Вы здесь

Теоретические основы и практическое применение методов иммуногистохимии. Глава 3.. СПОСОБЫ ВИЗУАЛИЗАЦИИ И УСИЛЕНИЯ ПРОДУКТА РЕАКЦИИ «АНТИГЕН – АНТИТЕЛО» ( Коллектив авторов, 2014)

Глава 3.

СПОСОБЫ ВИЗУАЛИЗАЦИИ И УСИЛЕНИЯ ПРОДУКТА РЕАКЦИИ «АНТИГЕН – АНТИТЕЛО»

Необходимым этапом любого иммуногистохимического метода является визуализация результатов реакции «антиген – антитело». Выявить антитела, связавшиеся с антигеном, можно, используя различные метки, связанные с Fc-фрагментом антител. Такими метками могут быть: флуорохромы, ферменты, металлы и металлопротеины, радиоизотопы, промежуточные связующие вещества, например биотин, дигоксигенин.

Возможно использование меченых антител против интересующего антигена (прямой метод). В этом случае антитела взаимодействуют с антигеном в местах их локализации, последние выявляют при помощи метки, связанной с антителами. Такой метод визуализации наиболее простой, однако его чувствительность крайне низкая, поскольку на одну молекулу искомого антигена будет приходиться одно меченое антитело.

Для повышения чувствительности был разработан непрямой метод детекции с использованием двух различных антител. Первичные антитела реагируют с антигенами ткани. Связанные с меткой вторичные антитела специфически взаимодействуют с первичными, которые для вторичных антител являются антигенами. Метод значительно чувствительнее прямого, так как с каждой молекулой первичных антител связывается несколько молекул вторичных антител, содержащих метку. Хотя добавляется еще один этап, такой метод имеет некоторые преимущества:

– вторичные антитела против Fc-фрагмента другого вида животного получать намного проще, также легче присоединить к ним метку;

– первичные антитела не несут на себе лишнего груза в виде метки, а значит, легче и быстрее проникают в ткани, метка не влияет на конформационные изменения после взаимодействия антител с антигеном.

В качестве меток изначально использовались различные флуорохромы, дающие излучение в видимом диапазоне спектра при облучении их светом с определенной длиной волны, но для их использования требуется наличие флуоресцентного микроскопа с набором барьерных фильтров. Кроме этого, такие препараты нельзя хранить из-за быстрого затухания флуоресценции.

Для того чтобы препараты можно было исследовать с помощью обычной световой микроскопии и долго хранить, были разработаны методы получения стабильных окрасок. Наиболее простой меткой являются металлы, например коллоидное золото. В результате реакции «антиген – антитело» в месте скопления антител в световом микроскопе обнаруживается окрашивание. Допустимо использование радиоизотопов, однако их применяют очень редко из-за высокой опасности облучения персонала. Наибольшее распространение получили ферментные метки, например HRP, AP и глюкозоксидаза. Для каждого указанного фермента существует несколько субстратов, которые под действием фермента образуют нерастворимые красители различных цветов. Необходимо учитывать, что пероксидаза и AP есть и в тканях организма, поэтому иногда можно получить ложноположительные результаты. Пероксидаза содержится в большом количестве в нейтрофилах и эозинофилах, поэтому для окраски мазков крови, костного мозга и срезов иммунокомпетентных органов использование этого фермента не рекомендуется. При окраске других тканей небольшая пероксидазная активность блокируется добавлением перекиси водорода перед инкубацией с первичными антителами. AP содержится во многих тканях, поэтому во время инкубации с субстратом в него добавляют левамизол (ингибитор AP). Необходимо помнить, что AP клеток кишечника и плаценты не ингибируется левамизолом, поэтому для этих тканей лучше использовать другие ферменты. Глюкозоксидаза может использоваться без ограничений, так как в тканях млекопитающих не встречается. Если чувствительности такой системы недостаточно, то дополнительно используют антитела против пероксидазы или AP. Эти антитела связываются с антигенсвязывающим участком вторичных антител, что увеличивает чувствительность метода еще в 2 раза.

Следующий шаг на пути повышения чувствительности метода – иммуноокрашивание с использованием биотинавидинового комплекса. Биотин – это стойкое к действию высоких температур и широкому диапазону рН соединение, которое хорошо растворяется в воде и спирте. Биотин легко может вступать в стойкое соединение с различными белками, в том числе с ферментами и иммуноглобулинами. При использовании биотина немеченые первичные антитела соединяются с антигеном; меченные биотином вторичные антитела соединяются с первичными; добавляется комплекс «авидин – биотин – фермент», который присоединяется к биотину вторичных антител. Данный метод был назван ABC-методом (аббревиатура от английского avidin and biotinylated horseradish peroxidase macro-molecular сomplex). Авидин может быть заменен на стрептавидин – белок с молекулярной массой около 60 кДа, который получают из микроорганизмов Streptomyces avidinii.

В отличие от авидина стрептавидин не связывается с эндогенными лектин-подобными веществами, что позволяет резко уменьшить фоновое окрашивание и повысить чувствительность метода. Конъюгация стрептавидина непосредственно с маркерным ферментом позволяет увеличить стабильность используемых реактивов и сделать важный шаг на пути стандартизации методов ИГХ-окрашивания препаратов. Используя вторичные антитела, связанные с биотином, и комплекс «стрептавидин – маркерный фермент», можно выявить связавшиеся с детектируемым антигеном первичные антитела в два этапа. В случае, если в качестве вторичных антител используется смесь биотинилированных антител против иммуноглобулинов нескольких животных, такой реактив допустимо использовать при работе с первичными антителами различной видовой принадлежности (например, мышиными и кроличьими). Подобный подход реализован различными биотехнологическими компаниями в удобных наборах, которые широко используются в настоящее время (например, наборы LSAB2 и LSAB+ (Dako) и др.).

В последнее время большой популярностью пользуется метод выявления комплекса «антиген – антитело», подобный непрямой иммуногистохимической реакции, в которой роль вторичных антител, связанных с ферментной меткой, выполняет сложный молекулярный комплекс. Он состоит из осевой структуры, образованной небольшой молекулой полимера, к которой присоединены вторичные антитела (иммуноглобулины или их Fab-фрагменты) и маркерный фермент. Благодаря достаточно большому числу молекул фермента, находящихся в составе подобного комплекса, увеличивается чувствительность реакции. Использование вторичных реагентов, созданных на основе такой «полимерной» технологии позволяет не только повысить чувствительность метода в сравнении с методами ABC и LSAB, но и устранить вероятность неспецифической реакции с эндогенным биотином, который может присутствовать в части исследуемых тканей.

Близкой к «полимерным» системам разновидностью систем амплификации являются мультимерные системы (пример – наборы REVEAL, Spring Bioscience). Их преимущество перед «полимерными» реагентами состоит в малых размерах конъюгата, за счет чего обеспечивается лучшее проникновение вторичных антител к местам связывания первичных. При этом должна увеличиться и чувствительность реакции.

Нередко при постановке иммуногистохимических реакций даже с использованием высокочувствительных систем детекции связавшихся первичных антител исследователь сталкивается с проблемой недостаточной иммунореактивности, которую не удается решить, используя более высокие концентрации антител и увеличивая продолжительность инкубации. Методы демаскирования антигена – один из подходов, который позволяет существенно увеличить чувствительность реакции (см. гл. 5). Кроме него возможно применение и других приемов.

В тех случаях, когда продукт реакции отчетливо определяется в окрашенных препаратах, но желательно добиться его большей оптической плотности и контрастности, можно использовать метод тонирования DAB-продукта солями никеля или кобальта (Mullink H. [et al.], 1992). В ряду коммерческих наборов, предназначенных для выявления пероксидазы бензидиновой реакцией, имеются и такие, в которых реализована возможность никелевого тонирования. Применение солей никеля ведет к усилению интенсивности гистохимической реакции на пероксидазу и меняет цвет продукта реакции: он становится не желто-коричневым, а черным.

Усиления реакции можно достичь, проводя реакцию с мечеными вторичными антителами в сочетании с дополнительной реакцией с другими мечеными вторичными антителами, выработанными против иммуноглобулинов животного происхождения – источника первых вторичных антител. Такой подход позволяет увеличить концентрацию маркерного фермента (либо флуорохрома) в месте локализации продукта «антиген – антитело».

Наибольшего увеличения чувствительности реакции можно добиться, используя наборы, усиливающие реакцию при помощи тирамида (Bobrow M. N. [et al.], 1989; 1992). Применение конъюгатов тирамида в ИГХ основано на способности тирамида, при каталитическом влиянии пероксидазы, образовывать нерастворимое соединение в локусе действия фермента. Тирамид может быть помечен как флуорохромом, так и биотином, что дает возможность использования тирамидной амплификации не только при проведении флуоресцентной микроскопии, но и при обычной микроскопии в проходящем свете.

Таким образом, в настоящее время для исследователя доступен широкий спектр методов визуализации продукта иммуногистохимической реакции. Выбор конкретного способа должен определяться с учетом задачи исследования, предполагаемой концентрации антигена в изучаемом материале и наличия соответствующей приборной базы.

Литература

Bobrow M. N., Harris T. D., Shaughnessy K. J. [et al.]. Catalyzed reporter deposition: A novel method of signal amplification: Application to immunoassays // Journal of Immunological Methods. – 1989. – Vol. 125. – P. 279 – 285.

Bobrow M. N., Litt G. J., Shaughnessy K. J. [et al.]. The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats // Journal of Immunological Methods. – 1992. – Vol. 150, № 1 – 2. – P. 145 – 149.

Mullink H., Vos W., Jiwa M., Horstman A. [et al.]. Application and comparison of silver intensification methods for the diaminobenzidine and diaminobenzidine-nickel endproduct of the peroxidation reaction in immunohistochemistry and in situ hybridization // J. Histochem. Cytochem. – 1992. – Vol. 40, № 4. – P. 495 – 504.