Демокрит, предшественник Аристотеля, предположил: все, что мы знаем, состоит из определенных крошечных неделимых частичек, «атомов». К несчастью, в истории так случилось, что этот термин был использован химиком Джоном Дальтоном в начале 1800-х годов для обозначения химических элементов. В результате то, что мы теперь считаем атомом, совсем не является неделимой частичкой – атом состоит из ядра, в свою очередь состоящего из протонов и нейтронов, вокруг которого расположено облако вращающихся электронов. И более того: даже протоны и нейтроны не являются неделимыми – они состоят из более мелких частичек, называемых «кварками».
Кварки и электроны – вот это настоящие атомы в терминах Демокрита, то есть неделимые строительные блоки вещества. Сегодня мы называем их элементарными частицами. Из двух типов кварков, шутливо именуемых «верхними» и «нижними», образованы протоны и нейтроны в атомном ядре. Таким образом, в общей сложности нам понадобится всего лишь три вида элементарных частиц, чтобы составить каждый кусок вещества, из которого сделано все, что нас непосредственно окружает, – электроны, верхние кварки и нижние кварки. Это лучше, чем пять элементов древних греков, и намного лучше, чем больше сотни элементов периодической таблицы.
Сведение всех структурных элементов мира всего к трем частицам – это, конечно, слишком сильное упрощение. Да, электронов, верхних и нижних кварков достаточно для объяснения существования автомобилей, рек и щенков, однако они не единственные обнаруженные учеными частицы. На самом деле есть двенадцать различных видов «частиц материи»: шесть сильно взаимодействующих между собой кварков, которые заперты внутри более сложных образований, таких как протоны и нейтроны, и шесть «лептонов», которые могут существовать и свободно перемещаться в пространстве независимо друг от друга. А еще есть частицы-переносчики взаимодействий, при помощи которых «частицы вещества» удерживаются вместе в тех разнообразных комбинациях, которые мы видим вокруг. Без частиц-переносчиков взаимодействий мир был бы поистине скучным местом – разные частицы просто летали бы в пространстве по прямым, не взаимодействуя друг с другом. Вот тот очень небольшой набор частиц, объясняющий все, что мы видим вокруг нас, но, честно говоря, хотелось бы, чтобы он был еще проще. Физики, работающие сейчас в области элементарных частиц, движимы желанием придумать что-то получше.
Бозон Хиггса
Вот и вся Стандартная модель физики элементарных частиц: двенадцать частиц вещества, плюс группа частиц-переносчиков взаимодействия, необходимых для удержания всех их вместе. Итак, мы собрали все элементы, необходимые для правильного описания мира вокруг нас, по крайней мере здесь, на Земле. Однако когда мы говорим о космосе, то сталкиваемся со свидетельствами существования таких субстанций, как темная материя и темная энергия, постоянно напоминающих нам о том, что мы далеко не все еще понимаем. Эти явления совершенно точно не могут быть объяснены в рамках Стандартной модели.
Почти все частицы Стандартной модели четко делятся на «частицы вещества» и «частицы-переносчики взаимодействий». А вот бозон Хиггса не принадлежит ни одной из этих категорий, он вроде как гадкий утенок среди лебедей. Он был назван в честь шотландского физика Питера Хиггса, который почти одновременно с еще несколькими учеными предложил идею этого бозона еще в 1960-х годах. Переходя на профессиональный язык, можно сказать, что эта частица – переносчик качественно другого взаимодействия, отличающегося от остальных хорошо знакомых нам взаимодействий. С точки зрения физика-теоретика, бозон Хиггса кажется причудливой искусственной вставкой, нарушающей выстроенную красивую структуру. Без бозона Хиггса Стандартная модель была бы воплощением элегантности и совершенства, а его присутствие порождает некоторый хаос, причем найти виновника этого хаоса оказалось довольно сложной задачей.
Так почему же большинство физиков убеждено, что бозон Хиггса должен существовать? Вы можете услышать объяснения типа: «чтобы дать массу другим частицам» или «чтобы разрушить симметрию». Оба объяснения правильны, но с первого раза их трудно воспринять. Главное в том, что без бозона Хиггса Стандартная модель выглядела бы совсем иначе и не описывала бы реальный мир. А с бозоном Хиггса она отражает реальность идеально.
Конечно, физики-теоретики старались изо всех сил, чтобы придумать теории, вообще обходящиеся без бозона Хиггса, либо такие, где этот бозон сильно отличается от описываемого стандартными теориями. Многие из этих теорий потерпели фиаско, не сумев объяснить реальные данные, другие оказались излишне сложными. Ни одна не дотянула до статуса настоящей альтернативной теории.
А теперь мы нашли этот бозон. Или что-то очень похожее на него. В зависимости от того, насколько осторожны физики в своих выводах, они говорят: «Мы обнаружили бозон Хиггса», либо: «Мы обнаружили частицу, похожую на бозон Хиггса», либо даже: «Мы обнаружили частицу, которая напоминает Хиггса». В объявлении от 4 июля 2012 года была описана частица, которая ведет себя почти так, как должен вести себя бозон Хиггса – распадается на несколько других определенных частиц более или менее теми самыми способами, которые и прогнозировались. Но закрывать вопрос еще рано, и когда наберется больше данных, вполне возможны сюрпризы. В глубине души физики не хотят, чтобы это был точно тот Хиггс, которого ждали. Всегда интереснее и увлекательнее найти что-то неожиданное. И уже сейчас в собранных данных есть слабенькие основания для сомнений. Только дальнейшие эксперименты откроют истину…
Почему это важно
Однажды в интервью местной радиостанции я рассказывал о физике элементарных частиц, гравитации, космологии и тому подобном. Это был 2005 год – столетний юбилей Года чудес, того самого 1905 года, в течение которого Альберт Эйнштейн опубликовал сразу несколько работ, перевернувших многие понятия в физике с ног на голову. Я старался изо всех сил, пытался как можно доходчивей объяснить некоторые из этих довольно абстрактных концепций и, даже понимая, что я на радио, а не в телестудии, не мог удержаться и размахивал руками.
Интервьюер казался довольным, но после того, как мы закончили, и он уже убирал свою аппаратуру, ему в голову пришла новая мысль. Он спросил, не мог бы я ответить еще на один вопрос. Конечно, буду рад, сказал я, и он опять вытащил микрофон и наушники. Вопрос был простым: «Почему все, о чем вы рассказывали, должно быть кому-то интересно? Ведь в конце концов ни одно из этих исследований не поможет создать лекарство от рака и не сделает смартфон дешевле».
Ответ, который тогда пришел мне в голову, до сих пор кажется мне не лишенным смысла: «В шесть лет у всех детей возникает много вопросов. Почему небо голубое? Почему вещи падают? Почему некоторые предметы горячее, а другие холоднее? Как это все устроено?» Детей не нужно заставлять интересоваться наукой – они по своей природе стихийные ученые. Это врожденное любопытство выбивают из нас годы школьного обучения и тяготы повседневной жизни. Нас волнует, как устроиться на работу, встретить свою половинку, вырастить детей. Мы перестаем спрашивать, как устроен мир, и начинаем спрашивать, как заставить его работать на себя. Позже я нашел результаты исследований, показывающие, что дети интересуются наукой лишь до 10-14-летнего возраста.
Сегодня, после более 400 лет серьезных научных исследований, мы получили довольно много ответов на вопросы шестилетнего ребенка, живущего внутри каждого из нас. Мы знаем так много о физическом мире, что ответы на оставшиеся неотвеченными вопросы придется искать в очень удаленных местах и экстремальных условиях, во всяком случае в физике. Правда, в таких областях, как биология или нейронауки, точных ответов совсем мало. Но физика, по крайней мере ее часть – физика элементарных частиц, имеющая дело с фундаментальными строительными блоками материи – отодвинула границы познанного столь далеко, что теперь приходится строить гигантские ускорители и телескопы, чтобы искать новые данные, которые не укладываются в наши существующие теории.
Но нужно сказать, что фундаментальные научные исследования, проводимые только ради любопытства, а не для сиюминутной выгоды, ненароком приводят к огромному материальному выигрышу. Еще в 1831 году некий любознательный политик спросил Майкла Фарадея, одного из основателей нашей современной теории электромагнетизма, о пользе, которую можно извлечь из этой новомодной штуки – «электричества». Согласно апокрифу, тот дал следующий ответ: «Я про пользу ничего не знаю, но бьюсь об заклад, что в один прекрасный день ваше правительство обложит его налогом». (Точных доказательств такого обмена репликами нет, но это достаточно красивая история, раз люди продолжают ее рассказывать.) Столетие спустя некоторые величайшие умы того времени, озадаченные загадочными экспериментальными результатами, ниспровергающими базовые основы классической физики, приступили к созданию квантовой механики. В то время она была довольно абстрактной наукой, но впоследствии привела к изобретению транзисторов, лазеров, сверхпроводимости, светодиодов, а также к появлению ядерной энергетики (и ядерного оружия). Без этих фундаментальных исследований наш мир сегодня выглядел бы иначе.
Даже общая теория относительности, блестящая теория Эйнштейна о пространстве и времени, как оказалось, имеет вполне земные приложения. Если вы когда-либо использовали устройство глобальной системы позиционирования (GPS), чтобы найти нужное направление, то вы тем самым использовали общую теорию относительности. GPS, которое теперь можно найти почти в любом сотовом телефоне или в навигационной системе автомобиля, принимает сигналы от спутников и в методе триангуляции использует точную синхронизацию этих сигналов для определения своего местоположения здесь, на Земле. Но, согласно Эйнштейну, часы на орбите (где гравитационное поле слабее) идут немного быстрее, чем на поверхности Земли. Небольшой эффект, что и говорить, но он накапливается. Если «относительность» не принимать во внимание, сигналы GPS будут постепенно отклоняться от правильных значений – всего за один день ошибка в местоположении может достичь нескольких километров.
Однако технологические приложения исследований, несмотря на то что они, безусловно, важны, и для меня, и для Джоан Хьюэтт и для любого из экспериментаторов, которые проводят долгие часы, конструируя приборы и анализируя полученные данные, в конечном счете все-таки не главное. Это замечательно, когда они возникают, и мы не станем высокомерно усмехаться, если кто-то найдет способ использования бозона Хиггса для изготовления лекарства от старения. Но ищем мы его не для этого. Мы ищем, потому что мы любопытны. Хиггс – заключительная частичка пазла, который мы уже страшно долго пытаемся собрать. Нашей наградой и будет собранный пазл.
Большой адронный коллайдер
Мы не нашли бы бозона Хиггса без Большого адронного коллайдера (еще одно навевающее скуку название для воплощенной в железе неизбывной тяги человечества к новым открытиям). БАК является самой крупной, самой сложной установкой из всех когда-либо созданных людьми, и ее строительство обошлось в 9 млрд долларов. Работающие на нем в ЦЕРНе физики надеются, что он сможет продуктивно профункционировать еще около 50 лет. Но ученые не отличаются большим терпением и мечтают прямо сейчас сделать парочку открытий, которые могли бы изменить мир.
БАК – это настоящий Гаргантюа, в каком бы направлении его ни измерять. Он был задуман в 1980 году, а разрешение на его строительство получили только в 1994 году. Он стал ньюсмейкером задолго до запуска. В основном потому, что его строительство попытались остановить с помощью судебных исков на том основании, что он якобы создаст черные дыры, которые поглотят нашу Вселенную. Иски были проиграны, и гигантский коллайдер заработал в начале 2009 года.
13 декабря 2011 года физики и изрядное количество интересующихся непрофессионалов набились в конференц-залы в разных точках земного шара и сгрудились вокруг компьютерных терминалов для того, чтобы послушать доклады двух исследователей – представителей команды БАКа о новостях в поисках бозона Хиггса. Эта тема очень часто обсуждалась на физических семинарах, и в конце почти всегда повторялось заклинание: «Поиск продвигается успешно! Пожелайте нам удачи!» Но на сей раз все было по-другому. В течение нескольких дней перед этим в Интернете циркулировали слухи о том, что мы услышим необычное сообщение, что нам скажут нечто вроде: «Мы действительно увидели что-то. Может быть, мы, наконец, нашли доказательства того, что бозон Хиггса действительно существует».
И это оказалось правдой, были получены некоторые свидетельства того, что на БАКе на самом деле увидели бозон Хиггса. Однако свидетельства, заметьте, не окончательные доказательства. В БАКе сталкивались протоны с невероятно огромными энергиями, и два разных гигантских эксперимента регистрировали частицы, рождающиеся в этих столкновениях. И оказалось, что при определенной энергии два фотона (кванта света) с высокой энергией возникали чуточку чаще, чем этого можно было бы ожидать, если бы никакого бозона Хиггса не было. Это указывало на то, что, скорее всего, что-то действительно происходит, но это еще не было открытием. Рольф Хойер закончил прессконференцию пожеланием: «Увидимся в будущем году, когда, надеюсь, уже можно будет объявить об открытии».
Так оно и произошло. 4 июля 2012 года прошли еще два семинара, и на них была обнародована новая информация. И на этот раз не просто дразнящие намеки – были представлены весомые доказательства того, что новая частица найдена. Сомнения рассеялись. Тысячи физиков во все мире радостно захлопали в ладоши и облегченно вздохнули – БАК доказал свою успешность.
На распутье
В извечном желании человечества лучше понять, как устроена Вселенная, физика элементарных частиц играет роль первопроходца. Сегодня она стоит у критической черты. Это очень дорогая область науки. И ее будущее неясно.
Поиск бозона Хиггса – не просто история про субатомные частицы и эзотерические идеи. Это еще и история про деньги, политику, ревность. Проект, в который вовлечено невероятно много людей, который осуществляется в рамках беспрецедентного международного сотрудничества, и в котором уже использована не одна прорывная технология, не может обойтись совсем без случаев халатности, махинаций, а иногда и мошенничества.
БАК – это не первый гигантский ускоритель элементарных частиц, которому была поставлена задача найти бозон Хиггса. Был Теватрон, построенный в Лаборатории имени Ферми (Фермилабе), расположенной недалеко от Чикаго. Он заработал в 1983 году, но после весьма эффективной работы, которая, в частности, ознаменовалась открытием истинного кварка, в конце концов был остановлен в сентябре 2011 года. Бозон Хиггса Теватрон так и не обнаружил. Был еще Большой электрон-позитронный коллайдер (LEP), работавший с 1989 по 2000 год в том же подземном туннеле, где сейчас размещен БАК. Вместо относительно массивных протонов, в результате столкновения которых обычно происходят беспорядочные выплески самых разных частиц, LEP сталкивал электроны с их собратьями из антивещества – позитронами. Эта реакция позволила производить очень точные измерения, но ни в одном из них не появился бозон Хиггса.
А потом был Сверхпроводящий суперколлайдер, или ССК, о котором с грустью рассказывала Хьюэтт. ССК был американской версией БАКа, но только больше, лучше, и по плану он должен был заработать первым. Спроектированный в 1980-х годах, ССК, согласно проекту, был призван развивать энергию почти в три раза выше той, что когда-нибудь сможет достичь БАК (и в шесть раз выше той, которую БАК развил на данный момент). Но у БАКа есть огромное преимущество перед ССК: его все-таки построили.
Всего лишь через пару лет после начала работы БАКа он преподнес людям подлинное открытие – частицу, очень похожую на бозон Хиггса. Это открытие ознаменовало конец одной эпохи и начало другой. Бозон Хиггса – не просто еще одна частица. Это особый вид частиц, который мог бы очень естественным образом взаимодействовать с другими видами частиц – теми, которых мы еще не обнаружили. Бозон Хиггса может оказаться перемычкой, соединяющей наш мир с другим, скрытым от нашего взгляда и пока недосягаемым. Теперь, когда эта частица найдена, нам предстоят десятилетия работы, чтобы узнать ее свойства, и понять, куда она сможет нас еще привести.
В долгосрочной перспективе будущее экспериментальной физики элементарных частиц остается неясным. 100 или даже 50 лет назад основополагающие открытия в области физики элементарных частиц делались на таком оборудовании, которое в своей лаборатории мог собрать один ученый с помощниками-студентами. Эти времена, похоже, ушли навсегда. Если БАК кроме бозона Хиггса не откроет нам ничего нового, убедить скептически настроенных политиков в том, что нужно выделить еще больше денег для строительства следующих поколений коллайдеров, станет гораздо труднее.
Такие установки, как БАК, требуют не только инвестиций в миллиарды долларов, но и тысячи человеко-лет работы специалистов, посвятивших свою жизнь тому, чтобы чуть-чуть глубже проникнуть в тайны природы. Таких людей, как Лин Эванс, который много сделал для доведения проекта БАКа до конца, или Джоан Хьюэтт, которая проанализировала бесконечное количество теоретических моделей, или Фабиола Джанотти и Джо Инкандела, которые руководили коллаборациями, совершившими историческое открытие. Все они в этой игре сделали огромные ставки – рискнули всей своей многолетней профессиональной работой и поставили на то, что с помощью этой установки будет открыта новая эпоха великих открытий. Открытие бозона Хиггса – это их награда, подтверждение того, что вся их работа была проделана не напрасно. Но, как Хьюэтт говорит, в действительности они больше всего хотели бы открыть то, чего никто не ожидал.
К счастью, Природа никогда не перестанет нас удивлять.