Вы здесь

Физика окружающей среды. Глава 2. Биосфера – «машина» циклов (А. П. Рыженков, 2018)

Глава 2. Биосфера – «машина» циклов

Родная земля – самое великолепное, что нам дано для жизни. Ее мы должны возделывать, беречь и охранять всеми силами своего существа.

К. Паустовский

Элементы экологии. Наука, изучающая взаимодействие живых организмов с окружающей средой – экология получила свое название от др. греческих οίκος – обиталище, дом и λόγος – наука.

Составляющие окружающей среды, специфические для данного вида живого организма, обеспечивающие его развитие и воспроизводство характеризуют экологическую нишу этого вида. Такой нишей могут быть океан, опушка леса, капля воды. Совокупность неорганической основы, климатических условий (экотоп) и живых организмов (биоценоз) представляет экосистему (рис. 2). В экотоп входят климат, вода, почва, элементы ландшафта, воздух. Биоценоз составляют живые организмы, (зооценоз), растения (фитоценоз) и микроорганизмы (микробиоценоз). Для полноты компонентов составляющих экотоп, необходимо включить солнечное излучение, электромагнитный и акустический фон, а также, космическое излучение. Биоценоз и экотоп эволюционируют, воздействуя друг на друга через систему связей. Эти связи показаны стрелками, и механизм этого взаимодействия и представляет предмет экологии.

Стрелки-связи показывают направление потоков перетекания энергии и вещества поддерживающих устойчивое биологической и физическое состояние экосистемы.

Большой вклад в развитие экологии внес академик В. И. Вернадский. Он расширил ее границы, введя в систему связей экосистемы человеческий (антропогенный) фактор и понятие о ноосфере. Он определил ноосферу как совершенно новый объект научного познания, так как «это не просто общество, существующее в определенной среде, служащей пассивным поставщиком вещества и энергии и сохраняющейся в самой себе равном состоянии. Это нечто иное, целое, в котором сливаются развивающееся общество и изменяющаяся природа, взаимодействующие самым тесным образом. Можно сказать, что здесь действуют особые закономерности, в которых сложнейшим образом переплетаются законы неживой и живой природы, законы общества и законы человеческого мышления» [4].


Рис. 2. Схема экосистемы


Явления, происходящие в биосфере, взаимоотношения между частями биосферы и экосистем и внутри каждой из них подчиняются определенным закономерностям и могут быть описаны в виде законов. Законы эти в отличие от физических трудно формализуются, может быть, в силу большой сложности описываемых явлений, а может быть, потому, что физика и биология пользуются разными представлениями о структуре окружающего пространства.

Биосфера, по определению В. И. Вернадского, это живая оболочка Земли, область распространения жизни. Нижняя граница биосферы – донные отложения океана, верхняя граница – озоновый экран, выше которого ультрафиолетовое излучение исключает существование живых организмов. Реально верхняя граница проходит на высоте 5–6 тыс. м., там, где в скалах могут обитать лишь мхи и микроорганизмы. Таким образом, толщина биосферы составляет около 15 км. В сравнении с радиусом Земли это очень малая величина, а на модели Земли, например, с радиусом в 1 м она будет выглядеть, как тончайшая пленка толщиной 0,2×10–3 м. Так же она и представляется космонавтам, их всегда удивляет наблюдаемая тонкость атмосферы.

Рассмотрим основные элементы биосферы – воду, воздух, почву теперь с позиций экологии как среду и ресурсы, обеспечивающие жизнь на Земле.


Круговорот воды в биосфере. Вода это составная часть всех элементов биосферы – не только водоемов, но и воздуха, почвы, живых существ, в которых под влиянием энергии Солнца и жизнедеятельности поддерживается определенный баланс воды. Механизм, поддерживающий этот баланс – круговорот воды. Мировой баланс воды – величина довольно стабильная, на что еще обратил внимание Аристотель в «Метеорологии». Балансы отдельных элементов биосферы, например континентальных и океанских вод, непостоянны из-за изменения режима осадков, связанных с глобальными изменениями климата (ледниковые периоды). Для существования жизни и развития человеческой цивилизации наиболее важно частью в этом балансе являются пресные воды, которые составляют речной сток, содержатся в озерах и подземных горизонтах, 85 % пресной воды планеты сосредоточено в ледниках.

Ежегодный объем воды, который может использовать человечество, составляет 37,3 тыс. км3 (речной сток) и часть подземных вод, запасы которых – 13 тыс. км3. Сами по себе эти цифры ничего не говорят, кроме того, что это большие величины. Для их оценки необходимо сравнить их с потребностью человечества в воде. Из имеющихся данных по расходу воды (в км3) на 1975 год [5] видно, что потребности уже сравнимы с природными запасами.


Таблица 3

Потребление воды, 1975


С учетом быстрого роста населения и уровня загрязнения вод прогноз об исчерпании запасов пресных вод в мире в начале XXI века представляется вполне реальной. Потребность в воде в настоящее время не удовлетворяется у 20 % городского и 15 % сельского населения мира.

Вода на суше распределена неравномерно, огромные площади занимают вододефицитные земли: аридные, пустыни, полупустыни. Не всегда вода имеется там, где располагается потребитель. Например, в СССР из 1000 км воды, пригодной для потребления, только 20 % располагалось там, где потребность в ней самая высокая. Усложняют водоснабжение и сезонные изменения стока вод в периоды паводков и половодий. Речной сток измеряется в м3/с и характеризуется гидрографом. Сток характерный для рек европейского типа, например, как Луара во Франции, изменяется от 50 м3/с в зимнее время до 4000 м3/с во время паводков.

Знание гидрографа рек важно для планирования хозяйственного водопотребления, особенно в энергетических целях. Для человека паводки представляют значительное неудобство, а порой к опасность. Однако, нужно знать, что паводки играют большую роль для здоровья самой реки и всех ее обитателей. Зарегулирование рек дамбами и плотинами изменяет речной сток и наносит большой ущерб экосистемам рек. К сожалению, не подсчитывается соотношение между ущербом, нанесенным реке строительством ГЭС и энергетической выгодой. Не исключено, что в ряде случаев расчет окажется не в пользу ГЭС.

До появления биосферы круговорот воды в природе осуществлялся только за счет испарения поверхностных вод водоемов и суши. В этом процессе существуют два круговорота: малый, в котором испарившаяся вода проливается прямо над океаном, и большой, когда облака уносятся ветром в сторону суши и пролившиеся дожди возвращаются в океан в виде поверхностного и речного стока (рис. 3).

В среднем, в год с поверхности всех водоемов испаряется около 0,5 млн. км3 или 0,515 т. Более 90 % этого количества возвращается в океан с атмосферными осадками и лишь 10 % выпадает в виде осадков на поверхности материков. В некоторых конкретных случаях количество испаренной воды и скорость испарения столь велики, что не восполняются поверхностными стоками. Например, сток воды в Средиземное море не восполняет количества воды испаренной с его поверхности, поэтому в Гибралтаре течение направлено всегда из Атлантики. Речная вода обновляется за счет испарения с циклом в 10–12 суток.


Рис. 3. Большой круговорот воды


Современный круговорот воды происходит с участием биосферы и человека. Цикл его таков: вода, испаренная с поверхности водоемов, почвой, растениями, животными, конденсируется, образуя облака, и выпадает в виде осадков. Часть ее попадает в водоемы непосредственно, часть питает подземные воды, часть потребляется животными и растениями и возвращается опять в мировой океан уже как продукт жизнедеятельности.

Сравнение двух круговоротов воды показывает, как усложнилась структура круговорота включением в него биоценозов и человека. Транспирация или дыхание растений и животных, внесло очень заметный вклад в водный цикл. Так, с единицы поверхности леса испаряется значительно больше воды, чем с такой же поверхности моря. Количество испаренной воды зависит от вида растений и типа почвы – сухая она или влажная. Подсчитано, что с гектара березового леса ежедневно испаряется 47 000 л воды, с гектара елового леса около 43 000 л. В среднем с гектара леса в год испаряется от 2000 до 6000 м3. Из этих данных можно с уверенностью сделать вывод о зависимости количества осадков в какой-либо местности от растительности.

В исследованиях ученого А. П. Бочкова показано, что сток небольших лесных районов на 50–95 % выше стока открытых безлесных районов. Из этого правила почти с очевидностью следует, что нынешняя трагедия в Сахеле (Южная Сахара), почти полное исчезновение воды не что иное, как продукт человеческой деятельности. Увеличение скотоводства привело к исчезновению растительности, а это в свою очередь, уменьшило испарение и соответствующие ему осадки. Локальные водные циклы на Севере Африки оказались разорванными руками человека. Похожие явления стали наблюдаться и в нашей стране в Калмыкии и на юге Украины в связи с постоянным уменьшением растительного покрова.

Антропогенное нарушение водных циклов. Единственным нарушителем круговорота природных вод является водопотребление обществом. Главные потребители пресной воды: сельское хозяйство, промышленность, сфера быта. Потребление воды зависит от соответствия расселения характеру потребности, уровня экономического развития и общей культуры людей. Однако, растущее использование воды с низкой эффективностью и продолжающееся во все больших масштабах загрязнение указывают на то, что человечество очень далеко от понимания важности водной проблемы, растут гигантские уровни потребления и загрязнения.

Наиболее водоемкие производства: металлургическое, целлюлозобумажное, сельскохозяйственное, пищевое.

Потребность в воде для производства 1 тонны продукции колеблется в очень широких пределах (таблица 4).


Таблица 4

Потребность в воде для производства 1 т


Любое производство и потребление связаны с отходами т. е. загрязнителями. Резко выросло в XX веке производство и потребление продуктов с органической основой: горюче-смазочные материалы, изделия из пластмасс, моющие средства, косметика и продукты питания.

Количество органических отходов в мире (таблица 2) велико и велика динамика их роста. Значительная часть их попадает в воду, где их разложение происходит в процессе окисления и под действием микроорганизмов. Для этого расходуется кислород, растворенный в воде. При незначительном количестве сбросов срабатывает механизм самоочищения, если отходов много, содержание кислорода в воде резко падает, вода загнивает и зарастает сине-зелеными водорослями, которые еще более снижают содержание кислорода. Процесс увеличения биогенных и органических веществ в воде – эвтрофикация.

Возможность самоочищения вод оценивается показателем ВПК (биологическая потребность в кислороде), который указывает количество кислорода в миллиграммах, необходимое для окисления 1 г вещества за 1 час.

Наиболее ощутимо нарушение круговорота воды сельским хозяйством. Орошаемое земледелие занимает около 17 % всех обрабатываемых площадей. Все рисоводство и 70 % хлопководства требуют интенсивного орошения.

Расширение сельскохозяйственного производства, особенно при орошении и привело к увеличению забора воды из рек. Более 1/3 стока таких рек, как Дон, Днепр, Днестр разбирается по пути к морю, воды Аму-Дарьи и Сыр-Дарьи практически не доходят до Аральского моря. Из-за уменьшения притока пресной воды и увеличения сброса сточных вод резко уменьшились рыбные запасы Аральского моря.

Забор воды из Аму-Дарьи и Сыр-Дарьи привел к экологической катастрофе в бассейне Аральского моря и поставил под угрозу благосостояние и даже жизнь людей, населяющих приморскую зону. Уровень моря упал почти на 13 метров, вода отступила от берегов на десятки километров, а в южной части до 100 км. Все это привело к возрастанию солености моря, уменьшению осадков, опустыниванию и засолению земель в районе Арала. Изменилась климатическая ситуация. Раньше Арал, представлявший огромный аккумулятор тепла, формировал стабильные тепловые конвекционные потоки, поднимавшие вверх холодные воздушные массы, приходящие с Севера (рис 4). Холодный и влажный воздух достигал Памира и выпадал в виде дождя и снега, питая ледники и реки. Теперь эти потоки не в полной мере достигают Памира, так как над Аралом нет прежних мощных восходящих потоков. Некоторые специалисты считают, что Аральское море спасти не удастся и оно обречено на быстрое вымирание. В 1988 году вышло постановление правительства СССР о мерах по коренному изменению экологической обстановки в районе Аральского моря, была создана специальная комиссия по контролю за реализацией этого постановления.


Рис. 4. Водный цикл Арала


Бытовое водопотребление тоже довольно значительно, особенно в Токио, Мехико, Сан-Пауло, Москве, Нью-Йорке и других многомиллионных городах. Нагрузка на водные ресурсы зависит в основном от технологии и культуры потребления. Дефицит воды, например, в Москве, связан с непозволительной расточительностью и загрязнением. Во всех городах значительно превышены рациональные нормы расхода воды на одного жителя в сутки – 125–350 л. В 1980 г расход на одного жителя в сутки составлял: Минск – 283 л, Таллинн – 428, Ленинград – 456, Москва – 593, Душанбе – 564, Ташкент – 811. В европейских городах жители укладываются примерно в 270 л, Потери воды вместе с другими причинами связаны и с отсутствием надежных и простых расходомеров. Кстати, это серьезная и интересная работа для физиков и инженеров, разработать такой расходомер.

В перечень водопотребления обычно не включают энергетику. Это неверно. Во-первых, происходит тепловое загрязнение сбросами ТЭЦ, во-вторых, нарушается режим рек плотинами гидростанций и увеличивается испарение с поверхности водохранилища. Площадь всех искусственных водохранилищ России примерно равна территории Франции! При таких масштабах «покорения природы» не стоит удивляться чудесам погоды последних лет.


Круговорот вещества в атмосфере. Воздух одна из основных составляющих окружающей среды. Важную роль для жизни играет состав воздуха и физические процессы переноса вещества и энергии в форме круговоротов. Воздух состоит из газов: азот 78.084 %, кислород 20.948 %, аргон 0.934 %, другие и паров воды.

Кислород появился на Земле примерно 2 миллиарда лет тому назад, когда проходило активное формообразование поверхности при активной вулканической деятельности до того еще, как произошло разделение материков из праматерика Пангеи, согласно гипотезе Вегенера. Возрастание доли кислорода до современной в 21 % происходило в течение последних двадцати миллионов лет. Главную роль в этом играло развитие растительного мира суши и океана. Содержание кислорода в воздухе определяет границу жизни для растений и животных, по вертикали это приблизительно 4000 метров.

Кислород образуется в результате фотосинтеза органических продуктов в растениях.

6СО2 + 6Н2О + квант света = C6Н12O6 + 6O2+ тепло

При дыхании происходит реакция, обратная фотосинтезу.

В настоящее время пока наблюдается сохранение равновесия между производством кислорода и его потреблением.

Интенсивное потребление кислорода промышленностью, авто транспортом и авиацией вызвало опасения о нарушении баланса кислорода в окружающей среде. Опасения эти имеют под собой основания. Так, потребность в кислороде для пробега легкового автомобиля на расстояние 1500 км равна годовой потребности в кислороде одного взрослого человека! В целом кислородный баланс сохраняется, хотя возник ли его локальные нарушения вблизи больших промышленных цент ров и мегаполисов.


Рис. 5. Растворимость О2


Круговорот кислорода. Круговорот О2 очень сложный цикл из-за большого числа его участников. В него вовлечено большое количество представителей органического и неорганического мира, а также вода, растворяющая кисло род. Кислород, содержащийся в литосфере в виде оксидов, в круговорот не входит. При нормальных условиях в 1 л воздуха содержится 210 мл кислорода, в 1 л воды 8–9 мл и его содержание зависит от глубины и температуры. На рис. 5, отчетливо видна корреляция растворимости О2 с температурой. Содержание кислорода в воде зависит от его растворимости на поверхности и фотосинтеза водорослями. Загрязнение воды взвешенными частицами уменьшает ее прозрачность, увеличивает рассеяние света и снижает активность фотосинтеза. Для частиц, размеры d, которых сравнимы с длинами волн видимой части спектра (d≥λ) величина рассеянного светового потока Фрас зависит от площади рассеиваю щей поверхности S частицы, пути светового потока Δx, концентрации рассеивающих частиц n.

ΔФрас = ΔSпад n Δx

Содержание кислорода в воде является одним из параметров ее биологического здоровья. По данным замеров в большинстве водоемов Европейской части России эта величина ниже нормы.

Круговорот углерода. Предполагается, что углерод распре делен в довольно тонком слое земной коры, в атмосфере в виде диоксида и оксида углерода, в животной и растительной биомассе. Однако, основные запасы углерода в природе содержатся в минералах и горных породах, в основном в форме карбонатов (СаСО3) и гидрокарбонатов (Ca(HCO3)2), представляющих собой растворимые и нерастворимые донные отложения в Мировом океане, накапливающиеся за миллионы лет геологической истории Земли. Этот процесс продолжается и в настоящее время. Углекислый газ, содержащийся в воздухе и воде, составляет запас углерода, участвующего в создании биомассы. Содержание CO2 в атмосфере не стабильно, оно подвержено сезонным изменениям и наблюдается его увеличение, связываемое с антропогенным фактором.

Нужно заметить, однако, что прогнозируемый рост с учетом сжигания всех видов органических материалов, равный 0,7 (частиц на миллион) в год не совпадает с наблюдаемым 0,2. По-видимому, реальный круговорот углерода в природе гораздо сложнее той модели, которую мы себе представляем на рисунке 6.

В воде углекислый газ растворяется в 35 раз лучше, чем кислород и от его содержания в воде зависит количество растворённых гидрокарбонатов, т. е. жесткость воды. Этот факт хорошо иллюстрируется уравнением углекислотного равновесия.

СО2 + Н2О + СаСО3 = Ca(НСО3)2

Если содержание CO2 в воде уменьшается, то выпадает оса док нерастворенного карбоната, который будет растворен при восстановлении равновесия между углекислым газом и гидрокарбонатом.


Рис. 6. Круговорот углерода


В технике и быту нарушение углекислотного равновесия приводит к образованию накипи в котлах ТЭЦ, котельных и других системах, использующих воду. В природных условиях результатом этой реакции является образование полостей в земной коре, пещер, сталактитов и сталагмитов.

Круговорот вещества в почве. Роль почвы многообразна: с одной стороны, это важный участник всех природных круговоротов, с другой – это основа для производства биомассы – кормилица человечества. Для получения растительной и животной продукции человечество обрабатывает около 10 % суши – часть, которую, как полагают специалисты, уже не удастся увеличить, несмотря на необходимость увеличения производства продовольствия в связи с ростом населения. Важность сохранения почв приобретает особую остроту, учитывая, что потеряно из землепользования больше половины используемых сейчас земель.

Почва – продукт разрушения верхних слоев земной коры, сформировавшийся в результате деятельности живых организмов. Почвовед В. И. Докучаев дал такую оценку «… почва есть такое же самостоятельное, естественно историческое тело, как любое растение, любое животное».

Разновидностей почв несколько тысяч, и это требует исключительно высокой грамотности при их использовании. Копая землю, можно заметить, что цвет почвы и ее структура меняются с глубиной от темного гумусного слоя к светлому песчаному или глинистому. Наиболее важен гумусный слой, содержащий остатки растительности. Этот слой определяет плодородие почвы. В наиболее богатых гумусом черноземах толщина его достигает 1 метра, в бедных – около 10 см.

Обрабатываются, в основном зональные почвы. Профиль почвы этого типа показан на рис. 7, где: 1 – гумусный слой, 2 – выщелоченная почва, 3 – глина, содержащая 3-х валентное железо, 4 – материковая порода в стадии разрушения. Физические характеристики каждого из таких горизонтов зависят от типа почвы. Из физических свойств наиболее важны: плотность, капиллярность, пористость, влажность, теплопроводность, поглощательная способность.


Рис. 7. Профиль зональной почвы


Благодаря большому количеству различных живых существ, перерабатывающих в почве остатки растительности и животных, формирующих структуру и продуктивность, почва является живым организмом, в котором идут процессы деструкции, синтеза, биосинтеза, множество различных химических реакций и физических процессов. Количество живой биомассы в почвах зависит от их типа и от внешних условий, таблица 5. Количество почвы, переработанной дождевыми червями, весьма значительно: на одном гектаре пашни около 12 т в год и почти 100 т на огородной почве.


Таблица 5

Биомасса почвенных организмов


Деятельность микроорганизмов, преобразующих органические остатки, обеспечивает питание растений минеральными элементами. Биомасса растений образуется при потреблении минеральных солей, воды и солнечной энергии. Так, для роста соснового леса за 100 лет из одного гектара почвы изымается: кальция 424 кг, калия 168 кг, фосфора 33 кг. При выращивании культурных растений это потребление значительно больше: злаковые: 7000 кг азота, 1 3000 кг фосфора, 5000 кг калия, картофель: 9000 кг азота, 4000 кг фосфора, 16000 кг (!) калия.

Разница для естественных и искусственных культур обусловлена тем что выпавшие хвоя и листва в лесах частично компенсируют убыль элементов из почвы. При ежегодной уборке сельхозкультур эти элементы уносятся из почвы и, если их убыль не восполняется, почва теряет свое плодородие, происходит нарушение естественного круговорота минеральных веществ.

Интенсивное использование почв, особенно при монокультурном земледелии, нарушает естественный баланс веществ и потоки энергии. В природе этот баланс поддерживается периодической сменой растительности на какой-либо определенной площади. Эта сменность характеризуется законом сукцессии. Исключение севооборота при использовании земли является нарушением этого закона и приводит к обеднению почв и снижению плодородия. К сожалению, в нашей сельскохозяйственной практике закон сукцессии нарушался в течение десятилетий и урожайность наших полей в среднем почти в два раза ниже, чем в Швеции, где по своей природе земли беднее.

Компенсация этой потери внесением органических и минеральных удобрений эффективна только тогда, когда в почве имеются микроорганизмы, трансформирующие удобрения в доступную для растений форму. Для нормального развития растений необходим минимальный набор всех необходимых для растения питательных веществ: убыль одного не может быть компенсирована избыточным внесением другого. Это правило биологии называют законом минимума.

Охрана почв. Мировые запасы плодородных почв – 15 млн. км2, а потери – 20 млн. км2, причем около 40 % из имеющихся частично утратили плодородие. Цифры впечатляющие и требуют принятия мер по сохранению этого важного ресурса. Основной причиной потери почв является их эксплуатация человеком. Причин потерь и деградации почв несколько:

• ветровая и водная эрозия при механической обработке;

• отвод земель под строительство городов, предприятий, дорог и т. п.;

• затопление при строительстве ГЭС;

• загрязнение отходами производства и быта;

• закисление кислотными дождями;

• засоление при неграмотной мелиорации.

Особенно значительны потери почв и их плодородия из-за тотального единообразного применения традиционных методов механической обработки при глубокой вспашке. К наиболее значительным потерям это привело при освоении целинных земель в штате Техас (США), где пыльные бури 30-х и 70-х годов превратили в пустыни около 20 млн. га плодородных земель, унеся миллионы тонн чернозема за сотни километров в Мексиканский залив.

Аналогичному разрушению подвержены почвы и на территории бывшего СССР. Пыльные бури наиболее часто стали поражать степные районы Украины, Нижнего Поволжья, Северного Кавказа, Средней Азии, Казахстана, где ветер выдувает почву на глубину до 25 см. А. Иващенко [6] в очень профессиональном и эмоциональное очерке о проблемах земледелия пишет, что число пыльных бурь в Ставрополье за последние 100 лет увеличилось в 10 раз, а слой знаменитого чернозема толщиной в I метр (!), помещенный в Парижском институте мер и весов как эталон за последние 50 лет уменьшился в 2 раза. Известно, что на восстановления 1 см гумусного слоя требуется 50 лет!

Значительный ущерб запасу продуктивных почв, как ни странно для неспециалиста, наносит мелиорация, а точнее неразумное орошение. Водозабор из рек, осуществляемый в гигантских масштабах, не может не нанести ущерба экосистемам рек и тем районам, куда он направлен. Явление это сложное, и для его анализа и управления требуется научный подход с участием специалистов разных специальностей, в том числе и физиков. Пока, к сожалению, в деле мелиорации преобладает эмпиризм.

Наиболее показательная ситуация сложилась в Средней Азии в бассейне рек Аму-Дарьи и Сыр-Дарьи в связи с превращением Узбекистана в район хлопковой монокультуры. Вода этих рек, взятая для орошения хлопковых полей, пополняется солями, химических препаратов и в таком отработанном виде сбрасывается в низины. Это привело к подъему подпочвенных соленых вод, засолению и заболачиванию миллионов гектаров плодородных земель.

Для решения этой проблемы имеется несколько путей: вернуть гармоничный' характер сельскому хозяйству Узбекистана, рационально расходовать имеющиеся воды, использовать достижения современной науки.

Интенсивное применение химпрепаратов также привело к значительной деформации почвенных экосистем, так как химические соединения ударили прежде всего по живому миру почвы, превратив ее из живого тела в носителя искусственных минеральных удобрений и ядохимикатов.

Для повышения продуктивности почвы приходится вносить в нее элементы, забираемые сельхозкультурами: С, Н, Р, В, Ca, К, Na и другие.

Особенно важны для активного развития растений и продуктивности азот и фосфор. Азота в почве содержится достаточно много, от 3 до 40 тонн на гектар. Однако он находится в труднодоступной для растений форме. Внося его в легкоусвояемой форме в виде солей аммония и нитратных солей, мы в то же время делаем азот легко вымываемым из почвы и выносимым в воздух. Подсчитано, что ежегодно с наших полей в атмосферу уносится 1,5 млн. тонн азота, что усугубляет тем самым проблему «озоновой дыры» и кислотных дождей.

Особую группу сельскохозяйственных препаратов представляют пестициды из которых гербициды предназначены для уничтожения сорняков, а инсектициды – насекомых. Молекулы ядохимикатов устойчивы и с трудом поддаются разложению, по этой причине наблюдается постоянное накопление этих соединений в биомассе Земли. Некоторые из них, как ДДТ, севин, хлорофос чрезвычайно опасны. Так, ДЦТ обнаружен у 90 из 100 беременных женщин, несмотря на то, что запрет на его использование существует почти 40 лет; севин вызывает полную стерильность мужчин и женщин. Число этих соединений уже перевалило за 1000 и на их основе в мире выпускается более 80 тысяч продуктов.

Интенсивное применение химических удобрений и ядохимикатов может привести к необратимому ухудшению почвы.

Вместе с тем за рубежом, в России, на Украине, в Белоруссии имеются примеры ведения сельского хозяйства без применения ядохимикатов. Ряд хозяйств за рубежом уже получают сельхозпродукцию вообще без применения химпрепаратов, рекламируют это и продают ее по более высоким ценам.


Энергетика биосферы. Жизнь на Земле и ее многообразие обеспечивается работой уникальной «машины» биосферы, преобразующей солнечную энергию и рассеянные в окружающей среде элементы, в высокоорганизованную материю. Эффективность работы этой «машины» можно оценить, сравнивая количество поступающей энергии и получаемой продукции. Количество солнечной энергии, поступающей в течение года на 1 гектар поверхности в районах с умеренным климатом, равно примерно 4,2×1013 Дж, количество биомассы, полученной в этих условиях, приблизительно равно 10 тонн пшеницы или 5–7 тонн прироста лиственного леса, что в энергетических единицах составляет около 34 × 1010 Дж. Из сравнения этих двух величин получается, что КПД биосферной «машины» равен приблизительно 1 %. Остальные 99 % солнечной энергии, достигающей поверхности Земли, отражаются растениями 35 % и 60–70 % расходуются на транспирацию (дыхание растений).

Энергия, преобразованная в биомассу, рассеивается дальше по звеньям трофической (пищевой) цепи. Растения являются первичным продуктом преобразования энергии и называются продуцентами, живые организмы, потребляющие растительную пищу представляют вторичный продукт этого процесса и называются консументами (от английского слова consumption – потребление); организмы, перерабатывающие отходы продуцентов и консументов, представляют собой класс редуцентов.

Таким образом, редуценты замыкают цикл преобразования энергии и материи в биосфере (рисунок 8).


Рис. 8. Преобразование энергии в биосфере


В каждом из звеньев трофической цепи происходит накопление и рассеяние энергии.

Мощность потока солнечной энергии, достигающий поверхности Земли, равен 1000 Вт/м2. Эта энергия, как показано в таблице, распределяется между многими видами движения органической и неорганической материи.


Таблица 6

Глобальные потоки энергии


Эти данные представляют большой интерес тем, что показывают распределение энергии в разных частях биосферы и дают возможность оценить энергоресурсы, которые могут быть использованы человечеством.

Распределение энергии по звеньям трофической цепи можно оценить, пользуясь уравнением фотосинтеза:

6СО2 + 6Н20 + 8 фотонов C6H12O6 +6О2.

Академик К. А. Тимирязев в 1875 году определил количество фотосинтетической энергии радиации Солнца (8 молей фотонов на частоте красной и сине-зеленой области спектра) равно 16,8 106 Дж. Эта энергия необходима для связывания одного моля СО2 и преобразования его в органику, количество которой эквивалентно 4,8 105 Дж. Отсюда максимальный теоретический КПД фотосинтеза равен 0,3. Эта величина не учитывает расход энергии на образование меж молекулярных связей, на образование более сложных структур, например клеток, на дыхание, испарение и т. п.

С другой стороны, эффективность преобразования солнечной энергии в биомассу можно получить, если рассматривать ее как отношение чистой первичной продукции (реальный прирост массы растений – Р1) к энергии фотосинтетической радиации – Wф. При таком расчете получается, что эффективность:

ηф = Р1/Wф ≤ 0,05

Это очень важная величина, показывающая принципиальное ограничение повышения урожайности. Однако, тот факт, что для многих видов сельскохозяйственного производства у нас этот коэффициент на порядок ниже, дает уверенность в возможности решения продовольственной программы без увеличения площадей.

Как видно из сказанного, энергетика фотосинтеза довольно проста. Однако ситуация чрезвычайно усложняется при переходе к анализу энергетики экосистем, состоящих из трофических цепей разной сложности.

Трудность состоит в том, что первичная энергия на входе в биосистему идет не только на производство биомассы. Часть ее расходуется на дополнительные процессы, такие, как дыхание, транспирация (испарение при дыхании), экскреция. На дыхание уходит 1/3 первичной энергии Wф. Для анализа энергетики трофических цепей вводят две величины продуктивность (валовая продукция) и продукция (чистая продукция – биомасса). Можно бы упростить задачу, отбросив дополнительные потери энергии. Но при этом можно потерять некоторые и даже многие звенья трофических цепей, например, множество насекомых и микроорганизмов.

Таким образом, исследовать продуктивность – значит определить распределение энергии по звеньям трофической цепи. Определить продукцию – значит оценить реально произведенную био массу, т. е. центнеры с гектара, суточный привес животных и т. п.

Связь между количеством произведенной биомассы Р1 и испаренной растениями влагой описывается линейной зависимостью:

kсР1 = KcαтρE,

где кс, – коэффициент транспирации, т. е. количество влаги, испаренной с 1 га, αт – доля транспирации в полном испарении с единицы площади, Кс – калорийность сухой органической массы, Е – скорость испарения в мм/год, ρE – количество влаги, испаренной с единицы площади. Среднее значение ρE равно 400, это значит, что для синтеза 1 т растений требуется 400 т воды.

Полезно сравнить эту вели чину с потребностью воды для искусственного синтеза: для лав сана требуется – 4200 тонн воды при синтезе 1 тонны, для капрона – 5600 тонн! (См. таблицу 4)

Можно только восхищаться совершенством «технологии» при роды. Коэффициент αт зависит от характера поверхности, для обработанной почвы 0,4, для необработанной – 0,9. Учитывая, что доля обработанной суши равна примерно 2/3 всей, получим для среднего значения:

αт = (2/3) 0,4 + (1/3) 0,9 = 0,55.

Тогда количество произведенной биомассы (чистый продукт) на суше, на площади S и Кс = 19 1013 Дж:

Р = SP1 = KcαтSρE/кс = 6 ×1013 Вт.

Распределение материи в трофической цепи удобно определять в Вт. Эта величина достаточно хорошо совпадает с экспериментально определенной. Теперь необходимо учесть долю энергии, расходуемой на транспирацию:

ηт = αт Lв ρE/ Wф

где Lв = 25,7 103 Дж/г – скрытая теплота испарения воды.

Связь между ηт и ηф находится из выражения:

ηф = Р1/Wф = Kc ηт/ Lв кт = (7.6/ кс) ηт

Предполагая, что для поверхности суши, не преобразованной человеком, величина αт = 0,9, а значение ηф = 0,05, получим ηт = 0,25.

Это значит, что на транспирацию растений используется до 25 % солнечной энергии, падающей на Землю. А так как возобновляемые запасы пресной воды существуют только благодаря испарению с поверхности океана, то можно считать, что растения используют около 60 % всех возобновимых водных ресурсов. Труд но представить, но это факт. Большая часть всех пресных вод на Земле проходит через биологическую «машину» биосферы.

В связи с этим важно подчеркнуть, что загрязняя воды мы неизбежно вводим эти загрязнения в биоценозы, а через них по трофическим цепям в себя.

Теперь снова вернемся к трофической цепи после того, как определено распределение солнечной энергии в ее первом звене – продуцентах. Простая трофическая цепь может быть составлена из четырех звеньев. В трофических цепях реализуется круговорот вещества и энергии, называемый биоциклическим. Он не является изолированным, он входит в геологический круговорот, рис. 9.


Рис. 9. Круговорот вещества и энергии в трофической цепи


Биогеоценоз или экосистему можно рассматривать как «машину» по трансформированию вещества и энергии. Очевидно, что антропогенное воздействие нарушает работу этой «машины» так как детерминированность биопроцессов мала по сравнению, например, с прохождением тока по проводнику или движением поршня в цилиндре.

Абстрагируя элементы трофической цепи, представим ее в виде схемы. Цифра в круге – номер биомассы Вi звеньев цепи от 0 до n, рис. 10.


Рис. 10. Перенос вещества и энергии в трофической цепи.


Здесь Wi – потребление энергии, Ri – энергия дыхания, Pi – полная энергия на выходе, Bi – количество биомассы. Значения индексов: i = 1 растения, i = 2 – консументы 1 рода, растительноядные животные; i = 3 – консументы 2 рода, животные-хищники; mi – количество отмирающей биомассы.

Чистая первичная продукция растений Рi используется консументами и редуцентами следующего звена и так далее по звеньям.

Связь между потоками энергии и вещества в каждом звене цепи можно представить в виде уравнения:

Wi = Ri + Pi,

где Wi – полная потребляемая (входная) мощность, Ri – мощность, расходуемая на дыхание, Pi, – полная мощность на выходе звена.

Выходящие потоки энергии складываются из вновь синтезируемой органики Pi и неусвоенной части потребляемой органики (экскретов) Р. Эти потоки могут быть заданы с помощью коэффициентов усвоения η и эффективности трансформации энергии – α:

W – Рэ = ηW, Pi / W = α, αэ = Pэ / W = 1 – η

где ηW – усвоенная часть входного потока энергии (метаболизм). Для большинства организмов биосферы η = 0,8 и зависит он от того, чем питается данный вид. Коэффициент эффективности трансформации энергии в пищи в продукцию α = 0,1. Коэффициент αэ = 1 – η = 0,2 характеризует трансформацию входной энергии в экскреты, служащие пищей для редуцентов. Таким обрезом, эти теоретические и не очень сложные вы кладки подтверждают тот факт, что 90 % энергии, входящей в каждое звено трофической цепи, рассеивается на дыхание, транспирацию, экскрецию и только 10 % идет на накопление биомассы. Приводимая диаграмма иллюстрирует эту закономерность.


Рис. 11. Экологические пирамиды В. Одума

1. Пирамида чисел, 2. Пирамида энергии (Дж)


Закономерность распределения энергии и массы в трофических цепях имеет важное приложение для определения уровня загрязнений элементов цепи. Дело в том, что ряд синтетических препаратов и тяжелых металлов таких, как, например, ДЦТ и ртуть, имеют свойство накапливаться в организме. Перемещаясь по звеньям трофической цепи вместе с биомассой, ДЦТ не расщепляется и не выносится с экскрециями, а накапливается, и концентрация его повышается. Таким образом, концентрация ДЦТ в молоке коровы может превысить допустимый уровень хотя при распылений для обработке поля ПДК превышено не было.

Антропогенное вмешательство неизбежно деформирует естественные трофические циклы и может привести к негативным и необратимым последствиям.

В этом плане поучительна история с истреблением воробьев в Китае в 50-х годах прошлого века. Желая сохранить урожай, китайцы провели национальную кампанию по истреблению воробьев. В результате этого чрезвычайно расплодились насекомые, служившие пищей для воробьев, и посевам зерновых был нанесен значительно больший ущерб. К счастью, это вмешательство имело обратимый характер и равновесие удалось восстановить за 3 года.

Последствия антропогенного вмешательства могут быть и более серьезными. В. Г. Горшков и В. Р. Дольник [7] предупреждают, что «замыкание значительной части биосферного потока на антропогенный канал приводит к вытеснению естественных видов организмов и перераспределению потребления в биосфере.

В этих условиях с течением времени человек может столкнуться с нехваткой энергии и истечением запасов ископаемых химических элементов, необходимых для построения биомассы культурных растений и индустриальной продукции». Интересно отметить, что этот вывод сделан физиками.

Закон толерантности. При анализе трофических цепей не было учтено влияние внешних условий на характер распределения энергии и вещества. Предполагается, что они оптимальные, т. е. такие, которые обеспечивают накопление биомассы и воспроизводство.

Нормальная жизнедеятельность животных и растительных видов, функционирование экосистем и круговорот в них вещества и энергии в зависимости от внешних условий характеризуются за коном толерантности. Согласно этому закону параметры внешней среды могут меняться в определенных пределах без ущерба для видов и экосистем в целом. Выход за эти пределы приводит к гибели живых организмов и изменению экосистемы.

Например, в речной воде с определённой температурой и кислотностью (рН) сложилось устойчивое сообщество растений, животных и микроорганизмов. Изменение параметров воды при выбросе в эту реку термальных вод при извержении вулкана или деятельности ТЭЦ может полностью сменить биоценоз. Согласно этому закону лошади не могут выживать на высоте более 3 тысяч метров, там где спокойно работают гималайские буйволы, пресно водная лягушка не выживет там, где обитает пустынная жаба, то же самое относится и к растениям.

Для грамотного планирования распределения сельскохозяйственных культур необходимо учитывать и толерантность растений к новым условиям культивирования.

Термодинамика биосферы. Многие геологические процессы на Земле и жизнь биосферы обусловлены солнечной энергией, которая поступает на Землю в виде высокочастотного (высококачественного) излучения, преобразуется в биосфере и рассеивается в космос в форме теплового (низкокачественного) излучения. Этот процесс, согласно закону Больцмана характеризуется возрастанием энтропии в системе Солнце – Земля.

S = klnW

Этот закон утверждает, что материя в изолированной системе стремится к хаотическому состоянию. Однако часть солнечной энергии, как это уже обсуждалось выше, в результате реакции фотосинтеза преобразуется в высокоорганизованную материю. Это достигается благодаря тому, что живые организмы в процессе самоорганизации производят отрицательную энтропию или негаэнтропию.

Образование высокоорганизованной материи достигается повышением степени порядка в системе, а это соответствует тому, что в формуле Больцмана под знаком логарифма необходимо подставить величину 1/W. А так как ln(1/W) это, то же самое, что и отрицательный логарифм W, то уравнение Больцмана запишется по-другому:

– S = kln(1/W).

Отсюда появилось определение негаэнтропии, как меры стремления к упорядоченности. Негаэнтропийный ресурс Земли можно определить, если исходить из того, что в условиях термодинамического равновесия энергия не Земле не накапливается:

Е1 = Е2 = Е

В таком случае негаэнтропийный ресурс Земли определяется разностью энтропии падающего и рассеянного излучения. Пользуясь моделью абсолютно черного тела и законом Стефана-Больцмана, можно определить приращение энтропии излучения ΔS. Эта величина в свою очередь равна негаэнтропии отбираемой Землей ΔN:

ΔS = – ΔN = 4/3 (E2 / T2 – E1 / T1) = 4/3 E(1 / T2 – 1 / T1),

где E1 и T1 – внутренняя энергия и температура солнечного излучения. E2 и Т2 – энергия и температура уходящего излучения.

При Т1 = 6000 К и Т2 = 300 К получим:

ΔS = – ΔN = 4/3 E (1/300 – 1/6000)

Величиной 1/6000 в сравнении с 1/300 можно пренебречь и:

ΔS = – ΔN = 4/3 (E/T2)

т. е. ежегодный ресурс негаэнтропии зависит, в основном, от эффективной температуры потока энергии, излучаемого Землей. Следовательно, при заданном потоке солнечной энергии, с увеличением ΔN, можно получить понижение температуры уходящего излучения, что соответствует увеличению длины его волны. Как известно, эту роль выполняет растительность на Земле. При этом энтропия системы Солнце-Земля увеличивается, но увеличивается и негаэнтропийный ресурс Земли за счет локального понижения энтропии.

Антропогенное вмешательство в деятельность экосистем неизбежно приводит к увеличению неупорядоченности и снижению негаэнтропийного ресурса. Предельным случаем такого вмешательства будет гибель биосистем.