Вы здесь

Теоретические основы и практическое применение методов иммуногистохимии. Глава 2.. ПЕРВИЧНЫЕ АНТИТЕЛА ( Коллектив авторов, 2014)

Глава 2.

ПЕРВИЧНЫЕ АНТИТЕЛА

2.1. Антитела – компоненты сыворотки крови

Антитела – это растворимые гликопротеины глобулиновой фракции сыворотки крови и других биологических жидкостей, образующиеся в ответ на введение или проникновение антигена (чужеродных веществ, в том числе бактерий, вирусов, токсинов) в организм теплокровных животных (Ройт А. [и др.], 2000). На сегодняшний день антитела являются наиболее важными реагентами для использования в фундаментальных и прикладных исследованиях, что обусловлено их способностью к высокоспецифическому связыванию с антигеном, вызвавшим их образование.

Применяя определенные методические приемы, можно добиться образования антител к практически неограниченному набору антигенов. Однако стоит отметить, что стоимость коммерческих антител и затраты на их получение в условиях лаборатории могут различаться в десятки раз в зависимости от требуемой чистоты, специфичности и области применения, поэтому еще на этапе планирования исследования стоит уделить особое внимание правильному подбору антител. В этом может помочь и данное руководство.

2.2. Строение антител

Классические антитела представляют собой крупные мультимерные белки. Основная четырехцепочечная структурная единица иммуноглобулинов образована полипептидными цепями двух разных типов. Меньшие по размеру цепи (легкие L-цепи) имеют молекулярную массу около 25 кДа и состоят из вариабельного VL- и константного СL-доменов. Более крупные (тяжелые H-цепи) имеют молекулярную массу 50 – 80 кДа, состоят из вариабельного VH-, трех константных СН1-, СН2-, СН3-доменов и шарнирного участка (hinge region). Полипептидные цепи удерживаются вместе ковалентными (дисульфидными) и нековалентными связями (Ройт А. [и др.], 2000). Схематически «типичная» структура антитела представлена на рис. 1.


Рис. 1. Структура кроличьего иммуноглобулина IgG. Тяжелые и легкие цепи образуют вариабельный и константный домены, которые соединены дисульфидными мостиками (♦). При помощи папаина (цистеиновой эндопротеазы) протеолиз разделяет молекулу, в результате чего образуются два антигенсвязывающих фрагмента (Fab) и один кристаллизующийся фрагмент (Fc). Под действием пепсина (аспартатной кислой эндопептидазы) происходит отщепление двухвалентного антигенсвязывающего фрагмента (Fab′)2 (по: Boenisch T., 2001; с изменениями)


В зависимости от размера, заряда, аминокислотной последовательности и содержания углеводов в составе тяжелой цепи различают пять изотипов (классов) антител: IgM, IgG, IgA, IgE и IgD. Класс IgG подразделяется на четыре подкласса (IgG1, IgG2, IgG3, IgG4), которые различаются по антигенной структуре и спектру биологических функций (Burton D. R. [et al.], 1996). IgG – это наиболее широко представленный класс иммуноглобулинов, на его долю приходится 70 – 75 % их общего количества. Класс IgA разделяют на два подкласса (IgA1, IgA2). Все классы и подклассы составляют девять изотипов, которые присутствуют в норме у всех теплокровных. Кроме того, IgM является пентамером, т. е. пять молекул соединяются между собой, а IgA – димером.

При помощи папаина антитела можно расщепить на два одинаковых антигенсвязывающих Fab-фрагмента (fragment antigen binding) и Fc-фрагмент (fragment cristalizable), способный к кристаллизации. Область Fab образована гипервариабельными участками Ни L-цепей и определяет антигенную специфичность; Fc-фрагмент осуществляет эффекторные функции (связывание иммуноглобулина с клетками, компонентами комплемента) (Atassi M. Z., 1984). К Fc-фрагменту антител можно присоединять различные вещества, что используется при постановке иммунохимических реакций.

В 1993 г. группой бельгийских ученых было сделано важное открытие: кроме классических антител в крови некоторых животных (верблюдов, лам и др.) обнаруживаются особые, неканонические антитела с упрощенной структурой. Они состоят из димера укороченной (без CH1-домена) тяжелой цепи; легкая цепь отсутствует, т. е. антигенузнающий участок формируется лишь вариабельными доменами тяжелых цепей. Такие антитела принято называть однодоменными антителами, или мини-антителами. Благодаря малым размерам (молекулярная масса однодоменных антител составляет примерно 12 – 15 кДа) и компактности антигенсвязывающего участка, можно получить мини-антитела, способные узнавать участки антигенов, недоступные для классических антител, в этом состоят весомые преимущества мини-антител (Тиллиб С. В., 2011).

2.3. Особенности связывания антитела с антигеном

В основе любой иммунологической реакции лежит взаимодействие антигена с антителом, которое приводит к формированию комплекса «антиген – антитело». Антигенами обычно являются высокомолекулярные белки и полисахариды, реже – полипептиды, липиды и нуклеиновые кислоты. Иммунный ответ могут вызывать и небольшие молекулы, или гаптены, в том случае если они соединяются с высокомолекулярными носителями (белками, полисахаридами). В качестве гаптенов могут выступать лекарственные вещества, моно- и полисахариды, небольшие полипептиды, фосфолипиды, триглицериды, моноамины.

Небольшой участок антигена, с которым будет связываться антитело, называется эпитопом. Обычно в эпитоп входит от одной до шести молекул моносахаридов или аминокислот, расположенных на поверхности антигена. Антитела распознают не отдельные химические группы в структуре антигена, а пространственную форму эпитопов. Они способны улавливать различия в распределении зарядов на поверхности антигена, оптическую и стереоизомерию, минимальные различия в первичной структуре. Вследствие этого б|ольшая часть антител способна связываться только с нативными антигенами или с фрагментами антигена, сохраняющими третичную структуру. Следовательно, для успешного взаимодействия антигена и антитела эпитоп должен находиться на поверхности молекулы. Следует учитывать, что при денатурации молекул (например, под действием фиксирующих жидкостей, экстремальных значений pH буферных растворов и др.) эпитоп может повышать или понижать свою иммуногенность.

Большие молекулы (например, белки) имеют несколько эпитопов, поэтому они стимулируют образование антител нескольких видов к разным эпитопам одного и того же антигена. Такие антитела называют поликлональными. Они более толерантны к незначительным конформационным изменениям антигена (полиморфизму, различной степени гликозилирования, фосфорилирования, частичной денатурации), что дает больше возможностей экспериментатору при планировании исследований.

Антитела, реагирующие с одним единственным эпитопом, называют моноклональными. В отличие от поликлональных антител, они чувствительны даже к небольшим конформационным изменениям антигена. Например, можно получить моноклональные антитела, узнающие молекулу белка, фосфорилированную по определенному сайту. Благодаря высокой специфичности моноклональные антитела являются отличными первичными антителами, то есть антителами для выявления искомого антигена, так как они дают слабое неспецифическое связывание, а значит, и меньшее фоновое окрашивание. По сравнению с поликлональными антителами они обладают большей гомогенностью, что обеспечивает высокую воспроизводимость результатов. Однако связывание с единственным эпитопом обусловливает низкую чувствительность, проявляющуюся в слабом иммуноокрашивании на срезах. К тому же высока вероятность того, что фиксатор сделает этот единственный эпитоп недоступным для антител, в результате чего иммуноокрашивания вообще не произойдет. Кроме того, методы получения моноклональных антител более сложные и трудоемкие, чем методы получения поликлональных иммунных сывороток, что приводит к значительному увеличению их стоимости.

До недавнего времени большинство моноклональных антител являлись иммуноглобулинами мыши. Поэтому в исследовательской практике работы с лабораторными животными (мышами и крысами) применять их было неудобно из-за перекрестного взаимодействия вторичных реагентов с собственными иммуноглобулинами животного. За последние несколько лет появилось много новых моноклональных антител, являющихся кроличьими иммуноглобулинами (например, клоны SP от Spring Bioscience). Считается, что кроличьи моноклональные антитела позволяют добиться лучшей визуализации антигена по сравнению с мышиными. По крайней мере, у кроличьих моноклональных антител имеется очевидное преимущество: их удобно выявлять стандартными вторичными реагентами при проведении исследований с использованием мышей и крыс в качестве лабораторных животных.

2.4. Получение и очистка антител

Поликлональные антитела получают путем иммунизации лабораторных животных. Обычно для этих целей используют кроликов, морских свинок или коз. Важно соблюдать принцип чужеродности иммуногена. Установлено, что чем сильнее антиген отличается по своей структуре от гомологичного антигена иммунизируемого животного, тем выше его иммуногенность. Например, инсулины человека и кролика имеют близкую первичную структуру, и поэтому для кролика инсулин человека малоиммуногенен. Между инсулином человека и морской свинки имеются достаточные отличия, что позволяет использовать этих животных как продуцентов соответствующих антисывороток (Фримел Г. М., 1987; Herschowitz H. I. D., 1985).

В общем случае способность антигена стимулировать продукцию антител зависит от ряда факторов. Так, с повышением молекулярной массы полимерных молекул повышается их иммуногенность. Для белков пороговый размер молекулы, определяющий появление иммуногенности, – 7 – 10 аминокислот. Это количество аминокислот, позволяющее сформировать α-спираль. Кроме этого, иммуногенность растет с повышением количества повторяющихся антигенных детерминант в составе антигена и зависит от жесткости структуры антигена, т. е. способности сохранять определенную структуру. Иммуногенность одного и того же антигена зависит от генотипа и может различаться у индивидуумов, имеющих разные отдельные варианты генов главного комплекса системы гистосовместимости, поэтому обычно одновременно иммунизируют нескольких животных (Фримел Г. М., 1987).

Слабоиммуногенные антигены необходимо вводить со стимуляторами иммуногенеза (адъювантами). Наиболее часто используют адъювант Фрейнда, в состав которого входят смесь минеральных масел, эмульгатор и убитые микобактерии. Использование в иммунизации адъюванта снижает возможность появления толерантности, позволяет расширить диапазон концентраций вводимого иммуногена от 50 до 200 мкг на одну инъекцию. Однако после введения адъюванта у животных часто образуются гранулемы, которые влияют на самочувствие, поэтому в течение иммунизации необходимо тщательно наблюдать за состоянием здоровья животного.

В ходе первичного иммунного ответа обычно образуются иммуноглобулины класса IgM, продукция которых сменяется синтезом иммуноглобулинов других изотипов. Получаемые описанным выше способом антитела в большей части относятся к IgG-фракции иммунной сыворотки. Однако ответ на некоторые антигены ограничивается синтезом IgM-антител (Haunghton G. [et al.], 1993).

В сывороточных средах содержание антител не превышает 10 % общего количества белка, поэтому для удаления примесных белков и ДНК необходимы высокоэффективные методы очистки. Для очистки антител применяется фракционирование сульфатом аммония. Последующая ионообменная хроматография обеспечивает чистоту антител на уровне только 90 %, поэтому для дальнейшей очистки необходимо использовать дополнительные методы, например гель-фильтрацию. В настоящее время большее распространение получил метод очистки антител с помощью аффинной хроматографии на иммобилизованном белке А или белке G. Этот метод очистки более быстрый (одностадийный) и позволяет получать антитела с чистотой более 95 %.

Моноклональные антитела получают с помощью метода гибридомной технологии. Гибридомы – это клоны – продуценты моноклональных антител. Для их получения лабораторные животные подвергаются иммунизации, затем из их селезенки выделяют иммунные В-лимфоциты (клетки, способные к продукции специфических клонов антител). Их соединяют с клетками миеломы (соматическая гибридизация), которые сами не могут производить специфические антитела, но способны к неограниченному размножению in vitro. После слияния клетки в течение 10 – 14 дней поддерживают в среде. Поскольку не все находящиеся в культуре клетки образованы путем слияния миеломных клеток с лимфоцитами, производящими нужные антитела, клетки, которые находятся в среде, делят на линии, которые культивируют в отдельных ячейках. Далее в культуральной среде определяют антитела и отбраковывают клеточные линии, не производящие антитела или недостаточно быстро размножающиеся. Отобранные клетки вводят в брюшную полость мышей, где гибридома размножается, подобно раковым клеткам материнской миеломы, секретируя антитела во внутриполостную жидкость с образованием асцита (скопление жидкости в брюшной полости). Асцитная жидкость содержит гомогенные моноклональные антитела в высокой концентрации (1 – 10 мг/мл) (Кеннет Р. Г. [и др.], 1983; Альтшулер E. П. [и др.], 2010).

Существуют методы получения антител и без использования лабораторных животных. Один из них основан на иммобилизации и включении клеток в твердую матрицу. Второй представляет собой культивирование клеток в гомогенной суспензии. Затруднения в использовании данных технологий возникают в тех случаях, когда иммунизация животных по какой-либо причине невозможна или не удается обойти толерантность к антигену. Для разрешения этой проблемы предложены методы молекулярного клонирования фрагментов генов антител. Одним из таких методов является техника фагового дисплея антител.

2.5. Хранение антител

В зависимости от способа очистки и индивидуальных особенностей конкретных антител транспортировка и хранение осуществляются в одной из следующих форм:

1. Лиофилизированные антитела. Перед первым использованием такие антитела необходимо растворить в буфере, состав которого указан производителем, аликвотировать. Как правило, их хранят при –20 °C, не допуская повторного размораживания. Допускается длительная транспортировка, не требующая особых температурных условий.

2. Концентрированный раствор антител. Обычно это 10 мМ фосфатный буфер (рН 7,2 – 7,4) или 10 мМ HEPES (pH 7,4 – 7,5). В буфер добавляют инертный белок, например 1,0 % бычий сывороточный альбумин (BSA), который конкурирует с антителами за места неспецифического связывания на стенках посуды. В качестве криопротектора, защищающего антитела от разрушения при замораживании, используют глицерин (до 50,0 % по массе). В целях предотвращения грибкового и бактериального заражения раствора антител обычно применяют 0,1 % азид натрия. Необходимо обратить внимание на то, что последний является ингибитором пероксидазы! Подбирая антитела, следует тщательно анализировать состав буфера для их хранения. Так, азид натрия можно заменить тимерозалом (до 0,02 %). Иногда в раствор добавляют меркаптоэтанол (до 0,10 %), что необходимо для предотвращения образования дисульфидных связей между субъединицами антител. Перед первым использованием такие антитела также необходимо аликвотировать и хранить при –20 °C (или –70 °C), не допуская повторного размораживания (Boenisch T., 2001).

3. Раствор антител, готовый к употреблению. Этот раствор хранится при температуре 4 – 8 °C и не требует дальнейшего разведения. Если планируется использовать коммерческие антитела, то необходимо внимательно ознакомиться с прилагаемой к ним инструкцией, в которой указаны условия хранения, оптимальные для поддержания активности антител, и следовать ей.

Литература

Альтшулер E. П., Серебряная Д. В., Катруха А. Г. Получение рекомбинантных антител и способы увеличения их аффинности // Усп. биол. химии. – 2010. – Т. 50. – С. 203 – 258.

Кеннет Р. Г., Мак-Керн Т. Дж., Бехтол К. Б. Моноклональные антитела: Гибридомы: новый уровень биологического анализа. – М.: Медицина, 1983.

Ройт А., Бростофф Дж., Мейл Д. Иммунология. – М.: Мир, 2000.

Тиллиб С. В. Верблюжьи антитела – эффективный инструмент для исследований, диагностики и терапии // Мол. биол. – 2011. – Т. 1. – С. 77 – 85.

Фримел Г. Иммунологические методы. – М.: Медицина, 1987.

Atassi M. Z. Molecular Immunology. – New York: Marcel Decer, Inc., 1984.

Boenisch T. Formalin-fixed and heat-retrieved tissue antigens: a comparison of their immunoreactivity in experimental antibody diluents // Appl. Immunohistochem. – 2001. – Vol. 9. – P. 176 – 179.

Burton D. R., Gregory L., Jefferis R. Aspects of the molecular structure of IgG subclasses // Monogr. Allergy. – 1986. – Vol. 19. – P. 7 – 35.

Haunghton G., Larry W. A., Whitmore A. B-1 cells are made, not born // Immunology Today. – 1993. – Vol. 14. – P. 84 – 86.

Herschowitz H. I. D. Immunophysiology: Cell function and cellular interactions in antibody formation // Immunology III / Ed. J. A. Bellanti. – Philadelphia: Saunders, 1985.