Глава 2. Системы
● Изучение систем, как целостных и целых, осуществляется во многих областях знания.
Существенный вклад в формирование понятий системности внесли К. Маркс и Ф. Энгельс[13], В. Ленин[14]. Первой общей теорией систем явилась тектология А.А. Богданова[15], ей предшествовали труды А.М. Бутлерова, Д.И. Менделеева, Н. Белова, Е.С. Федорова. В 30-х годах А. Тэнсли предложил термин «экосистема»[16]. С концепцией «общей теории систем» выступил Л. Берталанфи[17]. Развитие системных исследований ускорилось после создания кибернетики Н. Винером[18], в связи с появлением такого объекта исследований, как кибернетические системы. Наивысшим достижением в смысле системности и целостности является концепция ноосферного развития В.И.Вернадского[19].
При изучении систем, как целых и целостных, будем, кроме комплекса постулатов целого и целостности метода системной технологии, использовать следующие определения общей системы и системности:
система – это совокупность способов и/или средств обеспечения взаимодействия внутренней среды элементов (частей) системы с внешней средой системы;
системность – это целостность элемента (части) системы по отношению к данной системе; системность это целостность первого типа;
система системна, т.е. обладает свойством целостности, как правило, только первого типа – свойством целостности по отношению к другой системе, в которую она входит, как элемент (часть) этой другой системы.
В данном разделе мы рассматриваем возможности реализации постулатов целого с помощью систем.
Существуют ли системы как реальные части среды деятельности, как объекты материального мира, материальна или нематериальна система – один из дискуссионных вопросов периода становления системных исследований. Знать этот вопрос и ответ на него полезно начинающим изучать системы.
Он, конечно, подобен вопросу, возникающему в связи с разложением сигнала в совокупности гармонических составляющих с помощью преобразования Фурье – существуют ли гармоники, является ли на самом деле любой сигнал суммой синусоидальных сигналов. Ответ на второй вопрос известен – гармонические сигналы содержатся в реальных сигналах, т.е. сигналы разложимы на гармонические сигналы и, даже более, для многих сигналов, например, звуков музыки, именно та их часть, которая представима в виде гармоник, наиболее полно отражает этот сигнал, его «тембр», как инструмент познания данного сигнала. Кроме этого, есть сигналы, суть которых можно описать одной гармонической составляющей, одной нотой. Правда, большинство сигналов сложны и их недостаточно представить одной или многими гармониками; необходимы еще и другие описания данных сигналов.
Ответ на первый вопрос можно изложить в той же последовательности – системы содержатся в реальных частях среды, т.е. описания материальных объектов представимы системами. Даже более, для многих объектов именно та их часть, которая представима в виде системы, наиболее полно отражает этот объект, как инструмент познания данного объекта. Кроме этого, есть объекты, суть которых можно описать одной системой, одной моделью системы. Правда, большинство объектов познания сложны и их недостаточно представлять моделями большой и/или сложной системы; необходимы еще и другие описания данных материальных объектов.
Далее, при реализации некоторого замысла, проекта системы реальный объект, реализующий этот замысел (либо проект), конечно, является системой, повторяющей данный замысел (либо проект). Затем, на протяжении своего жизненного цикла он изменяется и приобретает многие новые черты, в том числе, несистемные, а также и черты новых систем, не предусмотренных при первоначальном замысле – эти общеизвестные реалии можно отразить, перефразируя известное высказывание В.С. Черномырдина: «хотели систему, а получилось, как всегда».
Другими словами, объекты материального мира содержат, конечно, части, являющиеся системами «по своей природе» или по замыслу создавшего их разума. Но в них есть и части, не подпадающие под описания в виде систем.
● Значение системной методологии объясняется, как известно, тремя основными причинами.
Во-первых, большинство традиционных научных дисциплин – биология, психология, экология, лингвистика, математика, социология и др., дополнили объекты своего рассмотрения моделями систем.
Во-вторых, технический прогресс привел к тому, что объектами проектирования, конструирования и производства оказались большие и сложные системы. Поэтому возник комплекс новых дисциплин, таких, как кибернетика, информатика, бионика и др., одна из основных задач которых – моделирование систем.
Наконец, в-третьих, появление в науке, технике и производстве проблем исследования, проектирования и реализации систем повысило методологическую роль системных исследований.
Термин "система" охватывает очень широкий спектр понятий. Например, существуют горные системы, системы рек и солнечная система. Человеческий организм включает опорно-двигательную, сердечно-сосудистую, нервную, лимфатическую и другие системы. Мы ежедневно взаимодействуем с системами транспорта и связи (телефон, телеграф и т.д.) и экономическими системами. Исаак Ньютон назвал "системой мира" предмет своих исследований. Модель системы понимается и как план, метод, порядок, устройство, Поэтому и неудивительно, что этот термин получил среди ученых, конструкторов, производственников и др. специалистов такое распространение.
● Для целей данного раздела необходимо также описать представления о большой и сложной системах.
Определение большой системы дано В.И. Чернецким в первом, по сведениям автора, учебном издании по данному предмету[20] в следующем виде:
«большая система (БС) есть система, представляющая собой совокупность взаимосвязанных управляемых подсистем, объединенных общей системой управления, характерной особенностью которой является наличие выделяемых частей. При чем для каждой части можно определить:
– цель функционирования, подчиненную общей цели всей системы,
– участие в системе людей, машин и природной среды,
– существование внутренних материальных, энергетических и информационных связей между частями системы, а также наличие внешних связей рассматриваемой системы с другими».
Там же В.И. Чернецким для больших и сложных систем сформулированы Закон информационного взаимодействия и Закон информационных ассоциаций, а также (совместно с Д.В. Бакурадзе) модель информационной динамики сложной системы, необходимые для повышения эффективности управления комплексными разработками.
Для лучшего усвоения определений большой системы по В.И. Чернецкому, и сложной системы по А.И. Бергу (глава 1), можно дополнительно дать следующую общую «пользовательскую» характеристику:
сложную систему, как и большую систему, невозможно рассмотреть «за один раз», чтобы получить требуемое решение проблемы, достичь цели, продуцировать результат.
Сложную систему нельзя рассмотреть «за один раз» из-за того, что надо последовательно рассмотреть несколько моделей всей системы, большую систему – из-за того, что надо последовательно рассматривать несколько моделей ее частей, как систем.
Рассмотрим этот вопрос с позиций постулатов 8 – 12 целостного метода системной технологии (глава 1) – постулатов общей модели.
● Система, на первый взгляд, «сложна сама по себе», так как для ее описания необходимы не менее чем две модели ее частей – модель процесса, модель структуры, модель элемента. А если элементы различны по природе – то и несколько моделей видов элементов. В случае если в одной модели собственно системы, достаточной для целей дальнейших рассмотрений объекта, можно объединить описание ее частей, несмотря на их разную природу, то собственно система не является сложной для дальнейшего анализа и исследования.
Но в том случае, когда для объединения описаний объекта исследований необходимо две и более моделей, мы видим объект исследования, как сложную систему.
Система, на первый взгляд, как бы и «большая сама по себе», так как рассматриваемый объект надо представить состоящим из большого количества частей – это опять же модель процесса, модель структуры, модели элементов. В случае если для совокупного описания процесса, структуры, элементов объекта достаточно создать одну модель системы, то такой объект мы не рассматриваем и как большую систему.
Но в ряде случаев для совокупного описания процесса, структуры, элементов объекта необходимо несколько этапов описания. Вначале их надо разделить на несколько отдельных совокупностей, для каждой из которых можно создать свою модель системы, известную исследователю, как решаемая. Затем все эти модели совокупностей объединить в модель всего объекта, как системы или создать из них новые совокупности теперь уже моделей систем, пока мы не придем к единой решаемой модели объекта в виде системы. Тогда мы имеем дело с объектом исследования, как с большой системой.
Такие объекты исследований не помещаются в формат возможностей исследователя «по глубине» (сложная система) и/или «по величине» (большая система).
Итак, сложный объект невозможно рассмотреть «за один раз», так как надо раз за разом рассмотреть каждую систему, моделирующую данный объект, а затем объединить результаты рассмотрения в один системный результат рассмотрения сложного объекта, как сложной системы.
В свою очередь, большой объект также невозможно рассмотреть «за один раз», так как надо раз за разом во взаимосвязи рассмотреть все модели систем, принятые для каждой из частей изучаемого объекта, а затем объединить результаты рассмотрения моделей частей объекта в один системный результат рассмотрения всего объекта, как большой системы.
● Образно говоря, изучаемый объект может «не вмещаться» в формат знаний, которым исследователь может оперировать для эффективной, в смысле определенного критерия, деятельности. Тогда исследователь представляет изучаемый объект в виде такой модели большой и/или сложной системы, метод решения которой ему известен и реализуем в том формате действий, который ему доступен.
Конечно, представления о сложности и о «большести» конкретного объекта анализа и исследования изменяются по мере изменения форматов знаний и действий субъекта деятельности. Тем не менее приведенные определения большой системы по В.И. Чернецкому, и сложной системы по А.И. Бергу справедливы для любого объекта современного анализа и исследований.
Постулат 9 «об общей модели объекта деятельности» для сложного объекта деятельности можно для данного случая сформулировать следующим образом:
Для формирования и реализации целостной деятельности формирование и реализацию сложной системы-объекта деятельности необходимо осуществлять с помощью общей модели целого в виде совокупности моделей систем, отражающих различные подходы к моделированию систем-объектов различной природы.
Для большого объекта деятельности, который мы, в соответствии с принятыми определениями, считаем большим, постулат 9 «об общей модели объекта деятельности» можно сформулировать следующим образом:
Для формирования и реализации целостной деятельности формирование и реализацию большой системы-объекта деятельности необходимо осуществлять с помощью общей модели целого в виде совокупности взаимосвязанных моделей систем, описывающей все части данной системы-объекта.
● Для систематизации изучения систем с позиций метода системной технологии сформулируем аналогичные результаты для субъекта, результата и триады деятельности.
С позиций системной технологии у объекта деятельности один основной вид деятельности – производство результата, необходимого среде для решения актуализировавшейся проблемы. При этом, как показано в главе 1, у объекта деятельности, кроме миссионерской цели – обеспечить производство результата в соответствии с определенными требованиями, возникают и собственные цели выживания, сохранения и развития.
● В данной триаде деятельности «объект-субъект-результат» назначение субъекта деятельности — воздействовать на объект деятельности таким образом, чтобы обеспечить баланс деятельности в интересах миссионерской и собственной целей объекта деятельности. Для реализации этого назначения субъект деятельности должен осуществлять разные по своей природе виды деятельности по отношению к объекту и его взаимодействию с внешней средой – анализ, исследование, проектирование, управление, мониторинг (контроль), экспертизу (в том числе и аудит), а также деятельность разрешительную (лицензирование) и деятельность по архивированию (хранению информации).
Возможно построение субъекта деятельности в виде сложного или большого субъекта и, соответственно, – моделирование субъекта с помощью сложной или большой систем.
В случае сложного субъекта деятельности постулат 10 «об общей модели субъекта деятельности» целостного метода системной технологии можно сформулировать следующим образом:
Для формирования и реализации целостной деятельности формирование и реализацию сложной системы-субъекта деятельности необходимо осуществлять с помощью общей модели целого, представляющей собой совокупность моделей системы-аналитика, системы-исследователя, системы-проектировщика, системы управления, системы контроля (мониторинга), экспертной системы (в том числе и системы-аудитора), а также системы лицензирования и системы-архиватора (системы хранения информации).
Отличия каждой из указанных моделей от любой другой из данной совокупности моделей проявляются в связи с совершенно разными «природами» каждой из этих видов деятельности. Так, природа анализа кардинально отличается от природы управления, природа мониторинга – от природы аудита и т.д. В то же время все эти виды деятельности системы-субъекта тесно взаимосвязаны между собой и отсутствие одной из указанных моделей приведет к неадекватному отражению субъекта в модели сложной системы.
Во втором случае большого субъекта деятельности постулат 10 будет выглядеть следующим образом (на примере системы управления):
Для формирования и реализации целостной деятельности формирование и реализацию большой системы-субъекта управления необходимо осуществлять с помощью общей модели целого в виде совокупности взаимосвязанных моделей систем управления производством, анализом, исследованиями, проектами, мониторингом, экспертизой, лицензированием, информацией, каждая из которых может быть, в свою очередь, большой системой.
● В данной триаде деятельности «объект-субъект-результат» назначение результата деятельности — обеспечить решение некоторой проблемы, актуализировавшейся в среде деятельности, в связи с чем возникла необходимость производства данного результата.
Указанные результаты могут быть большими и/или сложными и, соответственно, возможно моделирование субъекта с помощью сложной и/или большой систем.
В случае сложного результата деятельности постулат 11 «об общей модели результата деятельности» целостного метода системной технологии можно сформулировать следующим образом:
Для формирования и реализации целостной деятельности формирование и реализацию сложной системы-результата деятельности необходимо осуществлять с помощью общей модели целого, представляющей собой совокупность моделей систем, отражающих различные подходы к природе влияния результата деятельности на состояние проблемы, для решения которой возникла необходимость производства данного результата.
Так, производство обществом нового духовного учения, направленного, по исходному замыслу, на борьбу со снижением духовного потенциала общества, может оказывать влияния разной природы. У одной части общества этот учение может вызвать протест, что означает наличие в результате модели формирования протеста. В указанном учении есть, конечно, и модель повышения духовности. В нем может содержаться модель формирования нетерпимости к другим учениям и многие другие модели.
Все эти виды природы воздействий системы-результата тесно взаимосвязаны между собой и отсутствие одной из указанных моделей приведет к неадекватному отражению результата в его модели, как сложной системы.
Искусство моделирования данного результата состоит в создании совокупности всех моделей результата, как целого, т.е. общей модели целого. Только при этом условии можно адекватно оценить, соответствует ли воздействие данного результата исходному замыслу.
Во втором случае большого результата деятельности постулат 11 будет выглядеть следующим образом:
Для формирования и реализации целостной деятельности формирование и реализацию большой системы-результата управления необходимо осуществлять с помощью общей модели целого, представляющей собой совокупность моделей систем, отражающих влияния различных частей системы-результата деятельности на состояние проблемы, для решения которой возникла необходимость производства данного результата.
● Назначение триады деятельности — обеспечить производство результата для наилучшего, в смысле определенного критерия, решения некоторой конкретной проблемы, актуализировавшейся в среде деятельности.
Триады деятельности являются сложными, а, при соблюдении определенных условий, – большими. Соответственно, возможно моделирование триады с помощью сложной и/или большой систем.
В случае сложной триады деятельности постулат 12 «об общей модели триады деятельности» целостного метода системной технологии можно сформулировать следующим образом:
Для формирования и реализации целостной деятельности формирование и реализацию сложной триады деятельности необходимо осуществлять с помощью общей модели целого, представляющей собой совокупность таких моделей, которую отражают разные по природе виды представлений о ее функционировании.
Так, металлургическая производственная триада «субъект-объект-результат» деятельности может рассматриваться с разных позиций, как система производства металла, как участник системы биржевой торговли металлом, как социальная система, как экологическая система, как финансовая система и т.д. Все эти представления отражают «разные природы» строения и функционирования триады и описываются, конечно, совершенно разными моделями.
Но все эти разные по своей природе описания триады тесно взаимосвязаны между собой и отсутствие одной из указанных моделей приведет к неадекватному отражению деятельности триады в ее модели, как сложной системы.
Во втором случае большого результата деятельности постулат 12 будет выглядеть следующим образом:
Для формирования и реализации целостной деятельности формирование и реализацию триады деятельности, как большой системы, необходимо осуществлять с помощью общей модели целого, представляющей собой совокупность таких моделей ее частей, как модели системы-объекта, системы-субъекта, системы-результата.
Так, система-объект металлургической производственной системы – технология производства какого-либо металла, система-субъект производственной системы – напр., система управления производством металла и система-результат производства – металл определенной марки имеют разную природу строения и функционирования и описываются, конечно, совершенно разными моделями.
Но все эти разные по своей природе составляющие триады тесно взаимосвязаны между собой и отсутствие одной из указанных моделей приведет к неадекватному отражению деятельности триады в ее модели, как большой системы.
Искусство моделирования триады деятельности, как сложного и большого объекта, включает три действия:
– создание, с одной стороны, целой совокупности разных по своей природе описаний самой триады, как целого сложного объекта моделирования,
– создание целой совокупности всех трех моделей составляющих триады, как целого большого объекта моделирования,
– объединения этих целых совокупностей в общей модели триады, как целого сложного и большого объекта моделирования.
Только при этом условии можно адекватно оценить, соответствует ли функционирование данной триады исходному замыслу.
● Нетрудно видеть, что все данные здесь определения большой, сложной систем, системы-объекта, системы-субъекта, системы-результата, системы-триады являются частными случаями общих определений системы и системности, принятых здесь с позиций целостного подхода:
система – это совокупность способов и/или средств обеспечения взаимодействия внутренней среды элементов (частей) системы с внешней средой системы;
системность – это целостность элемента (части) системы по отношению к данной системе; системность это целостность первого типа;
система системна, т.е. обладает свойством целостности, как правило, только первого типа – свойством целостности по отношению к другой системе, в которую она входит, как элемент (часть) этой другой системы.
● Итак, системы, также как и целое, являются совокупностью частей среды. Но не всегда системы при создании ориентированы на собственное выживание, сохранение и развитие. Скорее, они создаются для обеспечения выживания, сохранения и развития других частей среды. Например, системы государственного управления создаются, по замыслу, для обеспечения выживания, сохранения и развития нации, страны.
Но когда системы уже реализовались, как совокупности частей среды, в них, как в совокупностях частей среды, начинают реализовываться основной Закон целого – целое действует в направлении собственного выживания, сохранения и развития) и постулаты целого. Не сразу, конечно, а когда системы уже «состоятся», т.е. когда сформируется код-ядро системы, как целого.
Так, состоявшиеся системы государственного управления начинают действовать в интересах собственного выживания, сохранения и развития (разрастание аппарата, коррупция, взяточничество и т.д.).
Но система, в интересах собственного выживания, сохранения и развития, как целого, должна стать целостной в смысле постулата 3 «баланса факторов целого и целостности».
Поэтому возникает необходимость в механизмах, которые позволяют системе, как целому, быть целостной, реализовать модели, Принципы и Законы целостности и развития целостности.
С позиций целостного метода системной технологии можно заключить, что:
═ система – это совокупность частей среды, направленная на обеспечение выживания, сохранения и развития системы. Для своего вживания, сохранения и развития система обеспечивает взаимодействия внутренней среды элементов (частей) системы с внешней средой системы в интересах внешней среды. Системе и ее элементам присуща системность – целостность собственно системы по отношению к внешней среде, а также целостность элемента (части) системы по отношению к данной системе.
Системы – частный случай целого, частичная реализация целого. Системность, как характеристика деятельности в системе – частный случай целостности. Системность – свойство части среды быть частью системы, функционировать в системе в качестве ее составной части;
═ в то же время концептуальная система, т.е. модель системы – наиболее близкая к целому модель деятельности, которой присуща способность развития до формата целого, соответствующего постулатам целостного метода системной технологии.
Для собственного выживания, сохранения и развития система может приобрести, кроме целенаправленности и целесообразности, в смысле интересов внешней среды, целосообразность и целостносообразность, целонаправленность и целостнонаправленность, а также все другие свойства целого в соответствии с постулатами целого и целостности.
● Можно выделить три ступени формирования целого, целостного системного знания:
– применение целостного метода системной технологии для построения системного метода, метатеории систем;
– применение целостной методологии теории – метода системной философии для построения комплекса теорий, реализующих метатеорию в виде отраслевых (сферных) системных методов с применением различных моделей систем, напр., социальных, физических, энергетических, биологических, психологических и иных системных методов и прикладных теорий систем, напр., в виде социологического или культурологического системного метода;
– применение целостной методологии практики – метода системной технологии для построения прикладных систем и практик их реализации, прикладных методов проектирования, направленных, напр., на построение системных практик социологического анализа, исследований, экологического проектирования, финансового аудита, тарифной экспертизы, социального управления и т.д.
● Перейдем к рассмотрению системного анализа, системного подхода с позиций целостного метода системной технологии.
Известно, что системный анализ распространился в русскоязычной литературе в связи с переводом монографии С. Оптнера[21].
Системный анализ представляет собой[22]:
«1) в узком смысле – совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам политического, военного, социального, экономического, научного, технического характера;
2) в широком смысле термин "системный анализ" иногда (особенно в англоязычной литературе) употребляют как синоним системного подхода»;
там же отмечается, что «привлечение методов системного анализа для решения указанных проблем необходимо, прежде всего, потому, что в процессе принятия решений приходится осуществлять выбор в условиях неопределённости, которая обусловлена наличием факторов, не поддающихся строгой количественной оценке. Процедуры и методы системного анализа направлены именно на выдвижение альтернативных вариантов решения проблемы, выявление масштабов неопределённости по каждому из вариантов и сопоставление вариантов по тем или иным критериям эффективности. Специалисты по системному анализу только готовят или рекомендуют варианты решения, принятие же решения остаётся в компетенции соответствующего должностного лица (или органа)»;
отмечено, что «основой системного анализа считают общую теорию систем и системный подход. Системный анализ, однако, заимствует у них лишь самые общие исходные представления и предпосылки»;
там же указано, что «важнейшие принципы системного анализа сводятся к следующему:
– процесс принятия решений должен начинаться с выявления и чёткого формулирования конечных целей;
– необходимо рассматривать всю проблему как целое, как единую систему и выявлять все последствия и взаимосвязи каждого частного решения;
– необходимы выявление и анализ возможных альтернативных путей достижения цели;
– цели отдельных подразделений не должны вступать в конфликт с целями всей программы»;
приведено следующее определение – «системный анализ … представляет собой лишь применение методов науки к решению практических проблем управления и преследует цель рационализации процесса принятия решений, не исключая из этого процесса неизбежных в нём субъективных моментов».
● С позиций целостного метода системной технологии можно заключить, что:
═ системный анализ является анализом не столько системным, в смысле применения моделей систем и системности, сколько всесторонним, в смысле стремления применить все доступные на данный момент исследователю методы теоретической и прикладной науки для подготовки управленческих решений. При этом не на всех этапах системного анализа, в том числе и при постановке задачи, используются модели систем. Используются, как правило, только иерархические модели систем.
Системность, как целостность первого типа, в явном и в неявном виде присутствует не на всех этапах системного анализа;
═ в то же время системный анализ – наиболее близкая к целостному анализу модель деятельности, которой присуща способность развития до формата целостной деятельности, соответствующей постулатам целостного метода системной технологии.
Системный анализ может приобрести, кроме целенаправленности и целесообразности, в смысле миссионерских целей управления в интересах внешней среды, целосообразность и целостносообразность, целонаправленность и целостнонаправленность, а также все другие свойства целой и целостной деятельности в соответствии с постулатами целого и целостности.
Для этого необходимо применение целостной методологии практики – метода системной технологии для построения прикладных методик системного анализа и практик их реализации, прикладных методов проектирования и реализации управленческих решений.
Применение метода системной технологии позволило бы использовать системный анализ не только в управлении, но и в других видах деятельности – производство, экспертиза, мониторинг (надзор) и т.д.
Другими словами, если применить целостный метод системной технологии к системному анализу, то его можно превратить из «всестороннего анализа», который «представляет собой лишь применение методов науки к решению практических проблем управления и преследует цель рационализации процесса принятия решений, не исключая из этого процесса неизбежных в нём субъективных моментов», в целостный анализ.
В свою очередь, целостный метод системной технологии в отличие от системного подхода, представляет собой совокупность методологии специально-научных теорий и методологии практики, в основе которой лежит исследование объектов, как целых, целостных объектов деятельности. Часть целостного метода системной технологии – метод системной философии, это направление методологии специально-научных теорий, которое позволяет разработать целостную постановку проблем в конкретных науках и выработать системную технологию их изучения для получения целостных результатов анализа и научного исследования. Другая часть целостного метода системной технологии – метод системной технологии, это направление методологии практики, которое позволяет создавать и реализовывать проекты целостной деятельности в виде системных технологий продуцирования результата, продукта, изделия, как целого, целостного.
Специфика целостного метода системной технологии заключается в том, что он позволяет в результате анализа и исследований раскрыть факторы и механизмы целого и целостности, оценить степень целостности объекта и придать направленность теоретической или практической деятельности на получение целостных, целых результатов.
● С позиций системной технологии обязательным компонентом модели системы должно являться описание ее границ с внешней средой и границ с внутренней средой ее элементов. Могут существовать как физические, так и концептуальные границы систем.
Системе, как и целому, как установлено ранее, присущи целостности трех типов – целостность малого по отношению к большому (целостность первого типа), целостность большого по отношению к малому (целостность второго типа), целостность равного по отношению к равному (целостность третьего типа). В целом существует, как мы установили, баланс целостностей. В системе, хотя ей и присущи целостности трех типов, если она не целое, этого баланса нет. Применение понятия целостности позволяет установить границы системы и определить их количественный вклад в формирование системы, как целого, в получение синергетического эффекта в данной системе.
Определение модели границ системы с ее внутренней средой проведем следующим образом. Составим модели всех элементов системы и факторов целостности всех трех типов для элементов и всей системы «внутри системы» и получим модель системы, удобную для определения ее границ. Выделив в моделях факторов целостности данной системы во взаимодействии с собственными частями (элементами), направленность в интересах собственных целей частей (элементов) рассматриваемой системы, получим модель «входов» частей (элементов) системы. С другой стороны, выделив в моделях факторов целостности данной системы во взаимодействии с собственными частями (элементами), направленность в интересах собственной цели рассматриваемой системы, получим модель «выходов» частей (элементов) системы. Обе эти модели в совокупности представляют собой модель границы системы с внутренней средой.
Определение модели границ системы с ее внешней средой проведем следующим образом. Составим для полученной модели системы, как для элемента (части) других систем, модели факторов целостности для каждой из «внешних» систем, в которых она участвует. Выделив в моделях факторов целостности данной системы во взаимодействии с внешними системами, деятельность в интересах собственной цели рассматриваемой системы, ее частей (элементов) получим модель «входов» системы. С другой стороны, выделив в моделях факторов целостности данной системы во взаимодействии с внешними системами, деятельность в интересах миссионерской цели рассматриваемой системы, ее частей (элементов) получим модель «выходов» системы. Обе эти модели в совокупности представляют собой модель границы системы с внешней средой.
Обе границы имеют формальную, учтенную при составлении указанных моделей, и неформальную части. Неформальная часть границы имеет место в связи со сменой приоритетов части (элемента) системы, как участника как данной, так и других систем. В производственных системах такие смены приоритетов могут происходить в результате воздействия климата, социальной среды, городского транспорта, страховых компаний, профсоюза, семьи, магнитного поля Земли, иных факторов.
● Задачи построения системы решаются в зависимости от того, что является «изготовителем» изделия системы: процесс системы или структура системы.
В технологических системах изделие, продукт – это результат осуществления системного процесса целенаправленного преобразования ресурсов (материальных, информационных и др.), в экономических системах изделие системы – это определенный комплекс экономических показателей, являющийся результатом системных экономических процессов. Во многих других системах, являющихся основным объектом приложения системной технологии, изделие системы также является результатом системного процесса. Это, образно говоря, «системы-процессы».
Напротив, в таких системах, как здания, мосты, конструкции аппаратов, машин, цель системы реализуется с помощью структуры, а процессы теплового, механического и иного взаимодействия (между элементами зданий, например) являются сопутствующими и не необходимыми для реализации основного назначения этих систем в соответствии с замыслом их создания. В этих системах (можно назвать их «системы-структуры») изделием системы может являться: внешний облик (архитектурные комплексы), потребляемый внешней эстетической средой; надежность транспортного соединения двух участков дороги, подходящей с двух сторон к берегам реки (мост), потребителем которой является транспортные средства и пешеходы.
Надо заметить, что системы-структуры – это, как правило, элементы и подсистемы больших и сложных стохастических систем. Так, архитектурное сооружение – часть системы «человек – архитектурный ансамбль»; процесс этой системы – это процесс удовлетворения эстетических потребностей человека; этот процесс «проходит по-разному» для каждого сочетания «новый человек – архитектурное сооружение»; формальной модели этого процесса не существует, как правило. Другой пример – «мост-транспорт (в т.ч. и пешеход)»; процесс этой системы может быть описан только статистическими методами; его конкретная реализация – это взаимодействие детерминированной структуры со случайным набором остальных элементов системы; другими словами, это системы со случайным набором элементов, поведение которых также носит вероятностный характер, Таких систем много – ракета «земля-воздух», транспортные сооружения и т.п. В реальности все системы имеют вероятностные компоненты процессов и/или структур. Вопрос только в том, можно ли обойтись без учета этого или нет, для того, чтобы построить модель системы с приемлемой для практики точностью.
Таким образом, модели системы могут создаваться для моделирования системы в целом, либо процесса системы, либо структуры системы в зависимости от того, что обеспечивает достижение целей системы.
С помощью моделей систем описываются количественные и качественные характеристики (параметры) систем. Число характеристик, которые имеют значение для проектирования, построения, исследования и оценки функционирования системы может быть довольно значительно. Это, например, безопасность деятельности; точность функционирования; быстродействие; издержки; надежность, социальные аспекты и т.д.. Набор характеристик может значительно меняться на разных фазах жизненного цикла системы.
● Рассмотрим модель жизненного цикла системы на примере искусственной системы, т.е. системы, создаваемой человеком.
Любая искусственная система по определению создается человеком; в соответствии с представлениями целостного метода системной технологии такая система является системой-результатом (изделием, продуктом) в некоторой системной триаде «объект-субъект-результат». Ее жизненный цикл содержит концептуальную, физическую и постфизическую стадии.
Концептуальная стадия содержит следующие фазы:
– формирование, исследование, выделение и описание новых потребностей во внешней среде будущей триады «объект-субъект-результат» (напр., во всей или в части общественного производства);
– формулирование и количественное описание цели (одной из целей), возникающей во внешней среде в соответствии с некоторой новой потребностью;
– комплексное или частное (напр., экономическое, социальное или экологическое) исследование и обоснование системы, как изделия, необходимого для достижения цели (комплекса целей, связанных с удовлетворением новых потребностей общественного производства);
Конец ознакомительного фрагмента.