Вы здесь

Устройства импульсного электропитания для альтернативных энергоисточников. Глава 1. Импульсные источники питания бытовой и специальной радиоаппаратуры (А. П. Кашкаров, 2017)

Глава 1

Импульсные источники питания бытовой и специальной радиоаппаратуры

1.1. Принципы схемотехники импульсных источников питания

Каждое электронное устройство оснащено источником электропитания. Специфика исполнения источника и его технические параметры определяются общесистемными требованиями к устройству в целом и условиями его эксплуатации. В общем случае источники вторичного электропитания – это преобразователи первичной энергии в энергию, пригодную для работы устройства, наделенного определенными пользовательскими функциями. Дополнительной, часто, безусловно, необходимой функцией источника электропитания может быть обеспечение гальванической развязки между источником первичного напряжения и нагрузочными цепями.

Тип приборов под общим названием «источники питания» объединяет множество устройств. К их числу относятся как простые, на первый взгляд, электрохимические элементы с заданными характеристиками для переносных приборов, так и достаточно сложные, стационарные преобразователи энергии. Последние выполнены на основе узлов, способных осуществлять различные виды подстроек и регулировок для защиты от внешних и внутренних дестабилизирующих факторов.

Качество работы и временная стабильность параметров источника питания зачастую являются определяющими факторами работоспособности прибора в целом; в данной книге этому важному вопросу посвящен специальный раздел. Именно поэтому при проверке технических характеристик того или иного устройства источнику питания следует уделять особое внимание.

В XXI веке уже произошла замена традиционных источников питания стационарного оборудования на основе силовых трансформаторов, функционирующих на частоте питающей сети, импульсных источников питания, или так называемых бестрансформаторных преобразователей первичного сетевого напряжения. Принцип их действия основан на преобразовании исходного первичного напряжения низкой частоты (десятки герц) питающей промышленной сети в более высокочастотные колебания (несколько десятков килогерц) с последующей трансформацией. Сегодня преобразователи подобного типа составляют большинство источников вторичного электропитания устройств как бытового, так и промышленного назначения.

1.1.1. Схемотехника цепей ИИП

Переход на использование преимущественно импульсных источников питания обусловлен рядом технических и экономических факторов, наиболее важными из которых являются следующие:

• источники бестрансформаторного питания мощностью до 1000 Вт имеют существенно более высокие массогабаритные характеристики по сравнению с аналогами, изготовленными на основе сетевых трансформаторов;

• обмотки трансформаторов ВЧ-колебаний ИБП имеют более высокую плотность тока, при их изготовлении используется гораздо меньше цветного металла, что приводит к снижению затрат на производство и на исходные материалы;

• высокая индукция насыщения и малые удельные потери материалов сердечников ВЧ-трансформаторов позволяют создавать ИБП с общим КПД, превышающим 80 %, что в обычных источниках почти недостижимо;

• широкие возможности по автоматической регулировке номиналов выходных вторичных напряжений посредством воздействия на первичные цепи ВЧ-преобразователя.

Рассмотрим несколько примеров структурных схем построения ИИП в сети 220 В, 50 Гц.

Блок-схема электронных узлов импульсного источника питания с несколькими выходными напряжениями представлена на рис. 1.1.

Выпрямленное, отфильтрованное и стабилизированное напряжение подается в нагрузку с выхода вторичных цепей источника питания. В импульсных источниках для бытовой радиоаппаратуры во вторичной цепи формируются четыре номинала постоянных напряжений и особый служебный сигнал «питание в норме». Мы рассмотрим его в следующих разделах. Оригинальное наименование этого сигнала – POWERGOOD, или сокращенно PG.

Значения вторичных напряжений и допустимые уровни их возможных отклонений от номиналов приведены выше. Вторичные каналы обладают различной токовой нагрузочной способностью. Самая большая нагрузка падает на вторичный канал напряжения +5 В. При этом максимально возможный ток по каналу зависит от общей мощности источника питания.


Рис. 1.1. Блок-схема электронных узлов ИИП


1.1.2. Варианты схемотехники вторичных цепей ИИП

В предельных режимах эксплуатации источника питания токовая нагрузка по каналу «+5 В» имеет значение, когда ток измеряется в десятках ампер. На выпрямительных элементах в этом случае происходит выделение значительной тепловой мощности.

Для повышения общего КПД источника и улучшения работы его теплового режима в импульсных преобразователях применяются матрицы на основе диодов Шоттки.

Эти диоды обладают улучшенными импульсными рабочими характеристиками, что способствует снижению временного интервала нахождения обоих выпрямительных диодов в проводящем состоянии во время изменения полярности импульсного напряжения. Прямое падение напряжения на них не выше 0,6 В.

Параллельно каждому из диодов в сборке SBD1 подключены демпфирующие RC-цепочки, снижающие уровень паразитных колебаний, возникающих на фронтах импульсов. К выводам обмоток W4 и W5 трансформатора подключен пропорционально интегрирующий фильтр на элементах R33 и С21. В схеме выпрямителей каналов +12 и -12 В применяются обычные диоды с улучшенными импульсными характеристиками. С помощью пропорционально интегрирующего фильтра R33, С21 происходит «затягивание» фронтов импульсов и создаются более благоприятные условия для переключения диодов как в сборке SBD2, так и диодов D21 и D22. В течение увеличенного фронта импульса происходит восстановление полного обратного сопротивления диодов.

К выходу стабилизированного напряжения +12 В подключен вентилятор блока питания, используемый для охлаждения металлических радиаторов, на которых установлены силовые транзисторы Q5, Q6 и диодные сборки выпрямителей SBD1 и SBD2. На общем теплоотводе-радиаторе могут устанавливаться элементы с различными напряжениями на корпусе. Поэтому все компоненты крепятся на радиаторах через электроизолирующие теплопроводящие прокладки.

Для улучшения теплового контакта с радиатором дополнительно применяется теплопроводящая паста, изготовленная на основе кремнийорганических соединений.

С точки соединения катодов диодов сборки SBD2, выхода выпрямителя канала +12 В, снимается импульсное напряжение, и через диод D18 подается на емкостный фильтр на элементах С17, С18 и R31. Выход этого фильтра соединяется с выводом IC 1/12 внутреннего питания микросхемы ШИМ-преобразователя.

Представленное схемотехническое решение (см. рис. 1.2) реализации вторичных цепей импульсных источников питания не является единственным.

Разнообразие наблюдается в выполнении схем выпрямителей и в использовании дополнительных интегральных стабилизаторов для поддержания постоянного уровня напряжения в каналах с наименьшей токовой нагрузкой. Дополнительные стабилизаторы устанавливаются в канале -5 В.

На рис. 1.2 представлен вариант принципиальной схемы вторичной цепи импульсного источника питания.


Рис. 1.2. Другой вариант электрической схемы вторичной цепи ИИП


Схема имеет ряд особенностей, по сравнению с рассмотренной выше. Вторичная цепь также содержит две вторичные обмотки W1 и W2 трансформатора Т. Средняя точка каждой из них соединена с общим проводом вторичной цепи. Обмотка W1 полностью используется только для формирования напряжения +5 В. Остальные вторичные напряжения получают после выпрямления и преобразования исходного импульсного напряжения обмотки W2. Причем фильтрация отрицательных напряжений производится общей цепью Г-образного индуктивно-емкостного фильтра на элементах LI, L3, С7.

Для обеспечения групповой стабилизации вторичных напряжений в схему фильтра введен дроссель L1, который содержит три обмотки, намотанные в одном направлении на общем магнитопроводе.

Две обмотки дросселя L1 включены в цепи фильтрации напряжений +5 и +12 В, третья – в цепь сглаживающего фильтра отрицательных напряжений.

В канале фильтрации напряжения +5 В использованы два последовательно соединенных Г-образных фильтра. Первый включает в себя обмотку дросселя L1 и конденсатор С4, параллельно которому установлен балансный резистор R4.

Второй фильтр образован дискретным дросселем L4 и группой электролитических конденсаторов С8, С9 и СЮ. Стабилизация напряжений вторичной цепи производится слежением за состоянием выходного уровня канала +5 В.

1.1.3. Особенности двухполупериодных схем выпрямителей

Силовой трансформатор Т4 источника, выполненного по принципиальной схеме (см. рис. 1.3), имеет две вторичные обмотки.

По определению, принцип работы трансформатора основан на законе электромагнитной индукции. В первичной обмотке под действием напряжения в сердечнике наводится магнитный поток, пропорциональный этому напряжению, который, в свою очередь, наводит электродвижущую силу (ЭДС) самоиндукции во вторичных обмотках. ЭДС, наводимая во вторичных обмотках, прямо пропорциональна количеству витков этих обмоток. Трансформатор служит для преобразования переменного тока одного напряжения в переменный ток другого напряжения с преобразованием мощности и при неизменной частоте.

Каждая полная вторичная обмотка состоит из двух полуобмоток. Точка их соединения подключена к общему проводу вторичной цепи питания. Одна вторичная обмотка используется для получения напряжений +5 и -5 В, вторая является источником напряжения для каналов +12 и -12 В.

Вторичные обмотки силового трансформатора Т4 нагружены на двухполупериодные диодные выпрямители.

Импульсные источники питания компьютеров всех модификаций во вторичных цепях используют двухполупериодные выпрямительные схемы.

Такое инженерное решение обеспечивает симметричное распределение нагрузки обоих транзисторов усилителя мощности. Работа транзисторов в идентичных режимах исключает развитие неконтролируемых процессов, возникающих вследствие разбалансирования нагрузки с постепенным разрушением структуры сначала одного транзистора, а затем и другого.

Каждый выпрямитель выполнен по однотипной схеме на основе пары диодов, соединенных с выводами вторичных обмоток.


Рис. 1.3. Принципиальная схема ИИП


Диоды выпрямительных схем с положительными выходными напряжениями подключены к обмоткам своими анодами, а диоды выпрямительных схем для каналов с отрицательными уровнями напряжений – к выводам обмоток катодными выводами.

Двухполупериодные схемы выпрямления на своем выходе формируют импульсные последовательности, в которых частота импульсов равна удвоенной частоте коммутации каждого из силовых транзисторов Q5 и Q6.

Такой метод построения выпрямителя облегчает задачу фильтрации вторичных напряжений, а также способствует более равномерной подаче энергии в цепи нагрузки.

Схема фильтрации импульсного напряжения каждого канала в данном варианте исполнения источника питания содержит только пассивные индуктивные и емкостные элементы.

Обмотки дросселя L1 намотаны на общем магнитопроводе. Этим обеспечивается магнитная связь электромагнитных потоков, вызываемых токами, протекающими по каждой цепи вторичных напряжений.

Обмотка дросселя L1 в цепи фильтрации напряжения +5 В является единственным индуктивным элементом в канале. В остальных цепях вторичных каналов напряжений включено по отдельному дополнительному дросселю.

Канал +5 В также содержит наибольшее количество оксидных конденсаторов, установленных на выходе этой цепи.

Резисторы R39-R41, подключенные по выходам каждого вторичного канала, обеспечивают возможность работы импульсного преобразователя без обязательного подключения внешней нагрузки. Резисторы создают контур разряда выходных фильтрующих конденсаторов, исключая увеличение выходных напряжений до амплитудных уровней импульсов, поступающих от выпрямительных элементов.

Максимальное рабочее напряжение конденсаторов, установленных в фильтрах вторичных каналов, не превышает 25 В. Амплитуда импульсов может быть выше этого предельного уровня.

В отсутствие резисторов может происходить заряд выходных конденсаторов до уровня, превышающего предельный, что на практике приведет к их повреждению. Эти вопросы мы подробно разберем во второй главе книги.

Номиналы балансных резисторов, устанавливаемых параллельно выходным фильтрующим конденсаторам, выбираются так, чтобы обеспечивать нагрузочный ток по каналу на уровне 50 мА.

1.1.4. Выпрямитель и фильтр напряжения

Вернемся к схеме, приведенной на рис. 1.3. Вентилятор подключается к выходу источника стабилизированного напряжения. Последовательно с вентилятором включен токоограничивающий резистор R7. Типовое значение номинала этого резистора составляет 10 Ом при максимальной рассеиваемой мощности 0,5 Вт.

Наибольшее отличие от других схемотехнических решений наблюдается в построении каналов с отрицательными номиналами выходных напряжений. Общий фильтр для двух отрицательных напряжений также выполнен в виде двух Г-образных индуктивно-емкостных фильтров.

К выходу стабилизированного напряжения -12 В через диод D5 подключен интегральный стабилизатор на микросхеме IC1 типа 7905. Схема интегрального стабилизатора для канала -12 В одновременно выполняет роль балансного резистора, обеспечивающего частичный разряд конденсатора С7. Выходное напряжение -5 В параметрического стабилизатора на IC1 дополнительно сглаживается конденсатором СИ.

В схемах, где средняя точка обмотки напряжения +12 В соединена с выходом канала +5 В (такое решение довольно популярно и используется и в схемотехнике многих ИИП), есть некоторые особенности.

Такой вариант включения обмотки (см. рис. 1.4) позволяет применить в выпрямительной схеме канала +12 В диоды Шоттки.

В этих диодах при работе с импульсными напряжениями 50 В происходит возрастание обратных токов, что и диктует необходимость снижения импульсного напряжения на них. При включении выпрямителя согласно схеме, приведенной на рис. 2.4, снижается амплитуда импульсов, воздействующих на выпрямительную схему, до уровня, при котором диоды сборки работают уже достаточно эффективно.

Источниками вторичных импульсных напряжений являются три обмотки Wl, W2 и W3 трансформатора Т. Обмотка W1 используется для получения только напряжения +5 В.

С обмотки W2 снимается импульсное напряжение, из которого после фильтрации получают стабилизированное постоянное напряжение + 12 В. Обе обмотки W1 и W2 нагружены на выпрямительные сборки, состоящие из диодов Шоттки.

Цепи фильтрации импульсного входного напряжения во всех каналах построены на основе индуктивно-емкостных Г-образных фильтров. В канале напряжения +5 В единственным индуктивным элементом в фильтре является одна из обмоток дросселя L1. Все остальные каналы дополнены отдельными дросселями, включенными последовательно с обмотками дросселя групповой стабилизации L1.


Рис. 1.4. Вариант включения обмотки импульсного трансформатора


Выводы комбинированной обмотки W3 присоединяются к катодам обычных импульсных выпрямительных диодов D1-D4. Средняя точка обмотки W3 подключена к общему проводу вторичной цепи питания. Диоды D1 и D4 образуют двухполупериодный выпрямитель канала напряжения -12 В.

Аналогичная выпрямительная схема для канала -5 В выполнена на диодах D2 и D3. Во вторичную цепь введен дроссель L1 групповой стабилизации вторичных напряжений по взаимным магнитным потокам. Несмотря на это, в каждом канале напряжений с отрицательными значениями включены интегральные стабилизаторы на IC1 и IC2. Между входом и выходом каждого интегрального стабилизатора подключаются демпфирующие диоды.

В схемах, где возбуждение популярной микросхемы управления TL494 производится первичным импульсом, напряжение питания этой микросхемы и промежуточного усилителя снимается с выхода выпрямительной схемы канала +12 В. Каскады фильтрации данного напряжения аналогичны приведенным ранее.

Амплитуда импульсов на выходе выпрямителя составляет 60 В. Уровень отфильтрованного постоянного напряжения непосредственно на ШИМ-преобразователе зависит от длительности выпрямленного импульса и промежутка между импульсами так называемой «мертвой зоны». Диапазон изменения постоянного напряжения в данном случае составляет примерно от +25 до +30 В.

1.2. Схемотехника защиты и формирования служебных сигналов

Энергетические характеристики силовых элементов импульсного преобразователя были выбраны, исходя из предположения, что в установившемся режиме работы на предельной мощности они не превысят предельно допустимых норм для данного прибора.

Наиболее критичными являются режимы работы силовых транзисторов.

Полумостовые импульсные преобразователи характеризуются тем, что максимальное напряжение на силовых транзисторах этой схемы равно напряжению питания каскада. Броски напряжения, возникающие в моменты коммутации транзисторов, устраняются включением защитных диодов между коллектором и эмиттером каждого силового транзистора. Такими диодами на принципиальной схеме, приведенной на рис. 1.3, являются D6 и D7.

Существующие нормы рекомендуют применять полупроводниковые приборы в цепях, предельные режимы эксплуатации которых имеют уровень 0,8 от максимального значения тока или напряжения. При выполнении этого требования, как правило, изготовители элементной базы гарантируют надежную работу приборов.

Наиболее критичным для работы силовых элементов (транзисторов) в усилителе мощности оказывается неконтролируемое возрастание нагрузки по вторичным каналам напряжения, которое превышает установленный предельный уровень.

Увеличение нагрузки приводит к росту тока, коммутируемого транзисторами полумостового усилителя мощности.

Процесс неконтролируемого нарастания тока и превышения максимально допустимых значений может быть только следствием неисправности и возникновения экстренной ситуации в нагрузочной цепи. Иногда это может быть обусловлено неправильным использованием преобразователя в режимах, не предусмотренных техническими характеристиками.

Для предотвращения повреждения элементов импульсного преобразователя в схему вводятся каскады, предназначенные для отключения формирователя ШИМ-последовательностей. После остановки работы ШИМ-регулятора прекращается подача управляющих импульсов в силовые цепи. Оба транзистора полумоста «замирают» в закрытом состоянии, их коммутация прекращается.

Защита источника питания от перегрузки по вторичным цепям выполняется остановкой преобразователя. Прекращение коммутации силовых транзисторов вызывает понижение напряжения питания на ШИМ-каскаде.

Если не происходит выгорание сетевого предохранителя, то единственным каскадом, остающимся под напряжением питания, будет усилитель мощности.

Все выходные цепи имеют гальваническую развязку от первичной сети, поэтому в отсутствие импульсных колебаний на входе усилителя мощности напряжения на них будут отсутствовать.

1.2.1. Практические примеры схемотехники защиты ИИП

Существуют различные схемы построения каскадов защиты. Общим для всех схем является то, что их действие вызывает остановку функционирования маломощной схемы ШИМ-регулятора при возникновении перегрузки в выходных цепях. Перегрузка источника питания по каждому каналу проявляется индивидуально. В соответствии с этим строится система блокировки работы ШИМ-преобразователя. В системе защиты учитывается поведение схемы при увеличении нагрузки по сильноточным каналам, то есть +5 и +12 В.

По мере возрастания нагрузки по этим каналам происходит заметное увеличение длительности импульсов управления усилителем мощности. Комплексная система защиты производит слежение за их длительностью.

В качестве датчика контроля длительности управляющих импульсов в схеме, приведенной на рис. 2.2, используется узел, основу которого составляют трансформатор ТЗ и схема на диодах D9 и D10. Первичная обмотка W3 трансформатора ТЗ включена в первичную цепь. Через нее протекает такой же импульсный ток, как и через первичную обмотку силового трансформатора. Вторичные обмотки W1 и W2 этого трансформатора присоединены к анодам диодов D9 и D10, катоды которых подключены к общему проводу вторичной цепи питания. Этими диодами образован двухполупериодный выпрямитель. Вторичные обмотки соединены последовательно.

С точки соединения обмоток снимается сигнальное импульсное напряжение отрицательной полярности, которое сглаживается на фильтре, образованном элементами R19 и С7. Через балансный резистор R12 происходит частичный разряд конденсатора С7 при текущей работе и полный разряд при отключении источника питания от сети.

В процессе работы преобразователя, когда происходит нормальная коммутация силовых транзисторов, на отрицательной обкладке конденсатора С7 накапливается заряд, пропорциональный длительности импульсов. Напряжение с этой обкладки через резистор R14 подается на вывод IC 1/15. Туда же через резистор R13 подводится напряжение вторичного канала источника питания +5 В.

Согласно функциональной схеме, представленной на рис. 1.5, вывод IC 1/15 является инвертирующим входом внутреннего усилителя ошибки DA4 ШИМ-преобразователя. Выходы внутренних усилителей DA3 и DA4 микросхемы TL494 объединены по схеме монтажного ИЛИ через диоды развязки. Неинвертирующий вход внутреннего усилителя DA4 (вывод IC 1/16) подсоединен к общему проводу.

Внутренний усилитель DA4 включен в режиме компаратора напряжения. Компаратор производит сравнение потенциалов на своих входах. В зависимости от их соотношения выходное напряжение принимает значения низкого или высокого уровня, быстро минуя промежуточные стадии переключения. Пока напряжение на выводе IC1/15 положительное, выход усилителя DA4 имеет низкий уровень напряжения, которым устанавливается обратное смещение на диоде D2. В таком режиме этот усилитель не оказывает влияния на работу ШИМ-компаратора DA2 и усилителя ошибки, выполненного на усилителе DA3.


Рис. 1.5. Функциональная блок-схема


Когда напряжение на входе IC 1/15 понижается до отрицательного уровня, происходит изменение состояния выхода DA4. На нем устанавливается положительное напряжение, практически равное по величине напряжению питания этого усилителя.

Происходит открывание диода D2, и положительное напряжение поступает на неинвертирующий вход ШИМ-компаратора DA2. Этим положительным напряжением запирается диод D1.

Таким образом, отключается внутренний усилитель ошибки на DA3. На выходе внутреннего компаратора DA2 появляется устойчивый положительный потенциал, являющийся запрещающим для работы внутреннего логического элемента на DD1. Через элемент DD1 прекращается подача импульсов на цифровой тракт микросхемы IC1, и, следовательно, выработка импульсов на выходных контактах ШИМ-преобразователя останавливается.

Делитель напряжения образован резисторами R13 и R14, подключенными к выводу IC 1/15. Один вывод делителя соединен с источником положительного напряжения вторичного канала +5 В, а второй – с источником отрицательного напряжения, формируемого на конденсаторе С7. На конденсатор С7 подается выпрямленное и отфильтрованное напряжение, источником которого являются вторичные обмотки трансформатора ТЗ. Уровень напряжения на отрицательной обкладке конденсатора С7 пропорционален длительности импульсов, формируемых ШИМ-преобразователем.

Время нахождения силовых транзисторов усилителя мощности в активном состоянии, а, следовательно, и длительность импульсов зависят от уровня нагрузки вторичной цепи. Повышение нагрузки вызывает увеличение интервалов, в течение которых транзисторы находятся в открытом состоянии. При снижении нагрузки этот интервал уменьшается. Косвенное слежение за уровнем нагрузки по вторичной цепи проводится с помощью контроля за напряжением на конденсаторе С7. Изменение напряжения на выводе IC 1/15 является следствием вариации потенциала на конденсаторе С7.

Повышение нагрузки вторичной цепи вызывает рост отрицательного напряжения на С7, которое через резистор R14 передается на IC 1/15. Когда отрицательная составляющая напряжения в резисторном делителе на R13 и R14 начинает преобладать над положительной, потенциал на IC1/15 становится отрицательным. Это вызывает переключение внутреннего компаратора DA4 микросхемы ШИМ-преобразователя и полную блокировку работы каскада управления.

Внимание, важно!

Таким образом, на базе трансформатора ТЗ собран узел защиты источника питания от перегрузки по основным каналам импульсного источника питания. Оценка уровня нагрузки проводится по ширине импульсов, коммутируемых силовыми транзисторами полумостового усилителя мощности.

Описанный узел может выполнять защитные функции только по основным каналам вторичных напряжений, где перегрузка вызывает заметное изменение интервалов импульсов. Вариации нагрузки, подключенной к относительно слаботочным каналам отрицательных напряжений, такого влияния на силовой каскад оказать не могут. Поэтому для слежения за состоянием уровней напряжения по этим каналам используется отдельный электронный узел, который выполнен на основе транзистора Q1.

1.2.2. Формирование и контроль импульсов для схемы защиты

Контроль осуществляется по отрицательным каналам напряжения и вторичной цепи +12 В. Вторичные каналы подключаются к эмиттерной цепи транзистора Q1. Выход канала +12 В соединяется с эмиттером Q1 через стабилитрон D1. Напряжение -5 В подводится через диод D2, выходное напряжение -12 В подключается к делителю, состоящему из резисторов R1-R3. Транзисторный каскад защиты через диод D4 подсоединен к выводу IC 1/4 – неинвертирующему входу внутреннего компаратора DA2 микросхемы ШИМ-преобразователя.

Действие механизма защиты направлено на увеличение потенциала этого входа в случае возникновения внештатной ситуации в нагрузочных цепях вторичных каналов.

Если напряжение на неинвертирующем входе DA1 превысит уровень пилообразного напряжения, действующего на втором входе компаратора, произойдет остановка формирователя ШИМ-последовательностей на выходах IC1.

Возрастание напряжения на IC 1/4 допускается только во время действия дестабилизирующих факторов в нагрузочных цепях. Во время нормального рабочего цикла преобразователя напряжение на этом входе не должно увеличиваться и вносить изменения в работу источника питания.

Уровень напряжения на IC 1/4 определяется резистивным делителем из R6 и R16 за вычетом напряжения, равного падению напряжения на диоде D4, а также состоянием переходов коллектор-эмиттер транзисторов Q1 и Q2. Резистор R6 подключен к источнику опорного напряжения схемы IC 1. Транзисторы Q1 и Q2 соединены коллекторными электродами по схеме ИЛИ. Постоянное положительное смещение в базовую цепь транзистора Q2 не подается. В течение рабочего цикла этот транзистор остается закрытым и на уровень смещения на входе IC 1/4 влияния не оказывает. Регулировка потенциала производится схемой на Q1.

Для обеспечения процесса формирования импульсных последовательностей микросхемой IC1 на коллекторе Q1 должно устанавливаться напряжение, близкое к потенциалу общего провода либо с отрицательным уровнем.

Такой режим транзистора поддерживается, если в его эмиттерной цепи напряжение имеет отрицательный уровень.

База транзистора Q1 подключена к общему проводу, поэтому управление проводится по эмиттерному электроду. Отрицательным напряжением на эмиттере транзистор Q1 переводится в проводящее состояние или насыщение. В этом случае напряжение на его коллекторе также имеет низкий уровень и шунтирует положительный потенциал, создаваемый резистивным делителем на R6 и R16. Отрицательное смещение на эмиттере Q1 устанавливается резистивным делителем. Резистор R2 в этом делителе подсоединен непосредственно к выходу канала -12 В. В точке соединения резистора R2 и катода диода D2 напряжение имеет значение -5,8 В.

При выбранном соотношении номиналов резисторов R1 и R3 транзистор Q1 находится в режиме насыщения, и напряжение на его эмиттере обусловлено открытым переходом база-эмиттер и равно примерно -0,8 В.

Следовательно, напряжение на коллекторе имеет уровень, близкий к потенциалу общего провода.

Напряжение +12 В не оказывает влияния на формирование напряжения на эмиттерном электроде, так как стабилитрон D1 выбирается с напряжением стабилизации 14–16 В. Если во вторичной цепи происходит КЗ по одному из каналов с отрицательным номиналом, то напряжение на эмиттере будет повышаться и приблизится к уровню общего провода. Если КЗ произойдет в канале -5 В, то на катоде диода D2 напряжение составит -0,7… -0,8 В. При этом на эмиттере Q1 потенциал будет иметь уровень примерно -0,2…-0,4 В, что недостаточно для перевода транзистора в активный режим.

Короткое замыкание напряжения -12 В вызовет блокировку диодом D2 подачи напряжения -5 В в эмиттерную цепь транзистора Q1, так как диод находится под воздействием потенциала, вызывающего обратное смещение p-n-перехода. В обоих случаях замыкания транзистор Q1 будет закрываться, это вызовет и рост напряжения на его коллекторе. Увеличение напряжения передастся на вывод IC 1/4, к которому подключен резистор R16. Значение сопротивления R16 в несколько раз превышает номинал R6, поэтому основное падение напряжения будет именно на R16, то есть на выводе IC 1/4. Если напряжение на этом выводе превысит уровень +3 В, то произойдет блокировка цифрового тракта микросхемы IC1 и генерация импульсов на выводах IC 1/8,11 прекратится.

Вторичные обмотки силового импульсного трансформатора выполняются проводами с различным сечением.

Сечение провода обмоток маломощных каналов меньше, чем сечение основных каналов. Внутреннее сопротивление источника напряжения, который образует вторичная обмотка, у маломощных каналов более высокое. Значительное увеличение потребления тока по этим каналам вызовет заметное падение напряжения на нагрузке, поэтому схема защиты может среагировать на резкое изменение выходного уровня до появления чистого КЗ и отключит блок питания.

Активное групповое слежение за состоянием вторичных напряжений в источнике питания производится сравнением выходного напряжения канала +5 В с уровнем опорного напряжения, формируемого внутренним узлом микросхемы IC 1. Если во вторичных цепях возникает большой разбаланс нагрузки, то напряжение в канале +12 В может сильно отличаться от номинальной величины.

В качестве защитной меры от повышения напряжения в этой цепи к эмиттеру Q1 подключен датчик напряжения канала +12 В на стабилитроне D1. Когда значение выходного напряжения в этом канале превышает напряжение стабилизации стабилитрона D1, происходит пробой последнего, и отрицательное напряжение на эмиттере Q1 начинает компенсироваться положительным потенциалом, поступающим через D1. Снижение отрицательного напряжения в этой точке приведет к запиранию транзистора Q1 и возрастанию положительного уровня на R16. Дальнейшее воздействие на IC 1/4 остановит ШИМ-преобразователь.

В начальный момент подачи электропитания на микросхему IC1 на всех вторичных каналах напряжения отсутствуют. Поэтому транзистор Q1 не может находиться в активном состоянии и принимать участие в запуске схемы преобразователя. В это время на IC 1/14 появляется опорное напряжение, которое через делитель из R6 и R16 поступит на IC 1/4 и блокирует работу микросхемы.

Для обеспечения нормального запуска IC1 применяется ключевой каскад на Q2, который начинает работать сразу после появления напряжения питания на выводе IC 1/12. В базовую цепь Q2 включены резисторы R4 и R5. Резистор R4 через конденсатор С5 соединен с цепью питания микросхемы IC1/12.

Когда происходит формирование начального импульса питания ШИМ-преобразователя, положительное напряжение через разряженный конденсатор С5 поступает на резистор R4 и через него попадает на базу транзистора Q2. Возникшим импульсом транзистор открывается, и напряжение на коллекторе Q2 резко понижается до нулевого уровня.

По мере заряда конденсатора С5 на его отрицательной обкладке происходит экспоненциальный спад положительного напряжения.

Снижение положительного напряжения вызывает постепенное закрывание транзистора Q2. Постоянная времени разряда конденсатора определяется номиналами элементов С5 и R4 и параллельного соединения открытого перехода база-эмиттер транзистора Q2 и резистора R5. Параметры пассивных элементов должны выбираться таким образом, чтобы закрывание транзистора происходило после появления отрицательных напряжений вторичных каналов на резисторе R2 и диоде D2. Если это условие соблюдается, то после закрывания транзистора Q2 напряжение на аноде D4 не примет положительного значения и сбоя в работе источника питания не произойдет.

Диод D4 выполняет функции развязывающего элемента, отделяющего элементы схемы «медленного» запуска от узла защиты и схемы на Q2.

Присутствие этого диода является необходимым условием плавного запуска ШИМ-преобразователя, так как его наличие исключает шунтирование положительного потенциала на отрицательной обкладке конденсатора С6 открытым транзистором Q2.

После завершения процедуры «медленного» запуска, если нагрузочные цепи в порядке, управление напряжением на выводе IC 1/4 сначала переходит к транзистору Q2, а затем к Q1.

Основное назначение схем защиты источника питания – исключение повреждений компонентов самого преобразователя при возникновении во вторичной цепи неконтролируемого увеличения нагрузки выше уровня, оговоренного условиями технической эксплуатации. Существует различный подход как к организации защиты, так и к применению электронных элементов.

В схемотехнике узлов защиты производится разделение каскадов, отвечающих за контроль работы основных вторичных каналов и маломощных цепей. Во внутренней структуре микросхемы TL494 введено несколько функциональных узлов, через которые можно оказывать воздействие на основной тракт формирования ШИМ-последовательностей от принудительного ограничения длительности выходных импульсов до полной блокировки схемы.

В зависимости от организации схемы защиты влияние на работу основной схемы может быть оказано через один или несколько таких узлов. Каждая схема преобразователя содержит элементы защиты, но выполнены они по-разному. На приведенных ниже схемах защиты показаны разные варианты практической реализации данного узла.

На рис. 1.6 представлен один из вариантов системы комплексной защиты импульсного преобразователя напряжения.


Рис. 1.6. Основные элементы узла электронной защиты


Нумерация элементов относится только к компонентам этого рисунка. На приведенной схеме показаны первичная цепь каскада промежуточного усилителя с согласующим трансформатором Т, упрощенная схема включения микросхемы TL494. Узел защиты представлен полнофункциональной схемой; он выполняет следующие основные функции:

• контроль длительности импульсов управления силовым каскадом;

• блокировка работы узла ШИМ-преобразователя в случае возникновения КЗ в каналах с отрицательными номиналами напряжений.

Оценка временного интервала, занимаемого положительным импульсом, проводится схемой постоянно. Слежение осуществляется с помощью элементов, подключенных к средней точке первичной обмотки согласующего трансформатора Т.

На среднем выводе первичной обмотки действует сигнал, форма которого представлена на рис. 1.7.


Рис. 1.7. Форма сигнала на среднем выводе первичной обмотки импульсного трансформатора ИИП


Резистор R14, диод D5 и конденсатор СЗ образуют схему выпрямителя и пассивного RC-фильтра импульсного сигнала. В итоге на конденсаторе СЗ появится положительное напряжение.

Уровень этого напряжения прямо пропорционален длительности импульсов управления, формируемых микросхемой ШИМ-преобразователя типа TL494. Напряжение, выделенное на конденсаторе СЗ, через резистор RIO подается на неинвертирующий вход внутреннего усилителя DA4 микросхемы TL494. На второй вход этого усилителя через вывод TL494/15 непосредственно поступает напряжение опорного источника +5 В.

Логика работы этого каскада в части контроля длительности импульсов похожа на функционирование аналогичного узла из схемы, приведенной выше на рис. 1.3.

Процесс контроля длительности импульсов управления включает в себя несколько этапов рабочего цикла узла защиты.

На внутреннем усилителе DA4 производится постоянное сравнение уровней напряжений, действующих на его входах. Усилитель не оказывает влияния на работу ШИМ-преобразователя, пока напряжение на выводе TL494/16 не превышает опорного уровня, постоянно установленного на выводе TL494/15.

Увеличение нагрузки вторичной цепи источника питания будет отражаться на уровне напряжения, выделяемого на конденсаторе СЗ. Ширина управляющих импульсов будет возрастать, что вызовет увеличение напряжения на СЗ.

Напряжение с конденсатора постоянно поступает на вход усилителя DA4.

Пока оно ниже уровня, установленного на инвертирующем входе DA4, выходное напряжение усилителя равно нулю. Увеличение длительности выше установленного порога вызывает включение механизма ее постепенного ограничения.

Усилитель на DA4 не охвачен обратной связью, поэтому на его выходе значение напряжения очень быстро изменяется. Повышение уровня на выходе усилителя DA4 приведет к блокировке усилителя ошибки DA3.

На неинвертирующем входе ШИМ компаратора DA2 положительное напряжение также будет повышаться. При этом будет происходить принудительное ограничение длительности импульсов, формируемых схемой ШИМ-преобразователя. Механизм активной защиты элементов источника питания включается с момента повышения напряжения на TL494/16 до уровня +5 В, когда напряжение на выходе DA4 начинает принимать положительное значение.

Сначала наступает этап принудительного ограничения длительности импульсов управления. Сигнал рассогласования от DA3 растет, и ШИМ-преобразователь старается компенсировать падение напряжения во вторичной цепи увеличением длительности импульсов управления. Когда происходит блокировка усилителя ошибки уровнем от DA4, продолжительность импульсов принудительно ограничивается. Если причина неконтролируемого увеличения потребления во вторичной цепи не устранена, то при достижении сигналом от усилителя DA4 уровня +3,2 В на выходе ШИМ-компаратора появляется устойчивый высокий уровень. Импульсных сигналов нет.

Генерация выходных импульсов ШИМ-преобразователем останавливается. Источник питания прекращает подачу энергии во вторичные цепи.

Фрагмент принципиальной схемы этого узла защиты (см. рис. 1.6) демонстрирует реализацию узла, ограничивающего длительности импульсов управления преобразователем, по сигналу датчика, полностью установленного во вторичной цепи источника питания.

В предыдущем случае датчик располагался в силовой части схемы, а обработка его сигнала полностью была отнесена во вторичную цепь.

В случае возникновения КЗ по любому из каналов с отрицательными значениями напряжений сигнал оповещения узла управления вырабатывается с помощью транзисторной схемы на Q1 и Q2.

В базовой цепи транзистора Q1 включен делитель напряжения на резисторах R1 и R2. В данном случае питание делителя напряжения производится от разнополярных источников напряжения.

Резистор R1 подключен к источнику опорного напряжения микросхемы TL494 с уровнем +5 В. Нижний по схеме вывод резистора R2 через резистор R3 соединен с цепью -12 В и через диод D1 – с цепью -5 В. Номиналы сопротивлений резисторов R1 и R2 равны, поэтому напряжение на базе транзистора Q1 будет имеет небольшое отрицательное значение. Эмиттер этого транзистора соединен с общим проводом, и, следовательно, переход база-эмиттер находится под напряжением обратного смещения. Транзистор закрыт, напряжение на коллекторе Q1 имеет высокий уровень. Поддерживание напряжения на базе, закрывающего транзистор Q1, возможно только в том случае, когда выдерживается расчетное соотношение напряжений -5 В и -12 В.

Если во вторичных цепях происходит КЗ, в результате которого одно из отрицательных напряжений изменяет свой уровень, то потенциал на базе транзистора Q1 возрастает. В результате замыкания напряжения -12 В на диоде D1 появляется обратное смещение и блокируется подача напряжения -5 В на резистор R2. Базовый потенциал транзистора Q1 получит приращение положительного напряжения, подаваемого через R1.

Аналогичная ситуация возникает при изменении напряжения -5 В до нулевого уровня.

Диод D1 находится под воздействием отпирающего напряжения. Его анод подключается к общему проводу, а напряжение на катоде приобретает значение -0,7…-0,8 В. Это небольшое напряжение мало отличается от нулевого потенциала.

На базе транзистора Q1 преобладающим оказывается положительный потенциал, которым транзистор открывается. Ключевая схема на транзисторе Q2 является нагрузкой транзисторного каскада на Q1. Коллектор транзистора Q2 через резистор R5 соединен с шиной питания ШИМ-преобразователя, напряжение на которой в установившемся режиме находится в диапазоне +25…+30 В.

Состояние ключа на Q2 является определяющим для функционирования микросхемы ШИМ-преобразователя. В нормальном состоянии схемы защиты, когда в нагрузочной цепи уровни напряжений соответствуют номинальным, транзистор Q2 открыт и находится в насыщении. В этом состоянии происходит подключение резистора R5 через открытый транзистор Q2 к общему проводу. Диод D2 закрыт. Вывод 4 микросхемы TL494 через резистор R6 соединен с общим проводом. Внешние элементы не оказывают действия на работу ШИМ-преобразователя.

Когда происходит КЗ и последовательное переключение транзисторных ключей, напряжение на коллекторе закрытого транзистора определяется соотношением сопротивлений R6 и R5. Оно выбирается таким образом, чтобы уровень напряжения на выводе 4 схемы TL494 в момент срабатывания защиты составлял +5 В. Переключение транзисторов происходит достаточно быстро, поэтому напряжение на TL494/4 изменяется практически скачком.

Резкое возрастание напряжения на неинвертирующем входе компаратора «мертвой зоны» блокирует логический элемент DD1. Таким образом, работа схемы управления останавливается.

Запуск ШИМ-преобразователя возможен только после выключения и повторного подключения напряжения первичного питания, если предварительно устранена причина, вызывавшая КЗ или ненормированную перегрузку.

Работа схем защиты источника питания, представленных на рис. 1.3 и рис. 1.6, характеризуется тем, что воздействие на ШИМ-преобразователь при возникновении перегрузки по основным каналам и в случае КЗ слаботочных цепей производится по различным внутренним цепям схемы TL494.

Узел защиты схемы, показанной на рис. 1.8, выполнен таким образом, что блокировка схемы управления производится по общему входу компаратора «мертвой зоны».


Рис. 1.8. Электронный узел защиты устройства преобразователя


На данном рисунке приведены основные элементы, непосредственно относящиеся к каскаду защиты, а также датчик – измеритель длительности импульсов управления.

Схема защиты, построенная в соответствии с рис. 2.8, выполняет отключение системы управления блоком питания при возникновении КЗ по любому из каналов с отрицательными номиналами напряжения, а также в случае увеличения длительности импульсов управления выше установленного интервала. После инициализации схемы ШИМ-преобразователя процедурой «медленного» запуска транзисторные каскады на Q1 и Q2 определяют состояние схемы управления импульсного усилителя мощности. Цикл «медленного» запуска заканчивается, и схема управления находится в нормальном рабочем режиме, когда оба транзистора Q1 и Q2 закрыты, а напряжение на выводе 4 микросхемы TL494 не будет превышать порогового уровня.

Отключение ШИМ-преобразователя и полная блокировка происходят при появлении на базе транзистора Q1 напряжения с положительным уровнем, равным 0,7…0,8 В. Действие всех датчиков состояния канальных напряжений направлено на формирование такого напряжения на базе Q1, когда возникает увеличение нагрузки в какой-либо вторичной цепи, превышающее уровень, заданный техническими характеристиками источника питания. Далее происходит последовательное переключение активных элементов, которое приводит к появлению высокого логического уровня на выводе TL494/4 и отключению этой микросхемы.

1.2.3. Организация контроля длительности импульсов управления

Контроль длительности импульсов управления осуществляется с помощью узла, собранного на элементах, подключенных к обмотке W2 согласующего трансформатора Т. Специальная обмотка W2 не используется в схеме формирования импульсных сигналов, а является дополнительным элементом, выполняющим функции датчика длительности положительных импульсов управления источником питания.

Один вывод обмотки W2 соединен с общим проводом вторичной цепи. Ко второму ее выводу подключен диод D8, образующий выпрямитель импульсного сигнала положительной полярности.

Нагрузкой выпрямителя является емкостный фильтр на конденсаторе С5, на котором выделяется положительное напряжение, пропорциональное длительности импульсов управления. Далее в электрической цепи установлены резисторы R1 и R15, а также подстроечный резистор R14. Цепью этих резисторов задается уровень напряжения на конденсаторе С5, при котором происходит открывание транзистора Q1. То есть соотношение резисторов в делителе определяет минимальную ширину импульсов управляющего сигнала, при которой происходит открывание транзистора Q1.

В канале защиты применяются биполярные транзисторы разных типов проводимости, включенные по схеме электронных ключей.

Транзистор Q1 открывается положительным напряжением относительно потенциала общего провода. Эмиттер транзистора Q2 соединен с выводом опорного напряжения схемы TL494. Его отпирание происходит, когда на базе действует напряжение, уровень которого ниже потенциала эмиттера.

В режиме нормального функционирования возможно частичное открывание транзистора Q1, но оно не приводит к переключению Q2 из закрытого состояния в насыщение.

В таком режиме напряжение на коллекторе Q2 мало изменяется и остается на уровне, близком к потенциалу общего провода. Низкое напряжение на аноде диода D4 не может его открыть, поэтому приращения напряжения на выводе 4 микросхемы TL494 не происходит. Потенциал этого вывода определяется падением только на резисторе R8.

Повышение нагрузки в основных каналах вторичной цепи приводит к тому, что схема управления усилителем мощности увеличивает длительность импульсов для компенсации энергетических потерь.

1.2.4. Работа устройства в режиме перегрузки

На дополнительной обмотке W2 согласующего трансформатора наводится ЭДС, форма которой полностью повторяет вид сигнала управления. Импульсный сигнал детектируется выпрямителем на D8 и фильтруется конденсатором С5.

Если источник питания работает в режиме перегрузки, то постепенно напряжение на конденсаторе достигнет уровня, при котором на базе Q1 появится открывающий положительный потенциал.

Нарастающее напряжение на базе Q1 плавно открывает транзистор, и напряжение на его коллекторе понижается. В коллекторной цепи Ql включен делитель на резисторах R2 и R3, средняя точка которого подсоединена к базе Q2. Понижение напряжения на коллекторе Q2 через R3 передается на базу Q2, открывая его. Собственное сопротивление транзистора Q2 уменьшается, положительное напряжение на его коллекторе начинает расти.

В том случае, если источник перегрузки вторичной цепи не устранен, рост напряжения на базе Q2 приведет к полному его открыванию и переключению транзистора в насыщение. Напряжение на аноде диода D4 будет равно опорному, имеющему значение +5 В, за вычетом падения на открытом транзисторе Q2. Через открытый диод D4 напряжение опорного источника поступает на вывод TL494/4, где его уровень будет составлять примерно +3,9 В. Это значение превышает максимальный уровень пилообразного напряжения, поэтому формирование импульсного сигнала на выходах ШИМ-преобразователя будет блокировано. Импульсы возбуждения не будут подаваться на усилитель мощности, передача энергии через импульсный силовой трансформатор во вторичную цепь прекратится.

Конец ознакомительного фрагмента.