2 Элементарный и фазовый состав почвы
Итогом почвообразовательного процесса является формирование почвенного тела. По элементарному составу почв можно судить о ведущей роли того или иного фактора почвообразования. Считается, что неорганические вещества почвы наследуют от почвообразующих пород, а органические являются результатом «работы» живых организмов. В действительности же, при детальном рассмотрении некоторых ЭПП (осолонцевание, оподзоливание и др.) состав и соотношение в почве химических элементов и их соединений не всегда однозначно зависит от проявления биологического или геологического факторов. Элементарный состав оказывается результатом совместного влияния всех факторов почвообразования на формирующееся почвенное тело. Так растения, например, особенно это относится к ксерофитам, являются не только поставщиками органического вещества в почвы (черноземы, каштановые почвы и др.), но и, накапливая минеральные соли в надземных органах, способствуют развитию процессов засоления. Сложный механизм взаимодействия факторов почвообразования отметил еще В.В. Докучаев, назвав почвы «зеркалом ландшафта», т.е. результатом воздействия на них конкретных ландшафтных условий.
Определение элементарного состава почв является следующим после морфологического описания этапом любого почвенного исследования, т.к. используется для уточнения классификационной принадлежности почв, дает представление о потенциальном плодородии почв, является основой для определения комплекса мероприятий по повышению и воспроизводству почвенного плодородия.
2.1 Вопросы для самоконтроля «Элементарный и фазовый состав почвы»
1. Особенности почв как природного тела. Элементарный состав почв, сущность понятия, основные направления.
2. Особенности элементарного состава почв: биофильные элементы, макроэлементы, переходная группа и микро – и ультрамикроэлементы (их биологическая роль), геохимическая классификация элементов В.М. Гольдшмидта (литофильные, халькофильные, сидерофильые и атмофильные элементы).
3. Особенности элементарного состава почв: классификации элементов А.И. Перельмана по путям миграции в ландшафте (воздушные и водные мигранты) и степени биофильности, понятие коэффициента биологического поглощения.
4. Способы выражения элементарного состава почв (моль, мольная доля, мольный процент, наиболее употребительные расчеты, расчет запасов элемента, мольные отношения элементов).
5. Каковы особенности расчета запасов веществ в слое почвы (0-20, 0-50 и 0-100 см)?
6. Фазовый состав почв, понятие фазы и группы почвенно-химических процессов.
2.2 Химическая посуда и лабораторное оборудование
Посуда, применяемая в лаборатории, бывает стеклянной, кварцевой и фарфоровой. Для изготовления химической посуды в основном применяют стекла с относительно малым коэффициентом линейного расширения, т. е. устойчивые к изменению температуры, а также действию агрессивных сред (кислот, щелочей).
Наиболее известны стекла марок ХУ (химически устойчивое) и ТУ (термически устойчивое). Мерой термической устойчивости стекла служит максимальная разность (перепад) температур, которую оно выдерживает. Стекло марки ХУ выдерживает перепад температур от 60 °C до 80 °C и размягчается при температурах от 550 °C до 570 °C, марки ТУ – перепад 160 °C, размягчается при температурах от 650 °C до 700 °C. Наиболее термостойкое стекло «Пирекс» выдерживает перепад температур 250 °C; его недостаток – малая устойчивость к действию щелочей.
Основным недостатком стекла является хрупкость. Повреждение поверхности стекла ведет к снижению его стойкости к перепаду температур и механическому удару.
Нельзя пользоваться посудой, имеющей трещины. Стеклянную посуду нельзя чистить песком.
Максимально термостойкую посуду изготавливают из кварцевого стекла (термическая устойчивость 780 °C, температура размягчения 1650 °C). Кварцевое стекло инертно к действию большинства химических реагентов. Оно пропускает ультрафиолетовые лучи и незаменимо для проведения фотохимических реакций. Однако сложность изготовления обусловливает дороговизну изделий из кварца.
Фарфор обладает большей термической устойчивостью (в интервале температур от 1000 °C до 2000 °C) по сравнению со стеклом и кварцем и хорошей химической устойчивостью, поэтому фарфоровую посуду применяют для выпаривания растворов и прокаливания осадков. Из фарфора изготавливают шпатели, лопатки, ложки и т. п.
Наиболее употребительна в лаборатории стеклянная посуда. Она весьма разнообразна, что связано с многообразием экспериментальных задач.
Пробирки. Для проведения предварительных опытов и качественных проб часто используют пробирки (рисунок 2.1). Они бывают различного диаметра и длины. Наливаемая в пробирку жидкость не должна занимать более трети ее объема. Содержимое пробирки нельзя перемешивать, закрывая ее отверстие пальцем. При нагревании пробирку медленно вращают во избежание бурного вскипания и выплескивания содержимого. При длительном нагревании ее целесообразно держать не в руке, а в пробиркодержателе в наклонном положении. Градуированные и центрифужные пробирки нельзя нагревать на открытом пламени.
Рисунок 2.1 – Пробирки химические
Химические стаканы. Вспомогательные работы преимущественно с водными растворами и редко – с органическими растворителями обычно проводят в химических стаканах. В них также проводят химические реакции при температурах не выше 100 °C при условии, что реакционная смесь не требует защиты от доступа воздуха и влаги.
Стаканы бывают высокие и низкие, с носиком и без него, вместимостью 50, 100, 250, 400, 600 мл, 1 и 2 л (рисунок 2.2). Стаканы обычно изготавливают тонкостенными. Их можно нагревать, подкладывая под дно асбестовую сетку с диаметром асбестового круга, чуть большим диаметра стакана. Стаканы, как и другую тонкостенную посуду, нельзя сразу после нагревания ставить на холодную поверхность.
Большие стаканы с содержимым, как и любую большую и тяжелую посуду, переносят, обязательно поддерживая рукой под дно.
Рисунок 2.2 – Стаканы химические
Колбы. В химической лаборатории используют плоскодонные и круглодонные колбы.
Плоскодонные колбы предназначены в основном для сбора и хранения жидкостей, а также проведения простых химических реакций, преимущественно не связанных с нагреванием. Они бывают круглыми и коническими (колбы Эрленмейера) (рисунок 2.3 а, б).
Вместимость плоскодонных колб колеблется от 10 мл до нескольких литров. Плоскодонные колбы, как и стаканы, можно нагревать только на асбестовой сетке.
а – плоскодонная; б – коническая Эрленмейера; в – круглодонная; г, д – двухгорлые; е, ж – трехгорлые; з – грушевидная; и – яйцевидная
Рисунок 2.3 – Колбы
Круглодонные колбы используют для проведения реакций при повышенной температуре и работы в вакууме. Они широко употребляются в практике и потому более разнообразны, чем плоскодонные.
Круглодонные колбы подразделяются на широко- и узкогорлые, длиннои короткогорлые. Колбы могут быть не только одногорлыми, но и двух-, трех- и четырехгорлыми. Разновидностью круглодонных колб являются яйцевидные и грушевидные колбы (рисунок 2.3 в – и). Грушевидные колбы удобны для работ, связанных с нагреванием: их широкое дно прогревается более равномерно. Яйцевидные колбы пригодны для концентрирования в них растворов: концентрат собирается в небольшом объеме внизу колбы.
Мерная посуда. Для измерения объема жидкости используют градуированную посуду: мензурки, мерные цилиндры, мерные колбы, пипетки, бюретки (рисунок 2.4). Вся мерная посуда бывает различной вместимости и применяется для грубого или точного отмеривания объемов жидкостей, приготовления растворов с точной концентрацией компонентов. Для работы с летучими жидкостями используют мерную посуду с пришлифованными пробками. Цилиндры и мензурки служат для грубого отмеривания жидкостей.
Следует помнить, что мерную посуду нельзя нагревать: она теряет при этом точность.
Рисунок 2.4 – Мерная посуда
Воронки. В химической лаборатории используют конические, делительные и капельные воронки (рисунок 2.5).
а, б-делительные (1 – керн, 2 – муфта); в – капельная; г – капельная с трубкой для выравнивания давления.
Рисунок 2.5 – Воронки химические
Конические воронки из стекла предназначены для переливания жидкостей из одного сосуда в другой или фильтрования; для сыпучих тел используют воронки с широким носиком. Делительные воронки (рисунок 2.5 а, б) применяют для разделения несмешивающихся жидкостей и проведения экстракции. Делительная воронка представляет собой емкость цилиндрической или яйцевидной формы, в нижней части которой имеется отводная трубка с краном. Отводная трубка бывает обычно короткой, а кран располагается примерно посередине нее, что позволяет достаточно четко разделить две несмешивающиеся фазы. Горло воронки всегда закрывают пришлифованной пробкой. Вместимость делительных воронок от 50 мл до 2 – 3 л.
Капельные воронки (рисунок 2.5 в, г) служат для регулируемого (непрерывного или периодического) приливания жидкости к реакционной смеси в ходе проведения реакции. Они похожи на делительные воронки, но их различное назначение обусловливает некоторые конструктивные особенности. У капельных воронок отводная трубка обычно длиннее, чем у делительных, а кран располагается под самым резервуаром. Их максимальный объем не превышает 500 мл. Жидкость из обычной капельной воронки вытекает лишь при открытой горловине. В том случае, когда находящуюся в воронке жидкость необходимо изолировать от контакта с внешней средой (т. е. когда горло воронки должно быть закрыто пробкой), используют капельные воронки с трубкой для выравнивания давления. Краны делительных и капельных воронок не взаимозаменяемы. Поэтому нельзя путать краны от разных воронок, что случается при мытье посуды. Обычно керн и муфта крана воронки помечены одинаковыми цифрами несмываемой краской. Перед началом работы кран воронки обрабатывают консистентной смазкой, затем в воронку наливают воду или подходящий органический растворитель для проверки герметичности крана.
Холодильники. Для конденсации паров жидкости предназначены холодильники (рисунок 2.6). Они бывают прямые и обратные. Если сконденсированные пары надо возвращать в зону реакции, применяют обратные (восходящие) холодильники. При перегонке, когда требуется удалить из нагреваемой колбы и собрать конденсированное вещество в отдельный приемник, используют прямые (нисходящие) холодильники.
а – воздушный; б – Либиха; в – шариковый; г – с охлаждающей спиралью (Димрота).
Рисунок 2.6 – Холодильники
Воздушные холодильники (прямые и обратные) представляют собой достаточно длинную стеклянную трубку (рисунок 2.6 а). С помощью воздушных холодильников эффективно конденсируются пары жидкостей, кипящих выше 140 °C.
Водяные холодильники имеют охлаждающую «рубашку», заполненную водой. Их используют для конденсации паров низкокипящих жидкостей.
Наиболее распространенный водяной холодильник – холодильник Либиха, применяемый чаще как прямой, но иногда и как обратный (рисунок 2.6 б). Более полная конденсация паров достигается в обратных водяных холодильниках с увеличенной поверхностью контакта между парами и охлаждающей водой.
К таким холодильникам относятся шариковый холодильник и холодильник Димрота с внутренним водяным охлаждением (рисунок 2.6 в, г).
Вода в водяные холодильники подается через нижний тубус, в противном случае она не заполнит охлаждающую «рубашку».
Насадки. Функции прибора могут быть значительно расширены за счет использования разнообразных по конструкции насадок (рисунок 2.7 а – е). Так, на основе одногорлой колбы можно сконструировать более многофункциональный прибор, используя двух- или трехрогие форштоссы различной конфигурации.
а,б – двухрогие форштоссы; в – трехрогий форштосс; г – насадка Вюрца; д – насадка Кляйзена; е – насадка с отводом.
Рисунок 2.7 – Насадки
Шлифы и посуда на шлифах. Под термином «шлиф» понимают равномерно отшлифованную поверхность стекла. Две притертые друг к другу поверхности представляют собой соединение на шлифах, которое чаще всего бывает коническим (конические шлифы).
Для сборки сложной химической аппаратуры из унифицированных деталей используют так называемые нормальные конические шлифы (КШ) (рисунок 2.8 а). Различают внешние (керн) и внутренние (муфта) шлифы. Кроме того, применяют сферические, плоские и цилиндрические шлифы (рисунок 2.8 б, в, г).
Размер шлифа определяется величиной большего диаметра, выраженной в миллиметрах. Наиболее распространены шлифы размера 14,5 (КШ 14,5) и 29 мм (КШ 29). Для сборки прибора из стеклянной посуды с различными шлифами применяют соответствующие переходы (рисунок 2.8 д, е). Преимущество соединения частей прибора с помощью шлифов заключается в удобстве и быстроте сборки. При этом устраняется необходимость применения резиновых или корковых пробок, которые могут разрушаться под действием химических реагентов.
а – конический шлиф (1 – керн, 2 – муфта); б – сферический шлиф; в – плоский шлиф; г – цилиндрический шлиф; д, е – переходы.
Рисунок 2.8 – Соединения на шлифах
Преимущество соединения частей прибора с помощью шлифов заключается в удобстве и быстроте сборки. При этом устраняется необходимость применения резиновых или корковых пробок, которые могут разрушаться под действием химических реагентов.
В большинстве случаев шлифы можно соединять «сухими» (без смазки). Легкий толчок и поворот при сборке обеспечивает закрепляющий эффект за счет трения. Для закрепления двух частей прибора при необходимости можно использовать пластиковые хомутики или резинки, которые закрепляются на специальных усиках, как правило, расположенных рядом со шлифами. Сухие шлифы обеспечивают хорошее уплотнение, тем не менее, жидкость проникает на поверхность матового стекла, а некоторые растворы (особенно водный раствор щелочи) вызывают необратимое разъедание обеих частей шлифа. В этом случае происходит «заедание» шлифов (пришлифованные поверхности не разъединяются). Для разъединения можно осторожно постучать по муфте деревянной палочкой или куском толстого резинового шланга. Заедания шлифов можно избежать, если на поверхность шлифов нанести тонкий слой смазки (углеводородной марки апиезон или силиконовой). Однако это не всегда допустимо, так как смазка может растворяться в содержимом сосуда. Шлифы также смазывают, чтобы они не пропускали воздуха или чтобы их части могли поворачиваться друг относительно друга.
При хранении шлифованной посудой между шлифами прокладывают небольшие полоски бумаги.
Уход за посудой. Стеклянная посуда должна быть всегда хорошо вымыта и, если необходимо, высушена. От этого зависит успех эксперимента и зачастую безопасность работы.
Мытье посуды необходимо проводить сразу после окончания эксперимента. Хорошо вымытой считается посуда, со стенок которой вода при ополаскивании стекает равномерно, не оставляя на поверхности капель. Для выбора способа мытья посуды нужно знать свойства загрязняющих ее веществ. Водорастворимые вещества отмывают водой, растворами мыла или моющего порошка. При этом предварительно надо убедиться, что оставшиеся в посуде вещества не реагируют с моющим средством. Нерастворимые в воде вещества удаляют подходящим органическим растворителем. Растворитель после мытья посуды собирают, очищают и вновь используют. Труднорастворимые загрязнения удаляют с помощью щеток и ершей. Проволочный кончик ерша либо изгибают в дугу, либо надевают на него кусочек резинового шланга. Ерши и щетки применяют только при работе с водными растворами. Хорошие результаты дает мытье хромовой смесью, которую применяют лишь после удаления остатков органических веществ. В зависимости от степени загрязнения посуду выдерживают в хромовой смеси от нескольких минут до нескольких часов. Отмытую посуду тщательно ополаскивают обычной, а затем дистиллированной водой и сушат.
При сушке посуды в сушильном шкафу ее раскладывают на листах фильтровальной бумаги, доводят температуру шкафа до 110 – 140 °C и выдерживают до высыхания. Нельзя помещать мокрую холодную посуду в нагретый сушильный шкаф, особенно если там уже лежит горячая посуда. Категорически запрещается сушить посуду в пламени горелки или на электроплитке.
Лабораторное оборудование
Для проведения химических операций используют различное лабораторное оборудование, инструменты и принадлежности.
Лабораторный штатив Бунзена. Штатив представляет собой железный стержень, ввинченный в массивное чугунное основание прямоугольной формы. На этом стержне укрепляют различные приспособления для сборки приборов (рисунок 2.9). Муфты служат для крепления лапок и колец на штативе. Они имеют два отверстия с прорезями, расположенные во взаимно перпендикулярных плоскостях. Одно отверстие служит для закрепления муфты на штативе, а во второе вкладывают лапки или кольца, закрепляя их винтами. Муфты надевают так, чтобы прорезь на отверстии для штатива была обращена к работающему, а прорезь второго отверстия – вверх. Лапки служат для закрепления на штативе частей прибора, например колбы.
1 – основание; 2 – стержень; 3 – муфта; 4 – лапки.
Рисунок 2.9 – Лабораторный штатив с принадлежностями
Внутри они имеют прокладки (резиновые, кожаные или из корковой пробки), которые амортизируют сжимающее действие и предохраняют стеклянную посуду от непосредственного соприкосновения с металлом. По мере износа прокладки заменяют на новые. Кольцо можно использовать поразному. Например, на него можно положить асбестовую сетку, на которую ставятся плоскодонная колба или стакан для нагревания. Кольцо можно использовать для укрепления конической воронки и т. п.
Металлические зажимы. При необходимости регулирования процесса подачи газов и жидкостей с помощью резиновых шлангов на них надевают зажимы.
Сдавливая шланг, зажим препятствует прохождению по нему жидкости или газа. Наиболее распространены винтовой зажим Гофмана (рисунок 2.10 а) и пружинный зажим Мора (рисунок 2.10 б). Зажимом Мора пользуются при частом прерывании подачи вещества по шлангу.
а– винтовой (Гофмана); б – пружинный (Мора).
Рисунок 2.10 – Зажимы
Он особенно удобен, когда подачу вещества надо быстро прекратить (например, при титровании). Зажим Гофмана завинчивается и развинчивается медленнее, и его применяют, когда он должен длительное время находиться в одном состоянии (открытом или закрытом). Незаменим он при необходимости постепенного изменения тока жидкости или газа.
Подъемные столики. Для конструирования сложных приборов с разноуровневым расположением деталей удобно использовать подъемные столики (рисунок 2.11). Практически они выполняют те же функции, что и штатив Бунзена, но в отличие от последнего позволяют более плавно регулировать высоту подъема прибора или отдельных его частей.
Рисунок 2.11 – Подъемный столик
Соединительные шланги. Для гибкого соединения различных частей лабораторных установок, подачи жидкостей, газов, их отвода и многих других целей служат разнообразные шланги. Наиболее употребительны резиновые шланги диаметром 5 и 7 мм (толщина стенок 2 мм). Вакуумные и полувакуумные шланги отличаются большей толщиной стенок, что исключает пережимание при создании внутри шланга разрежения. Наиболее ходовые вакуумные шланги имеют внутренний диаметр 2, 4, 6 и 8 мм. У полувакуумных шлангов стенки тоньше, чем у вакуумных. Полувакуумные шланги предназначены для работы в неглубоком вакууме, создаваемом водоструйным насосом (от 10 до 20 мм рт. ст.), вакуумные шланги можно использовать для работы в глубоком вакууме (до 10 мм рт. ст.). Резиновые шланги соединяют между собой с помощью отрезков стеклянных трубок подходящего диаметра (концы трубок должны быть обязательно оплавлены). Чтобы надеть резиновый шланг на конец стеклянной трубки, конец трубки смачивают водой или вазелиновым маслом. Шланг надевают вращательным движением, «ввинчивая» трубку в шланг. При этом стеклянную трубку нужно держать максимально близко к концу, на который надевается шланг, иначе можно сломать трубку и порезаться осколками стекла.
При необходимости разделить или, наоборот, объединить газовые или жидкостные потоки используют стеклянные переходы – тройники Y- или Тобразной форм. Удобно, когда стеклянные переходы имеют на концах утолщения (оливы) для предохранения от самопроизвольного соскакивания шланга. Такие переходы особенно пригодны для работы под давлением. В последнее время в лабораторную практику все шире входят полимерные шланги: полиамидные, полихлорвиниловые, полиэтиленовые и силиконовые. Полимерные шланги обладают большей химической устойчивостью, чем резиновые. Это свойство особенно ценно, так как резиновые шланги быстро разрушаются при пропускании через них таких газов, как хлор, оксид серы (IV), хлороводород, аммиак, кислород.
Пробки. В химической лаборатории используют резиновые, стеклянные, полиэтиленовые и корковые пробки. Пробки в зависимости от диаметра различаются по номерам. Номер соответствует диаметру горловины посуды, выраженному в миллиметрах.
Резиновые пробки нельзя мыть хромовой смесью и большинством органических растворителей, они сильно подвержены разрушающему действию нитрующей смеси и галогенов, легко набухают в парах многих органических растворителей. Все это ограничивает их применение. Резиновые пробки перед употреблением нужно вымыть водой и высушить на воздухе, потому что при хранении их присыпают тальком.
Корковые пробки сравнительно устойчивы к действию органических растворителей, но мало устойчивы к действию кислот и щелочей.
Полиэтиленовые пробки широко применяют в последнее время в связи с их устойчивостью к агрессивным средам.
При сборке приборов постоянно возникает необходимость в пропускании через пробку стеклянной трубки, термометра и т. п. Для этого в пробках просверливают отверстия с помощью специальных сверл. Сверла представляют собой металлические трубки, один конец которых снабжен ручкой, а второй заточен. Для высверливания отверстия пробку кладут меньшим основанием на плоскую поверхность, слегка нажимая на сверло, предварительно смазанное вазелиновым маслом или глицерином, вращают его в одном направлении. Сверло должно входить строго перпендикулярно к поверхности пробки, а его диаметр должен быть несколько меньше диаметра трубки, которую предстоит вставить в полученное отверстие. Это обеспечит герметичность соединения.
Нагревательные приборы. Выбор нагревательного прибора зависит от целей и задач эксперимента.
Газовые горелки являются одним из основных видов нагревательных приборов в лаборатории, хотя в последнее время переходят на электронагревательные приборы как более пожаробезопасные. Наибольшее распространение имеют горелка Бунзена (рисунок 2.12 а) и горелка Теклю (рисунок 2.12 б).
а – горелка Бунзена; б – горелка Теклю; в – колбонагреватель.
Рисунок 2.12 – Нагревательные приборы
Электроплитки бывают с открытой и закрытой спиралью, с терморегулятором и без него. В химической лаборатории предпочтение отдают плиткам с закрытой спиралью и терморегулятором. Закрытая спираль обеспечивает безопасность в работе.
Колбонагреватели представляют собой разновидность электроплиток (рисунок 2.12 в). Наиболее удобны мягкие колбонагреватели, представляющие собой кусок токопроводящей ткани, сшитый в виде мешка по размеру колбы. Они обеспечивают равномерный нагрев. В сеть колбонагреватели включают только через лабораторный автотрансформатор (ЛАТР).
Перед началом работы с электронагревательным прибором следует убедиться в его исправности (проверяют исправность электрошнура, вилки, наличие заземления, если оно необходимо).
Термометры. Применяемые в лаборатории ртутные термометры бывают двух типов: массивные (палочные) и трубчатые с впаянной шкалой из белого стекла. Последние более точны, так как возможность визуальной ошибки при считывании значений в них меньше. Учитывая, что ртуть замерзает при минус 39 °C, для измерения более низких температур применяют термометры с другой жидкостью (толуолом, пентаном или спиртом, иногда подкрашенным). Для измерения температуры выше 500 °C пользуются термопарами.
2.3 Подготовка почвенных проб к анализу
2.3.1 Лабораторная работа № 1. Подготовка образца почвы к химическому анализу
Подготовка почвы к химическому анализу заключается в придании взятому в поле образцу однородности с тем, чтобы каждая отобранная для анализа проба в полной мере отражала состав всего образца (была репрезентативной). Однородность образца достигается его тщательным перемешиванием, измельчением структурных отдельностей, составляющих твердую среду почвы, удалением микроскопических включений органического и минерального происхождения, а также новообразований.
Схема подготовки почвы к химическому анализу изображена на рисунке 2.13.
Приборы и материалы:
– техно-химические весы с разновесами;
– почвенные сита с отверстиями диаметром 0,25мм, 1 мм;
– фарфоровая, агатовая или яшмовая ступка;
– пинцет;
– лупа;
– листы кальки для отобранных проб;
– почвенный образец;
– штапель и лопатка.
Ход определения
Взять навеску предварительно высушенного образца почвы массой от 600 до 800 г. Разместить его на листе бумаги, с помощью пинцета и лупы, удалить крупные корни, новообразования и включения.
Провести квартование почвенного образца.
Взять среднюю лабораторную пробу.
Взять аналитическую пробу массой 10 г для определения углерода и азота. Тщательно удалить корни и др. органические остатки. Просеять почву через сито с диаметром отверстий 0,25 мм. Оставшуюся на сите почву перенести в ступку, растереть и снова просеять. Операцию повторять до тех пор, пока все частицы не пройдут через сито. Подготовленную пробу поместить в пакетик из кальки.
Аналитическая проба для определения рН, легко – растворимых солей и др. анализов
Оставшуюся часть средней лабораторной почвенной пробы измельчить в ступке, просеять через сито с диаметром отверстий от 1 до 2 мм. Пробу (m=300 г) хранят в банке с притертой крышкой, коробках или пакетах.
Аналитическая проба для валового анализа почв
Почву, просеянную через сито с отверстиями диаметром от 1 до 2 мм, распределить равномерно на листе бумаги, разделить шпателем на квадраты и составить еще одну аналитическую пробу m=5-7 г.
Почву небольшими порциями растереть в агатовой (яшмовой) ступке до состояния пудры. Подготовленную пробу сложить в пакетик из кальки. Пакеты, коробки, банки, в которых хранятся почвенные пробы, должны быть подписаны и снабжены этикетками.
а- квартование почвенного образца; б- взятие лабораторной пробы для определения углерода и азота; в- отбор корешков; е – просеивание через сито с отверстиями диаметром 0,25 мм; жхранение пробы, подготовленной для определения угле – рода и азота; г- измельчение образца почвы в фарфоровой ступке; д- просеивание через сито с отверстиями диаметром 1 мм; з – взятие лабораторной пробы на разложение почвы; и- растирание пробы в халцедоновой или агатовой ступке до пудры; л – хранение подготовленной для разложения почвы; к – хранение образца почвы, просеянного через сито с отверстиями диаметром 1 мм.
Рисунок 2.13 – Схема подготовки почвы к химическому анализу
Приготовление водной вытяжки из почвы
К взвешенному с погрешностью не более 0,1 г образцу почвы приливают дистиллированную воду в соотношении 1:5. Почву с водой перемешивают в течении 3-5 минут на встряхивающем устройстве и оставляют на 18-24 часа до полного отстаивания.
2.3.2 Лабораторная работа № 2. Определение влажности почвы
Почвенная влага оказывает большое влияние на свойства почвы. Основной метод определения влаги в почве состоит в высушивании проб при 105 °C. Если для определения почвенной влаги применять метод прокаливания, то влагу теряют органические компоненты почвы. При этом наблюдается изменение окраски прокаливаемых образцов. Влажность почвы и способность ее к удерживанию влаги зависят от типа почвы, ее гранулометрического состава, содержания органических веществ, ее структурных характеристик и других факторов.
Конец ознакомительного фрагмента.