Вы здесь

Удовольствие от X. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире. Часть I. Числа (Стивен Строгац, 2012)

Часть I. Числа

1. Основы чисел: сложение рыбок

Лучшую демонстрацию концепции чисел, которую я когда-либо видел (самое ясное и забавное объяснение того, что такое числа и зачем они нам нужны), я наблюдал в одном из выпусков популярной детской передачи «Улица Сезам», который называется «123: считаем вместе» (123 Counter with Me). Хамфри, добродушный, но недалекий персонаж с розовой шерсткой и зеленым носом, работающий в отеле «Мохнатые лапы», в обеденное время принимает по телефону заказ от пингвинов-постояльцев. Внимательно их выслушав, Хамфри передает заказ на кухню: «Рыбка, рыбка, рыбка, рыбка, рыбка, рыбка». Увиденное побуждает Эрни рассказать Хамфри о достоинствах числа шесть.




Дети узнаю́т, что числа – великолепный инструмент, который позволяет получить нужное количество порций быстрее. Вместо того чтобы повторять слово «рыбка» столько раз, сколько пингвинов в комнате, Хамфри может использовать более эффективный способ – посчитать и сразу назвать число шесть.

Впрочем, став старше, мы начинаем замечать у чисел и слабые стороны. Да, они прекрасно экономят время, но немалой платой за это становится их абстрактность. Число шесть более эфемерно, чем «шесть рыбок» – именно потому, что оно универсально. Шесть может быть чего угодно: шесть тарелок, шесть пингвинов, шесть раз произнесенное слово «рыбка». Число создает некую неявную общность между приведенными примерами.

Рассматриваемые таким образом числа начинают казаться мистическими. Они, очевидно, существуют в некоем идеальном мире Платона, где-то над действительностью, и в этом смысле больше походят на другие возвышенные понятия (например, истина и справедливость) и меньше – на обычные объекты повседневной жизни. Чем активнее вы о них думаете, тем дальше они удаляются от реальности. Как появились числа? Изобрели ли их люди? Или лишь обнаружили?

Еще один нюанс заключается в том, что числа (как и все математические идеи) живут своей жизнью{1}. Они нам неподвластны, хотя и присутствуют в наших умах. Даже определив, что мы под ними понимаем, мы не можем предсказать, как они себя поведут. Они подчиняются определенным законам и имеют определенные свойства, индивидуальные особенности и способы объединения друг с другом, и мы ничего не в силах с этим поделать, кроме как наблюдать и пытаться понять. В этом смысле они похожи на атомы и звезды: объекты, которые также существуют по своим (неподконтрольным нам) законам и находятся вне зоны нашего сознания.

Эта двойственная природа чисел – принадлежность к небесам и земным делам, – возможно, их самая парадоксальная черта и особенность, которая делает их настолько полезными. Это то, что имел в виду физик Юджин Вигнер, когда писал о неблагоразумной эффективности математики в естественных науках{2}.

Для того чтобы прояснить, что я имею в виду под жизнью чисел и их поведением, которое мы не можем контролировать, давайте вернемся в отель «Мохнатые лапы». Предположим, что Хамфри как раз собрался передать заказ, но тут ему неожиданно позвонили пингвины из другого номера и тоже попросили такое же количество рыбы. Сколько раз Хамфри должен прокричать слово «рыбка» после получения двух заказов? Если бы он ничего не узнал о числах, то ему пришлось бы кричать столько раз, сколько всего пингвинов в обеих комнатах. Или, используя числа, он мог объяснить повару, что ему нужно шесть рыбок для одного номера и шесть для другого. Но то, что ему действительно необходимо, представляет собой новую концепцию – сложение. Как только он его освоит, он с гордостью скажет, что ему нужно шесть плюс шесть (или, если он позер, двенадцать) рыбок.

Это такой же творческий процесс, как и тот, когда мы только придумывали числа. Так же как числа упрощают подсчет по сравнению с перечислением по одному, сложение упрощает вычисление любой суммы. При этом тот, кто производит подсчет, развивается как математик. По-научному эту мысль можно сформулировать так: использование правильных абстракций приводит к более глубокому проникновению в суть вопроса и большему могуществу при его решении.

Вскоре, возможно, даже Хамфри поймет, что теперь он всегда может производить подсчет.

Однако, несмотря на столь бесконечную перспективу, наше творчество всегда имеет какие-то ограничения. Мы можем решить, что подразумеваем под 6 и +, но как только это сделаем, результаты выражений, подобных 6 + 6, окажутся вне нашего контроля. Здесь логика не оставит нам выбора. В этом смысле математика всегда включает в себя как изобретение, так и открытие: мы изобретаем концепции, но открываем их последствия. Как станет ясно из следующих глав, в математике наша свобода заключается в возможности задавать вопросы и настойчиво искать на них ответы, однако не изобретая их самостоятельно.

2. Каменная арифметика

Как и любое явление в жизни, арифметика имеет две стороны: формальную и занимательную (или игровую).

Формальную часть мы изучали в школе. Там нам объясняли, как работать со столбцами чисел, складывая и вычитая их, как перелопачивать их при выполнении расчетов в электронных таблицах при заполнении налоговых деклараций и подготовки годовых отчетов. Эта сторона арифметики кажется многим важной с практической точки зрения, но совершенно безрадостной.

С занимательной стороной арифметики можно познакомиться только в процессе изучения высшей математики{3}. Тем не менее, она так же естественна, как и любопытство ребенка{4}.

В эссе «Плач математика» Пол Локхарт предлагает изучать числа на более конкретных, чем обычно, примерах: он просит, чтобы мы представили их в виде некоторого количества камней. Например, число 6 соответствует вот такому набору камешков:




Вы вряд ли увидите тут что-то необычное. Так оно и есть. Пока мы не приступим к манипуляциям с числами, они выглядят примерно одинаково. Игра начинается, когда мы получаем задание.

Например, давайте посмотрим на наборы, в которых есть от 1 до 10 камней, и попробуем сложить из них квадраты. Это можно сделать только с двумя наборами – из 4 и 9 камней, поскольку 4 = 2 × 2 и 9 = 3 × 3. Мы получаем эти числа путем возведения в квадрат некоего другого числа (то есть раскладывая камни в виде квадрата).




Вот задача, имеющая большее число решений: надо узнать, из каких наборов получится прямоугольник, если разложить камни в два ряда с равным количеством элементов. Здесь подойдут наборы из 2, 4, 6, 8 или 10 камней; число должно быть четным. Если мы попробуем разложить в два ряда оставшиеся наборы с нечетным количеством камней, то у нас неизменно будет оставаться лишний камень.




Но не все потеряно для этих неудобных чисел! Если взять два таких набора, то лишние элементы найдут себе пару, и сумма получится четной: нечетное число + нечетное число = четное число.




Если распространить эти правила на числа, идущие после 10, и считать, что количество рядов в прямоугольнике может быть больше двух, то некоторые нечетные числа позволят сложить такие прямоугольники. Например, число 15 может составить прямоугольник 3 × 5.




Поэтому хотя 15, несомненно, нечетное число, оно является составным и может быть представлено в виде трех рядов по пять камней в каждом. Точно так же любая запись в таблице умножения дает собственную прямоугольную группу камешков.

Но некоторые числа, вроде 2, 3, 5 и 7, совершенно безнадежны. Из них нельзя выложить ничего, кроме как расположить их в виде простой линии (одного ряда). Эти странные упрямцы – знаменитые простые числа.

Итак, мы видим, что числа могут иметь причудливые структуры, которые наделяют их определенным характером. Но, чтобы представить весь спектр их поведения, надо отстраниться от отдельных чисел и понаблюдать за тем, что происходит во время их взаимодействия.

Например, вместо того чтобы сложить всего два нечетных числа, сложим все возможные последовательности нечетных чисел, начиная с 1:


1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25


Удивительно, но эти суммы всегда оказываются идеальными квадратами. (О том, что 4 и 9 можно представить в виде квадратов, мы уже говорили, а для 16 = 4 × 4 и 25 = 5 × 5 это тоже верно.) Быстрый подсчет показывает, что это правило справедливо и для бо́льших нечетных чисел и, видимо, стремится к бесконечности. Но какая же связь между нечетными числами с их «лишними» камнями и классически симметричными числами, образующими квадраты? Правильно располагая камешки, мы можем сделать ее очевидной, что является отличительной чертой изящного доказательства.{5}

Ключом к нему будет наблюдение, что нечетные числа можно представить в виде равносторонних уголков, последовательное наложение которых друг на друга образует квадрат!




Подобный способ рассуждений представлен еще в одной недавно вышедшей книге. В очаровательном романе Ёко Огавы The Housekeeper and the Professor («Домработница и профессор») рассказывается о проницательной, но необразованной молодой женщине и ее десятилетнем сыне. Женщину наняли ухаживать за пожилым математиком, у которого из-за полученной черепно-мозговой травмы в краткосрочной памяти сохраняется информация только о последних 80 минутах жизни. Потерявшись в настоящем, один в своем убогом коттедже, ничего не имея, кроме чисел, профессор пытается общаться с домработницей единственным известным ему способом: спрашивая о размере ее обуви или дате рождения и ведя с нею светскую беседу о ее расходах. Профессор также питает особую симпатию к сыну экономки, которого называет Рут (Root – корень), потому что у мальчика сверху плоская голова, и это напоминает ему обозначение в математике квадратного корня √.

Однажды профессор предлагает мальчику простую задачу – найти сумму всех чисел от 1 до 10. После того как Рут аккуратно складывает все числа между собой и возвращается с ответом (55), профессор просит его поискать более простой способ. Сможет ли он найти ответ без обычного сложения чисел? Рут пинает стул и кричит: «Это несправедливо!»

Мало-помалу домработница тоже втягивается в мир чисел и сама тайно пытается решить эту задачу. «Я не понимаю, почему так увлеклась детской задачкой, которая не имеет никакой практической пользы», – говорит она. «Сначала я хотела угодить профессору, но постепенно это занятие превратилось в сражение между мной и числами. Когда я просыпалась утром, уравнение уже ждало меня:


1 + 2 + 3 + … + 9 + 10 = 55,


и весь день следовало по пятам, будто было выжжено на сетчатке моих глаз, и его никак не получалось проигнорировать». Существует несколько путей решения задачи профессора (интересно, сколько сможете найти вы). Профессор сам предлагает способ рассуждений, который мы уже применили выше. Он интерпретирует сумму от 1 до 10 в виде треугольника из камешков, с одним камешком в первой строке, двумя во второй и так далее, до десяти камешков в десятом ряду.




Эта картинка дает четкое представление о негативном пространстве. Оказывается, оно заполнено только наполовину, что показывает направление творческого прорыва. Если скопировать треугольник из камешков, перевернуть его и соединить с уже существующим, то получится нечто весьма простое: прямоугольник с десятью рядами по 11 камешков в каждом, причем общее число камней составит 110.




Так как исходный треугольник – половина этого прямоугольника, то вычисляемая сумма чисел от 1 до 10 должна быть половиной 110, то есть 55.

Представление числа в виде группы камешков может показаться необычным, но на самом деле так же старо, как и сама математика. Слово «вычислять» (англ. calculate) отражает это наследие и происходит от латинского calculus, означающего «галька», которую римляне использовали при выполнении вычислений. Чтобы получать удовольствие от манипуляций с числами, не обязательно быть Эйнштейном (что по-немецки означает «один камень»), но, возможно, умение жонглировать камешками облегчит вам это занятие.

3. Враг моего врага

В начальной школе вычитание учат сразу после сложения. И в этом, безусловно, есть смысл: в обоих случаях применяется счет чисел, только при вычитании он выполняется в обратную сторону. Психологически действия тоже похожи: ребенок учится брать и давать примерно в одно и то же время. Сложение и вычитание всегда идут рука об руку. Если человек готов посчитать, сколько будет 23 + 9, то не сомневайтесь, он скоро ответит и на вопрос, сколько будет 23 – 9.

Но если углубиться в эту тему, то в отличие от сложения вычитание создает довольно неприятную проблему, поскольку в результате могут появиться отрицательные числа. Если я захочу взять у вас 6 булочек, а у вас их только 2, то в реальности у меня ничего не получится. Зато в уме я навешу на вас 4 отрицательные булочки, что бы это ни значило.

Вычитание заставляет нас расширить свое представление о числах. Отрицательные числа более абстрактны, чем положительные. Четыре отрицательные булочки не потрогаешь и не съешь, зато их можно представить. Самое интересное, что в реальном мире отрицательные числа тоже встречаются: долги, перерасход по кредитной карте, минусовые температуры зимой и обозначения подвальных уровней на крытых парковках.

Многие из нас пока еще не заключили мир с отрицательными числами. Как заметил мой коллега Энди, люди придумали всевозможные забавные мелкие уловки, чтобы обойти страшный отрицательный знак «минус». В отчетах паевых инвестиционных фондов потери (отрицательные числа) печатаются красным или заключаются в круглые скобки, чтобы минусы ни в коем случае не появились. В исторических книгах сказано, что Юлий Цезарь родился в 100 году до н. э., а не в –100 году. Подземные уровни парковки часто обозначаются как B1 и B2. Температура – одно из немногих исключений, когда люди действительно говорят, что она составляет –5 градусов, хотя и в этом случае многие предпочитают фразу «5 градусов ниже нуля». Видимо, в отрицательном знаке есть нечто отталкивающее и… негативное.

Возможно, самое неприятное заключается в том, что при перемножении двух отрицательных чисел получается положительное число. Поэтому позвольте привести доводы в защиту знака минус.

Как нам определить ценность такого выражения, как –1 × 3, где мы умножаем отрицательное число на положительное? Ну хорошо, так как 1 × 3 означает сумму 1 + 1 + 1, естественно представить –1 × 3 как (–1) + (–1) + (–1), что равняется –3. Это должно стать очевидным в примере с деньгами: если вы должны мне 1 доллар в неделю, то по истечении трех недель вы мне будете должны 3 доллара.

Отсюда уже недалеко до понимания, почему минус, умноженный на минус, дает плюс. А теперь взгляните на следующий ряд равенств:


– 1 × 3 = –3

– 1 × 2 = –2

– 1 × 1 = –1

– 1 × 0 = 0

– 1 × –1 =?


Посмотрите на числа в правой части равенств и удостоверьтесь в том, что это обычная прогрессия: –3, –2, –1, 0… На каждом шаге мы добавляем 1 к предыдущему числу. Таким образом, разве не логично, что следующим числом будет 1?

Это один аргумент в пользу того, почему (–1) × (–1) = 1. Привлекательность такого толкования заключается в том, что оно позволяет сохранить правила обычной арифметики – получается, что они верны как для положительных, так и для отрицательных чисел.

Но если вы бесчувственный прагматик, то, вероятно, будете удивлены, что у этих абстракций есть некие параллели в реальном мире. По общему признанию, жизнь иногда играет по различным правилам. В обычных этических построениях два заблуждения не приводят к истине. Более того, двойные отрицания не всегда равнозначны утверждению; они могут усилить отрицание, как в случае с «Я не могу получить никакого удовлетворения». (Действительно, в этом отношении язык может быть очень мудреным. Выдающийся британский философ и лингвист Дж. Остин из Оксфорда как-то в своей лекции заявил, что во многих языках двойное отрицание дает утверждение, но ни в одном дважды повторенное утверждение не дает отрицания. На что сидевший в аудитории философ из Колумбии Сидни Мордженбессер ехидно процедил: «Да-да».)

Тем не менее есть немало случаев, когда реальный мир действительно отражает правила умножения отрицательных чисел. Например, возбуждение одной нервной клетки может быть подавлено возбуждением второй нервной клетки. Если в этот момент возбуждение второй нервной клетки подавляется третьей нервной клеткой, то первая клетка может снова возбудиться. Косвенное воздействие третьей клетки на первую вызывает ее возбуждение. Таким образом, последовательность двух отрицаний приводит к утверждению. Подобные эффекты происходят и при регуляции генов: белок может включить ген, блокируя другую молекулу, которая подавляла этот отрезок молекулы ДНК.

Возможно, самую понятную параллель можно провести в социально-политической сфере. Как утверждает пословица, «враг моего врага – мой друг». Общеизвестно, что понятия вроде «друг моего врага», «враг моего друга» и тому подобные можно подставить в виде треугольника отношений.{6}

В углы треугольника помещают людей, компании или страны, а соединяющие их стороны показывают отношения между ними, которые могут быть как позитивными, или дружественными (обычно отображаются сплошными линиями), так и негативными, или враждебными (отображаются пунктирными линиями).




Социологи строят треугольники, подобные треугольнику слева, то есть считая отношения между объектами позитивными, так как разумно любить друзей ваших друзей. Точно так же треугольник справа, с двумя негативными и одной позитивной связью, считается сбалансированным, потому что такая комбинация не вызывает разногласий, даже несмотря на две стороны с негативными связями, поскольку ничто так не цементирует дружбу, как ненависть к одному и тому же человеку.

Конечно, треугольники могут быть выведены из состояния баланса. Это происходит в ситуации, когда есть три врага, причем двое из них относятся друг к другу менее враждебно и готовы объединиться, чтобы напасть на третьего.

Еще менее сбалансированным будет треугольник с единственной негативной связью. Например, предположим, что Кэрол хорошо относится и к Элис, и к Бобу, но Боб и Элис не любят друг друга. Возможно, они когда-то встречались и пережили тяжелое расставание, и теперь говорят друг о друге гадости лояльной к обоим Кэрол. Это создает психологическое напряжение между всеми тремя. Чтобы восстановить баланс, либо Элис и Боб должны урегулировать свои отношения, либо Кэрол должна принять чью-то сторону.




Во всех этих случаях логика баланса соответствует логике умножения. В сбалансированном треугольнике знак произведения двух любых сторон, положительный или отрицательный, всегда совпадает со знаком третьей стороны. В несбалансированном треугольнике это правило нарушается.

Не будем касаться вопросов о правдоподобии приведенных моделей, ибо здесь возникают интересные вопросы с чисто математическим привкусом. Например, в связной сети, где все друг друга знают, какое самое устойчивое состояние? Прежде всего это нирвана доброжелательности, где все отношения позитивные, а все треугольники в пределах сети сбалансированы. Однако существуют и другие устойчивые состояния. Например, устойчивое к конфликтам состояние, когда сеть раскололась на два враждебных лагеря (произвольных по величине и составу). Все члены одного лагеря хорошо относятся друг к другу, но враждебны к представителям другого лагеря. (Ничего не напоминает?) Возможно, еще более удивительно то, что эти полярные состояния являются единственно возможными столь же устойчивыми состояниями, как нирвана{7}. В частности, ни у какого трехстороннего раскола не может быть уравновешенных треугольников.

Ученые использовали этот метод для анализа союзов, сложившихся при подготовке к Первой мировой войне{8}. Диаграммы, представленные ниже, показывают союзы между основными державами, участвовавшими в ней: Великобританией, Францией, Россией, Италией, Германией и Австро-Венгрией между 1872 и 1907 гг.








Первые пять конфигураций были несбалансированными, потому что каждая из них содержала по крайней мере один несбалансированный треугольник. Возникающие в результате разногласия подталкивали эти страны к изменению конфигурации, тем самым вызывая реверберацию в других частях сети. На последнем этапе Европа раскололась на два непримиримых антагонистских блока, придя к общему балансу, но оказавшись на грани войны.

Однако это не значит, что на основании данной теории можно делать прогнозы. Это не так. Подобный подход не позволяет объяснить все тонкости изменений в геополитике. Но некоторые из наблюдаемых нами явлений происходят в соответствии именно с примитивной логикой «враг моего врага» и отлично подпадают под умножение отрицательных чисел. Отделяя важное от незначительного, арифметика отрицательных чисел может помочь нам отыскать настоящие загадки.

4. Коммутативность: перемена мест сомножителей

Приблизительно каждые десять лет появляются новые методы преподавания математики, что лишний раз заставляет родителей почувствовать себя отставшими от жизни. Еще в 60-е годы прошлого века мои родители были в шоке оттого, что не могли мне помочь выполнить простое домашнее задание – они никогда не слышали о троичной системе счисления и диаграммах Эйлера-Венна.

Сегодня ситуация не изменилась. «Папа, ты можешь показать мне, как делать эти примеры на умножение?» «Конечно могу», – самонадеянно заявил я, пока не довел дочь до истерики. «Нет, папа, сейчас это делают не так! Это устаревший способ! Разве ты не знаешь умножения методом решетки? Нет? Ну а как насчет частичных произведений?»

Эта унизительная ситуация побудила меня пересмотреть процесс умножения с самого начала{9}. И оно, как только вы вникнете в него глубже, действительно оказывается очень тонкой вещью.

Возьмите, например, терминологию. Равно ли трижды семь сумме трех по семь? Или сумме семи по три?

В некоторых культурах язык менее неоднозначен. Один мой друг из Белиза привык читать таблицу умножения так: «Семь один раз – это семь, семь дважды – четырнадцать, семь трижды – двадцать один» и так далее. Такая формулировка позволяет понять, что первое число это множимое, а второе – множитель. Аналогичная игра слов есть и в бессмертных стихах песни Лайонела Ричи[3] «Она однажды, дважды, трижды леди». (Слова «Она леди три раза» никогда не стали бы хитом.)

Может быть, вся эта суета вокруг семантики кажется вам глупой, так как порядок, в котором числа перемножаются, не имеет никакого значения, то есть в любом случае 7 × 3 = 3 × 7. Хорошо, но тут напрашивается вопрос, на котором я хотел бы остановиться подробнее. Является ли этот переместительный (коммутативный) закон умножения a × b = b × a действительно таким очевидным? Помню, меня еще в детстве он удивил, возможно, и вас тоже.

Чтобы привнести немного магии, представьте себе, что вы не знаете, чему равно 7 × 3, и поэтому складываете семерки: 7, 14, 21. Теперь поменяйте местами сомножители и складывайте тройки, получается 3, 6, 9… Чувствуете ли вы все нарастающее недоумение? До сих пор ни одно из чисел в этих перечнях не совпало, но пройдем дальше… 12, 15, 18, и затем – ах! – 21.

Я хочу сказать, что если вы считаете, что умножение соответствует многократному суммированию определенного числа (другими словами, многократному сложению), то коммутативный закон не совсем понятен. Но все проясняется, если представить умножение визуально. Допустим, 7 × 3 – это число точек в прямоугольной матрице с семью строками и тремя столбцами.




Если поставить матрицу набок, она превращается в матрицу, состоящую из трех строк и семи столбцов. Поскольку сама картинка при вращении не изменяется (то есть количество точек сохраняется), то похоже на то, что действительно 7 × 3 = 3 × 7.




Тем не менее, как ни странно, во многих реальных ситуациях, особенно когда дело касается денег, люди, кажется, забывают о коммутативном законе умножения. Позвольте привести два примера.

Предположим, вы собрались купить новые джинсы. Их продают со скидкой 20% от цены 50 долларов, указанной на этикетке, что выглядит заманчиво, но имейте в виду, что вам также придется заплатить 8% налога с продаж. После того как продавщица закончит нахваливать, как великолепно джинсы на вас сидят, и начнет оформлять покупку, она сделает паузу и заговорщицки шепнет: «Позвольте мне сэкономить ваши деньги. Я сначала посчитаю налог, а затем 20%-ную скидку от полученной суммы. Хорошо?»

Но что-то вас смущает. «Нет, спасибо, – говорите вы. – Не могли бы вы сначала вычесть 20%-ную скидку, а затем снять налог с цены покупки? Тогда я заплачу меньше».

Какой способ более выгоден для вас? (Предположим, что оба законны.)

Столкнувшись с подобной задачей, многие решают ее последовательным суммированием. Они вычисляют налоги и скидки в соответствии с заданным сценарием, а затем, чтобы определить окончательную цену, выполняют необходимое сложение или вычитание.

Если вы согласитесь с продавцом, то налог составит 4 доллара (8% от цены на этикетке). И цена джинсов увеличится до 54 долларов. Тогда при 20%-ной скидке от 54 долларов возвращенная сумма будет равняться 10,80 доллара. Итак, в конечном счете вы заплатите 54 доллара минус 10,80 доллара, что в сумме даст 43,20 доллара.

В соответствии же с вашим сценарием сначала будет вычитаться 20% скидки (на чем вы сэкономите 10 долларов от цены на этикетке). Тогда 8% налога на льготную цену в 40 долларов составят 3,20 доллара, так что вы все равно в конечном итоге заплатите 43,20 доллара. Удивительно?!

Но это же просто коммутативный закон в действии. Чтобы это понять, необходимо думать в стиле последовательного умножения, а не последовательного сложения. 8% налога и последующая за ним 20%-ная скидка вычисляются путем умножения цены на этикетке на 1,08 и последовательным умножением полученного результата на 0,80. Изменение порядка вычисления налога или скидки просто меняет местами сомножители, но, поскольку выполняется равенство 1,08 × 0,80 = 0,80 × 1,08, окончательная цена получается одинаковой{10}.

Соображения, подобные этим, возникают и при принятии решений о больших финансовых сделках. Лучше или хуже традиционного пенсионного плана новый план недавно, принятый Конгрессом США (закон Roth 401(k)){11}? И вообще, если у вас есть куча денег, которые вы намерены инвестировать, но на них нужно платить налоги, то когда лучше это делать – в начале инвестиционного периода или в конце?

Повторяю еще раз: коммутативный закон показывает, что при всех прочих равных условиях (которые, к сожалению, часто таковыми не являются) вы ничего не выигрываете. Если при обоих сценариях факторы роста денег и размеры налога одинаковы, то не имеет никакого значения, когда вам платить налоги – авансом или в конце периода.

Пожалуйста, не принимайте эти математические рассуждения за финансовый совет. Тем, кто сталкивается с решением подобных проблем, нужно учитывать, что в реальной жизни все не так просто. После выхода на пенсию вы предполагаете оказаться в верхней или нижней точке налоговой шкалы? Намерены ли вы полностью обнулить свой банковский депозит? Как думаете, правительство изменит налоговую политику при снятии денег со счетов к тому времени, когда вы соберетесь их взять, или нет? Но хватит об этом. И не поймите меня неправильно, это все важно и для меня, но здесь я пытаюсь сосредоточиться на более простых математических задачах и просто хочу показать, что коммутативный закон имеет отношение к анализу таких решений.

Об этом ведутся горячие споры на различных финансовых сайтах в интернете. Но даже после того как была показана актуальность коммутативных законов, некоторые блогеры с этим не согласились. Что, по большому счету, противоречит здравому смыслу.

Возможно, мы запрограммированы не доверять коммутативному закону, потому что в повседневной жизни, как правило, имеет значение то, что мы делаем в первую очередь. Нельзя одновременно брать кусок пирога и есть его. И снимать ботинки и носки тоже нужно в правильной последовательности.

Физик Мюррей Гелл-Манн как-то в ходе тревожных размышлений о своем будущем тоже пришел к аналогичному выводу. Закончив Йельский университет, он отчаянно хотел остаться в Лиге плюща[4]. К сожалению, в Принстон его не приняли. В Гарвард взяли, но без финансовой помощи он протянул бы ноги. Лучшим из возможных вариантов оказался Массачусетский технологический институт (но он не входил в Лигу плюща). В глазах амбициозного Гелл-Манна это учебное заведение было не очень престижным. Тем не менее он принял предложение. Много лет спустя он признался, что в тот момент подумывал о самоубийстве, но решил этого не делать, как только понял, что посещение Массачусетского технологического института и самоубийство нельзя переставить (поменять местами){12}. Он мог бы пойти учиться в Массачусетский технологический институт, а потом убить себя, но не наоборот.

Гелл-Манна, вероятно, впечатлила важность принципа коммутативности. Но в квантовой физике он бы обнаружил, что на самом глубинном уровне природа не подчиняется коммутативному закону. И это тоже хорошо, поскольку благодаря нарушению коммутативного закона мир таков, каков он есть. Именно поэтому материя является твердой и атомы не разрушаются.

Еще на заре появления квантовой механики{13} Вернер Гейзенберг и Поль Дирак обнаружили, что в природе p × qq × p, где p и q – импульс и координата квантовой частицы. Без этого нарушения коммутативного закона не было бы принципа неопределенности Гейзенберга, атомы бы взорвались и ничего не существовало бы.

Вот почему вам лучше позаботиться о своих p и q. И наказать делать это своим детям.

5. Деление и его проблемы

Через все повествование о числовых основах математики красной нитью проходит одна идея. Речь идет о создании (или поиске) все более универсальных чисел.

Нам достаточно натуральных чисел 1, 2, 3 и т. д., если нужно что-то сосчитать, сложить или перемножить. Но как только мы переходим к вычитанию, мы вынуждены создать новый вид числа – ноль, а также отрицательные числа. Эта расширенная вселенная чисел, называемых целыми, так же замкнута, как и натуральные числа, но она более мощная, поскольку охватывает еще и результаты операции вычитания[5].

Новый кризис наступает при попытке выполнить математическую операцию деления. Деление целого числа без остатка не всегда возможно… если мы не расширим вселенную чисел еще раз, своевременно изобретя дроби. Дроби – это отношение целых чисел, следовательно, их математическое название – рациональные числа. К сожалению, это то место, где многие студенты бьются головой о математическую стенку.

Конец ознакомительного фрагмента.