А.В. Зайончек[68], Х. Брекке[69], С.Ю. Соколов[70], А.О. Мазарович[71], К.О. Добролюбова[72], В.Н. Ефимов[73], А.С. Абрамова[74], Ю.А. Зарайская[75], А.В. Кохан[76], Е.А. Мороз[77], А.А. Пейве[78], Н.П. Чамов[79], К.П. Ямпольский[80]
Строение зоны перехода континент-океан северо-западного обрамления Баренцева моря (по данным 24–26-го рейсов НИС «Академик Николай Страхов», 2006–2009 гг.)
Аннотация
В ходе экспедиций на НИС «Академик Николай Страхов» 2006–2009 гг. (Геологический институт РАН, Норвежский Нефтяной Директорат) детально закартированы акустическими методами значительные области хребта Книповича, южного склона хребта Мона, желобов Стурфьорд и Орли, континентального склона и окраин Земли Франца-Иосифа с общей протяженностью съемки около 22 000 км. Были открыты: меридиональная зона деструкции шельфовой Свальбардской плиты, проявления дайковых комплексов и других вулканогенных образований на шельфе, проявления разгрузки газогидратов, современные тектонические нарушения на континетальном склоне и в осадочном чехле бортов хребтов Книповича и Мона и многое другое. Северо-западная окраина шельфа Баренцева моря обнаруживает сходство с рифтоподобными структурами на суше в северных районах о-вов Шпицберген, что свидетельствует о единой обстановке их формирования, а с учетом данных по смежным областям ложа океана дает материал для разработки модели, связывающей геодинамические процессы в континентальной и океанической литосфере.
1. Научные задачи и схема работ
Пристальное внимание к фундаментальным исследованиям шельфа и континентального склона в Арктике обусловлено двумя основными обстоятельствами. Во-первых, это открытие крупных и гигантских месторождений углеводородного сырья на Арктическом шельфе и континентальном склоне Атлантики и Северного Ледовитого океана, во-вторых, общая относительно слабая изученность взаимоотношения океанских и континентальных структур, особенно в высоких широтах, труднодоступных для исследований.
В 2006–2009 гг. Геологическим институтом РАН совместно с Норвежским Нефтяным Директоратом были проведены три экспедиции на НИС «Академик Николай Страхов» на хребте Книповича (север Атлантического океана), на севере Баренцева моря и на континентальном склоне Северного Ледовитого океана (рис. 1). Работы проводились в рамках задач Международного полярного года (МПГ) как совместный проект России и Норвегии «Позднемезозойская-кайнозойская тектоно-магматическая эволюция баренцевоморского шельфа и континентального склона как ключ к палеогеодинамическим реконструкциям в Северном Ледовитом океане». В результате работ с эхолотированием и высокочастотным профилированием было пройдено около 22 000 км, в том числе с сейсмоакустикой – 14 000 км.
В экспедициях использовалась установленная на борту гидроакустическая система фирмы RESON. Она включает в себя программно-аппаратурный комплекс SeaBat, который объединяет: многолучевые эхолоты – SeaBat 8111 (мелководный) и SeaBat 7150 (глубоководный); GPS, сенсоры движения; датчики скорости звука у антенн эхолота и в водной толще (SVP-70 и SVP-30 соответственно); программного пакета сбора и обработки данных PDS2000. Одновременно с работой гидроакустической системы проводилась съемка высокочастотным акустическим профилографом EdgeTech 3300 и комплексом оборудования для проведения непрерывного сейсмического профилирования разработки ГИН РАН. Станционные работы включали измерения теплового потока, изучение верхней части осадочного чехла гравитационными трубками (длиной до 6 м) и драгирование коренных пород.
В настоящей работе представлены первичные результаты исследований на хребтах Книповича и Мона, континентальных склонах Атлантического и Северного Ледовитого океанов в районе архипелага Шпицберген, а также на севере шельфа Баренцева моря между архипелагами Шпицберген и Земля Франца-Иосифа. Подчеркнем, что изучение хребтов Книповича и Мона было логическим продолжением работ ГИН РАН в осевой зоне Срединно-Атлантического хребта, которые проводились с 1986 г.
Проведенные исследования преследовали несколько целей. Во-первых, создать правдоподобную модель подъема архипелагов Шпицбергена и Земли Франца-Иосифа с момента начала продвижения хребта Книповича на север до времени снятия гляциоизостатической нагрузки на шельфе, которая привела к активному сносу обломочного материала с шельфа в океан. В результате этих процессов была создана уникальная ситуация, когда рифтовая зона Атлантики, расположенная в нескольких десятках километров от бровки шельфа оказалась в зоне лавинной седиментации. Исследования деформаций осадочного чехла позволяют предлагать обоснованные выводы о характере и амплитудах современных движений на срединно-океаническом хребте, что, практически, невозможно в других сегментах Мировой рифтовой системы.
Во-вторых, выявить и объяснить происхождение магматических образований на акватории между архипелагами Шпицберген и Земли Франца-Иосифа. Дайковые комплексы северной части Баренцева моря в пределах российского сектора имеют северо-западное простирание, что полностью согласуется с геологическими данными по архипелагу Земля Франца-Иосифа. Применительно к Норвежскому сектору подобных работ вообще не проводилось. В настоящее время известны только две станции, в которых подняты базальты апт-альбского возраста. Они сопровождаются амплитудными магнитными аномалиями.
В-третьих, по существующим моделям на ранней стадии развития Арктической системы хребтов континентальная зона сдвига, соединяющая хребты Гаккеля и Мона, превратилась в результате продвижения спредингового центра со стороны хребта Мона в хребет Книповича. В последнем имеются косвенные признаки указывающие на возможность выхода на поверхность дна пород верхней мантии. К ним можно отнести: ультрамедленную скорость спрединга, наличие глубинных срывов в осевой части срединно-океанического хребта, аномальные скорости продольных сейсмических волн в океанической коре, соответствующие серпентинизированным ультрамафитам, сегментацию хребта, обусловленную большим количеством нетрансформных смещений. К последним приурочены значительные аномалии метана.
В-четвертых, в пределы шельфа Баренцева моря «вдаются» троги (Франц-Виктория и др.), которые практически не изучены. На основании морфологических признаков предполагается (например Милановский, 1996), что они имеют рифтовую природу. Детальные геолого-геофизические исследования в них не проводились.
Область сочленения прогиба Стурфьорд с Норвежско-Гренландским бассейном (Ljones et. al., 2004) располагается в пределах разломной зоны Хорнсунд, являющейся одной из ключевых при рассмотрении этапов развития региона и активизации северо-западной окраины Баренцева моря. Она также расположена на «линии» нахождения четвертичных вулканов Шпицбергена. Желоб Орли, расположенный параллельно этой разломной зоне к востоку от Свальбарда, также содержит признаки четвертичных вулканических образований. В совокупности с полученными батиметрическими данными это позволяет предположить наличие там четвертичных вулканов.
Обзор объектов, подлежащих изучению для решения указанных выше задач, позволил наметить контуры районов полигонных съемок и полевых работ, которые и были реализованы в ходе экспедиционных работ 2006–2009 гг. (рис. 1). Это окраина Земли Франца-Иосифа, желоб Орли и прилегающий континентальный склон, желоб Стурфьорд и прилегающий континентальный склон, хребет Книповича и его сочленение с хребтом Мона, южный фланг хребта Мона. Далее будут описаны результаты акустических методов – многолучевой батиметрии, сейсмоакустики и высокочастотного профилирования на указанных объектах.
Рис. 1. Схема работ 24–26 рейсов НИС «Академик Николай Страхов» (Геологический институт РАН, Норвежский Нефтяной Директорат, 2006–2009). Рельеф показан по данным (IBCAO, 2005). Штриховая линия – расположение границы Норвегии, по представлениям последней.
2. Краткий обзор геологии северо-запада Баренцева моря
Баренцево море расположено в западной части Евроазиатского шельфа Арктики (рис. 2). Оно отделено от глубоководных впадин Северного Ледовитого и Атлантического океанов поднятиями архипелагов Шпицберген и Земля Франца-Иосифа.
Рис. 2. Схема расположения основных географических объектов и элементов структуры северо-запада Баренцева моря и прилегающих частей Атлантического и Северного Ледовитого океанов. Рельеф показан по данным (IBCAO, 2005). (Условные обозначения см. Рис. 1)
В Баренцевом море преобладают глубины от 100 до 350 м. Вблизи границы с Норвежским морем они достигают 600 м. Рельеф характеризуется многими пологими подводными возвышенностями и понижениями (см. рис. 2). Строение рельефа осложняется рядом желобов ортогональных в плане к кромке шельфа как на севере, так и на западе моря. В первом случае это желоба Франц-Виктория, Орли (глубины превышают 530 м), а также морфоструктуры, расположенные на продолжении пролива Хинлопен, Вуд– и Вейде-фьордов. На западе – это желоба Медвежий и Зюйдкапп. Северо-запад Баренцева моря (Дибнер, 1957, Карякин и др., 2009, Объяснительная, 1996, Сущевская и др., 2004, Столбов и др., 2006, Хаин, 2001, Шипилов, Тарасов, 1998, Smith et al., 1976, The Geology…, 1997, Geology…, 1998) имеет континентальную кору гренвильского возраста (т. н. Свальдбардская плита), которая в пермское и мезозойское время претерпела несколько этапов деструкции или магматических прявлений.
В северо-западной части Баренцева моря расположен архипелаг Шпицберген. Он включает в себя четыре главных острова и около 150 мелких с общей площадью более 62 тыс. км2. Максимальная высота рельефа – 1717 м. Около 60 % территории архипелага покрыто ледниками.
Основные складчатые и разрывные структуры Шпицбергена имеют меридиональные простирания. Крупными разломами (левые сдвиги с амплитудами до тысячи (?) километров), которые заложились в конце силура – начале девона, архипелаг разделен на три главных зоны – Западную, Центральную и Восточную. Последняя имеет гренвильский фундамент и слабо дислоцированный верхнепротерозойский и палеозойско-мезозойский чехлы (суммарная мощность оценивается в первые километры). В конце юры – начале мела отмечены слабые несогласия и внедрение силлов и даек долеритов. Время образования складчатых структур Западного Шпицбергена – от начала палеоцена до конца эоцена.
Складчатые деформации на Западном Шпицбергене были вызваны коллизией двух континентальных плит, разделенных трансформным разломом Книповича, по которому происходило правостороннее смещение. На рубеже эоцена и олигоцена (50–30 млн. лет) и в миоцене (15–5 млн. лет) был интенсивный подъем Баренцевоморского региона. Последний вызвал оживление тектонических движений. В четвертичное время были сформированы вулканические постройки и трубки взрыва в зоне разлома Брейбоген – Бокк-фиорд (север о. Западный Шпицберген). Четвертичные базальты по своему составу относятся к производным щелочно – оливин – базальтовой магмы.
В восточной части архипелага Шпицберген расположен архипелаг Короля Карла. Его максимальная высота составляет 270 м. Он включает в себя множество небольших островков и скал, а также три главных острова. Наиболее восточный (о. Абельсойа) сложен базальтами мелового возраста. Более западные (о-ва Конгсойа и Свенксойа) сложены осадочными, в основном, терригенными породами позднетриас – раннемелового возраста, а также лавами меловых базальтов.
Архипелаг островов Земля Франца-Иосифа включает в себя порядка 190 островов, которые разделены глубоководными (400–650 м) проливами (Кембридж, Британский канал и Австрийский). Площадь архипелага составляет порядка 12 тыс. км2. Его максимальная высота составляет 620 м. Около 60 % территории архипелага покрыто ледниками.
Основная часть архипелага слагается терригенными породами верхнего триаса – верхней юры. В строении архипелага Земля Франца-Иосифа участвуют также образования двух главных магматических комплексов позднеюрского– и ранннемелового возрастов. Во время их становления внедрялись дайки и силлы долеритов, штоки габбро– и габбро-диоритов. Установлены также и покровы базальтов. Они различаются по вещественному составу вулканических пород и физико-химическим параметрам формирования расплавов. Первый, трапповый, был сформирован в результате действия обширного плюма и характеризует собой начальный этап развития Канадского бассейна. Второй был образован в совершенно иной геодинамической обстановке, по большинству параметров сопоставимой с действием «горячей точки».
3. Район архипелага Земля Франца Иосифа
В ходе работ НИС «Академик Николай Страхов» была проведена батиметрическая съемка шельфа архипелага Земля Франца Иосифа в масштабе 1:500 000 (рис. 3). Здесь шельф Баренцева моря представляет собой систему пологих поднятий и депрессии с глубинами 300–400 м. На долготе 43°в.д. и широте 80°30’с.ш. в южной части желоба Франц-Виктория был отснят детальный полигон (рис. 4). Установлено, что на глубинах порядка 300 м широко развиты борозды ледового выпахивания. При протяженности в километры их ширина достигает 30–40 м, а врез – до 6–8 м. Борозды формируют два типа рисунка: хаотический и групповой. Последний представлен крупными рвами с длинными прямолинейными сегментами, повторяющими рисунок соседних борозд. Последовательность наложений борозд друг на друга показывает разновозрастную историю движения килевых частей айсбергов по дну моря, и представляет собой предмет изучения гидрологической обстановки в голоцене.
Рис. 3. Схема работ НИС «Академик Николай Страхов» в районе архипелага Земля Франца Иосифа. Условные обозначения см. рис. 1.
Рис. 4. Оттененный рельеф в верховьях желоба Франц-Виктория, показывающий ледниковые борозды вспахивания. Изобаты проведены с шагом 5 метров.
4. Желоба Эрик-Эриксен, Орли и континентальный склон Северного Ледовитого океана
Желоб Орли представляет собой, по данным (IBCAO, 2005), дугообразную морфоструктуру, которая соединяется на юге с желобом Эрик-Эриксен (см. рис. 2), а на севере «открывается» в сторону континентального склона.
Полигонная съемка (рис. 5.) показала, что желоб имеет более сложный рельеф, чем было показано ранее (IBCAO, 2005). На самом юге полигона он имеет асимметричное строение с более крутым западным бортом, глубины на поверхности которого составляют 60–80 м. Вдоль него расположена наиболее погруженная часть дна с глубинами 420–480 м. Ширина желоба изменяется от 2 до 4–5 км. В районе 80°25’ с.ш. происходит его резкое (до 400–500 м) сужение и вдоль западного борта проходит канал, протяженность которого достигает 6 км. На севере полигона он соединяется с резким расширением морфоструктуры (до 10 км). В отличие от южных участков максимальные глубины дна располагаются около восточного борта. Участки желоба разделены холмами или их группами, которые вытянуты вдоль простирания желоба. Глубины на их вершинах располагаются в диапазоне 180–250 м. Для холмов характерны более крутые южные склоны, которые, как правило, шире северных. Все особенности строения дна полигона свидетельствуют о существовании сильных придонных течений, которые направлены в северном направлении и обеспечивают возникновение эрозионных форм рельефа.
Рис. 5. Оттененный рельеф средней части желоба Орли
Интересной особенностью рельефа желоба Орли является наличие кольцевой структуры на северо-востоке отснятого полигона с координатами центра 80°28’ с.ш. и 29°52’ в.д. Диаметр структуры составляет около 1700 м высота бортов до 90 метров. Анализ магнитных данных (Olesen et al, 1997) показывает, что структура расположена в пределах интенсивной линейной субмеридиональной аномалии отрицательного знака. Это может свидетельствовать о том, что выявленная структура является результатом действия четвертичного вулканизма. Известно, что сходные образования, в пределах архипелага Шпицберген (The Geology…, 1997), где они также отражены магнитной аномалией положительного знака. Учитывая тот факт (Хуторской и др., 2009), что тепловой поток в данном желобе превышает фоновый в 10 раз (до 500 мВ/м2), можно говорить о рифтогенной природе данной структуры.
В области перехода от шельфа к котловине Нансена в устье желоба Орли, севернее 81°30’с.ш. была сделана серия профилей, расположенных вкрест и параллельно простирания бровки шельфа (рис. 6). Здесь, на расстоянии порядка 35 км, происходит резкое нарастание глубин от 200 до 2500 и более м. На континентальном склоне, особенно в западной части отснятого района, широко развиты крупные оползневые тела, которые встречаются до глубин 2400–2500 м. На востоке преобладают крупные прямолинейные борозды.
На севере Баренцева моря характерно распространение континентальных морен, залегающих на коренных породах, экранирующих проникновение сигналов высокочастотного профилографа. Разрез по данным (Мурдмаа, Иванова, 1999, Murdmaa et al., 2006) состоит из трех горизонтов послеледниковых отложений. Нижний из них (горизонт III) представлен песчано-алевритово-пелитовыми илами с большим количеством рассеянных обломков, в том числе окатанных, различных континентальных пород. Горизонт отличается от вышележащих повышенной плотностью осадков. Возраст этого горизонта оценивается древнее 13 тыс. лет. Его видимая мощность превышает 50 м. Средний (горизонт II) рассматривается как переходный к горизонту I. Его мощности и литологический состав сильно варьируют (Мурдмаа, Иванова, 1999). Он представлен переслаиванием осадков пелитовой – песчаной размерности. В других случаях это могут быть однородные алеврито-пелитовые илы. Контакт с нижележащим горизонтом III резкий. На записи профилографа по данным (Мурдмаа, Иванова 1999) горизонт II акустически представлен полупрозрачной слоистой толщей, облекающей неровности подстилающего горизонта. Его возраст оценивается как 9.5–13 млн. лет, мощность составляет 20–60 м. Верхний (горизонт I) также сложен алеврито-пелитовым илами голоценового возраста. На профилях выражен в виде акустически прозрачного слоя. Его мощность – 1–5 м.
Рис. 6. Оттененный рельеф континентального склона в устье желоба Орли
По данным исследования НИС «Академик Николай Страхов» в юго-западной части желоба Эрик-Эриксен наблюдается маломощный акустически прозрачный горизонт мощностью около 2 м, который представляет собой голоценовые илы (горизонт I). Ниже идет хаотически построенная толща мощностью более 5 м, нижняя граница которой не видна. Вероятно, что эта толща представляет собой моренные отложения, либо постгляциальные отложения толщи III. Далее к западу, по мере уменьшения глубин в сторону Земли Короля Карла, начиная с 34°45’в.д., толща I присутствует фрагментарно и непосредственно на поверхность дна выведены отложения толщ III и IV (моренные). Начиная с глубин 250 м, запись становится акустически непрозрачной. По всей видимости, склоны поднятия островов Земли Короля Карла сложены плотными моренными отложениями, либо, что менее вероятно, здесь, на поверхности выходят коренные породы. Толща I местами достигает мощности 5 м. Она прорезана многочисленными мелкими каньонами на северном склоне поднятия Земли Короля Карла. Здесь же установлены следы выпахивания айсбергами в виде борозд глубиной до 3–5 м.
Дно желоба Эрик-Эриксен в районе 79°42’–79°38.7’с.ш. сложено толщами I и II. Причем мощность верхней толщи выдержанная – 2–3 м, а нижняя сильно варьирует от 12 м в раздувах до полного выклинивания (рис. 7). Возможно, что она представляет собой образование конусов выноса тонкого материала в наиболее глубокую часть желоба Эрик-Эриксен. Отдельные сбросы с амплитудой около 5 м наблюдаются в пределах северного борта желоба в его западной части. Поверхности сбросов «запечатаны» горизонтом I. В западной части линзовидные раздувы толщи II достигают 7 м. Наблюдаются молодые разрывные нарушения. В пределах западной части трога (79°10’с.ш. 16°17’ в.д.) имеется сброс субмеридионального простирания с опущенными западным крылом. Амплитуда перемещения до 9 м. При этом толща II смещена по сбросу. Последний был сформирован до накопления толщи I (рис. 8).
Рис. 7. Строение верхней части осадочного разреза желоба Эрик-Эриксен
Рис. 8. Сброс с опущенным западным крылом (желоб Эрик-Эриксен)
Склоны меридионального желоба Эрик-Эриксен сложены акустически жесткими породами (предположительного мореной). На широте 79°55’с.ш. акустически прозрачная, маломощная толща I эпизодически появляется с глубины 310 м, а с глубины 330 м она образуют выдержанный горизонт мощностью 3–5 м. Дно желоба ограничено с обоих бортов сбросовыми уступами с амплитудой перемещения около 20–30 м. Поверхности сбросов запечатаны отложениями горизонта I. Нет признаков голоценовой тектонической активности за исключением восточного борта, где возможно в результате молодых тектонических движений был подновлен доголоценовый сброс (рис. 9). По широте 80°07’ с.ш. почти полное отсутствие голоценовых отложений I даже в наиболее глубоких частях желоба, возможно объясняется высокой скоростью придонных течений, выносящих тонкий материал на континентальный склон Баренцева моря. Маломощные (1–2 м) отложения I развиты только в отдельных локальных впадинах (рис. 10).
Рис. 9. Сброс в восточной части меридионального желоба Эрик-Эриксен
Рис. 10. Характер распространения отложений горизонта I
Сейсмоакустические данные южного борта желоба Эрик-Эриксен показывают, что субмеридиональные структуры желоба Орли имеют южное продолжение. Вдоль его оси расположена интенсивная магнитная аномалия отрицательного знака. На профиле (рис. 11) представлена антиклинальная складка, срезанная эрозионными процессами. На крыльях складки хорошо видны наклонные горизонты, утыкающиеся в дно. Местами видны сбросовые нарушения. В ядре складки видна амплитудная высокочастотная аномалия сейсмической записи. На западном крыле – низкочастотная аномалия, как правило, возникающая при флюидонасыщенности пород. Западнее, на том же профиле, в районе Земли Короля Карла (см. рис. 2) видно, что субмеридиональный желоб Орли, ограничен сбросами. На широте о. Белый (см. рис. 2) он нарушает докембрийское основание, В его пределах мезозойские отложения дислоцируются, вероятно, ядро слагается породами горизонта Ia (нижняя пермь), а крылья – горизонтом В (неоком), который выклинивается.
Рис. 11. Фрагмент профиля S25_P2_13. По оси Х – широта и долгота, вертикальная развертка – 800 мс. На врезке – положение профиля. Ориентировка запад-восток.
Рис. 12. Фрагмент профиля S25_P2_211. По оси Х – широта и долгота, вертикальная развертка – 800 мс. На врезке – положение профиля. Штриховая линия – государственная граница Норвегии (западнее) и России (восточнее). Ориентировка северо-запад – юго-восток.
К северу от средней части желоба Орли, где на поверхность дна выходят докембрийские породы, на акустическом фундаменте на бортах желоба несогласно залегают осадочные толщи. Поверхность несогласия представляет собой субгоризонтальную поверхность, которая смещается сбросовыми нарушениями желоба вместе с осадочным чехлом (рис. 12), который, скорее всего, имеет палеогеновый возраст. В ряде случаев на западном борту прослеживается более одной горизонтальной площадки. Это свидетельствует о том, что в данном блоке могли сохранится и более древние отложения, например меловые. Характерной особенностью отложений в желобе являются прирусловые турбидитные отложения мощностью до 200 метров. На профиле (рис. 13) сбросовые нарушения затрагивают не только акустический фундамент, но и осадочный чехол. Это говорит о том, что деформации региона являются неотектоническими и эрозия не успела осуществить сглаживание склонов до стабильного профиля.
Рис. 13. Фрагмент профиля S25_P2_311-1. По оси Х – широта и долгота, вертикальная развертка – 900 мс. На врезке – положение профиля. Штриховая линия – государственная граница Норвегии (западнее) и России (восточнее). Ориентировка юго-запад – северо-восток.
Рис. 14. Фрагмент профиля S25_P3_01. По оси Х – широта и долгота, вертикальная развертка – 3000 мс. На врезке – положение профиля. Штриховая линия – государственная граница Норвегии (западнее) и России (восточнее). Ориентировка юго-восток – северо-запад.
В 2007 г. НИС «Академик Николай Страхов» провел работы на континентальном склоне Северного Ледовитого океана вплоть до 82°с.ш.
При выходе на систему галсов, перпендикулярную бровке шельфа были обнаружены частотные аномалии записи, что происходит при насыщении пористой матрицы флюидом. Они расположены на глубинах 20–40 м под дном и по латерали ограничены сменой знака градиента рельефа и разломными зонами. На рис. 14 представлен фрагмент профиля S25_P3_01, расположенного вкрест бровки шельфа на траверзе восточного борта желоба Орли. Здесь можно выделить отражающие горизонты, которые имеют пологое падение к северу. Наиболее вероятно, что они имеют палеогеновый возраст. В ряде мест, где склон срезает наиболее интенсивные отражения, видны небольшие (20–25 метров) аномалии рельефа, возникающие при денудации плотных слоев. В нижней части склона расположена массивная оползневая структура. Подобного рода образования установлены (Hjelstuen et al., 2007; Vanneste et al., 2006; Winkelmann et al., 2007) на континентальном склоне Норвегии, в троге Литке, также на продолжении пролива Хинлопен (см. рис. 2).
Не исключено, что эти тела могут являться верхней частью конуса выноса, где отлагаются наиболее крупные фракции обломочного материала, что также приводит к снижению когерентности отражений. Суммарная мощность стратифицированной толщи на данном разрезе – около 2000 м. При этом верхний комплекс между дном и первым сильным рефлектором является акустически прозрачным, что также говорит о его крупнообломочной турбидитной природе. Галс S25_P3_25 (рис. 15) расположен выше по склону с глубиной дна около 1 км. В восточной его части выделяется конус выноса с акустически прозрачным характером отложений, аналогичным верхней части разреза профиля S25_P3_01 (рис. 14). В западной части профиля видно сечение другого «языка» конуса выноса, залегающего выше на акустическом горизонте, имеющем продолжение в своде восточного конуса. Это говорит о том, что восточный конус сейчас «отключен» от источника сноса, русла донных течений отмигрировали на запад и сформировали врез в более древнем конусе, откладывая кластический материал поверх флангов более древнего образования на больших удалениях. При этом не исключено, что русло потока мигрировало еще раз совсем недавно, поскольку оно стало эродировать зону сочленения западного и восточного конусов.
Рис. 15. Фрагмент профиля S25_P3_25. По оси Х – широта и долгота, вертикальная развертка – 2000 мс. На врезке – положение профиля. Штриховая линия – государственная граница Норвегии (западнее) и России (восточнее). Ориентировка запад-восток.
Рис. 16. Фрагмент профиля S25_P3_22-3. По оси Х – широта и долгота, вертикальная развертка – 4000 мс. Ориентировка юго-запад – северо-восток.
Галс S25_P3_22-3 (рис. 16) расположен перпендикулярно бровке шельфа на западном борту желоба Орли. Отличительной особенностью осадков на этом борту является отсутствие акустически прозрачных турбидитных отложений, перекрывающих консолидированные толщи с большим коэффициентом отражения. Вблизи континентального подножия склона расположены оползневые блоки. В пределах склона выявлен субгоризонтальный останец, сложенный высокоамплитудными отражениями, аналогичными палеогеновым в верхней части склона, с эродированной кровлей. Конфигурация данного образования хорошо выражена в карте рельефа. Эти особенности указывают на активное развитие осадконакопления за счет эрозии и сноса палеогеновых пород архипелага Шпицберген и изостатической реакции корового субстрата на увеличение нагрузки. Возможно, что именно изостатические перемещения являются триггером, меняющим русло турбидитных потоков.
5. Желоб Стурфьорд и континентальный склон Атлантического океана
Желоб Стурфьорд (см. рис. 2) имеет ЗЮЗ направление, корытообразный поперечный профиль с более пологим южным склоном в верховьях и более пологим северным склоном в устье, по тальвегу глубины меняются от 150 м в верховьях до 400 м в устье трога. В процессе съемки были установлены множественные несоответствия с данными карты IBCAO. По данным съемки (рис. 17) южный склон имеет перегибы на глубине 250 и 350 м, образуя ступени с небольшим наклоном в сторону дна желоба. На глубине около 300 м зафиксированы многочисленные борозды выпахивания с общим направлением движения вдоль простирания желоба. Они были отнесены к двум генетическим группам. Предполагается, что серия параллельных борозд у подножия южного склона имеет тектоническое происхождение (см. рис. 17), а остальные представляют собой борозды выпахивания килевыми частями айсбергов. Протяженность первых составляет 10 км в ССВ направлении, а их общая ширина составляет около 7 км. Ледниковые борозды отличаются волнистостью линий. Борозды исчезают на глубинах 500–600 м.
Рис. 17. Оттененный 3D рельеф устьевой части желоба Стурфьорд. Координаты – UTM37.
Южнее желоба на профиле S26-001 (рис. 18) четко выражена система гряд, возвышающаяся над дном до 10–15 метров. Подобные образования известны и в северной части Баренцева моря (Мусатов, 1996). Наиболее вероятно, что они имеют субвулканическое происхождение (дайки), о чем свидетельствуют и магнитные аномалии над ними. Выраженность даек в рельефе можно объяснить кайнозойским (до настоящего времени) поднятием земной коры, которая сопровождалась эрозией осадочных тел, в которые внедрялись субвулканические тела. Небольшие линзы осадков на акустически непрозрачном субстрате вокруг неровностей дна связанных с дайками, объясняются гидродинамической структурой разгрузки течений, всегда имеющей место при аномалиях рельефа. Данные формы выявлены в пределах изолированной аномалии магнитного поля, имеющей север-северо-восточную ориентацию. На ее продолжении наблюдались аналогичные образования в желобах Эрик-Эриксен и Орли.
Рис. 18. Фрагмент профиля S26-001. По вертикали – миллисекунды, по горизонтали – долгота и широта в формате ГрадМинСек. ххх. На врезке – положение профиля. Белые квадраты – станции. Ориентировка запад-восток.
В желобе Стурфьорд на глубине около 20 метров установлен рефлектор, не имеющего конформности с дном. Он может отвечать как границе стабильности газогидратов, так и кровле акустического фундамента, соответствующего кайнозойским осадочным породам. Кроме того, подобная граница может иметь термальную природу (Левашкевич, 2005). В целом, при переходе к северной части желоба, характер рефлекторов становится устойчиво трехслойным, аналогичным стратификации района желобов Орли и Эрик-Эриксена.
В северо-восточной части полигона на борту желоба, при пересечении кольцевой структуры, выраженной в рельефе (см. рис. 17), у поверхности дна обнаружен рефлектор с резким увеличением динамики (рис. 19), который поднимается в центре депрессии почти к поверхности дна. Первая версия о его происхождении состоит в том, что здесь происходит разгрузка газогидратов, перешедших в подвижное флюидное состояние. Второе объяснение – он соответствует магматическому телу, которому соответствует магнитная аномалия. Возможен и комбинированный вариант интерпретации, при котором магматизм вызвал эффект дегазации. К северу от центра депрессии в водной толще обнаружены следы дегазации.
Рис. 19. Фрагмент профиля S26-р2-09. По вертикали – миллисекунды, по горизонтали – долгота и широта в формате ГрадМинСек. ххх. На врезке – положение профиля. Белые квадраты – станции измерения теплового потока. Ориентировка юго-запад – северо-восток.
Рис. 20. Фрагмент профиля S26-trav01. По оси Х – широта и долгота, деление вертикальной развертки – 100 мс. На врезке – положение профиля. Белые квадраты – станции измерения теплового потока. Ориентировка запад-восток.
По данным сейсмоакустики на переходе от бровки шельфа в желобе Стурфьорд к склону получена запись общей мощностью проникновения по осадкам – 600 и 800 м соответственно. Геохронологическая привязка горизонтов осуществлена сравнением с разрезами, опубликованными в (Шлыкова и др., 2008), находящимся в 17 км от наших работ. Сравнение профиля на рис. 20 с этими данными показало, что нами выделен горизонт 1, соответствующий U0(QE) – кровле средне-верхнеплиоценового сейсмокомплекса, и граница внутреннего несогласия U1-2 в этом сейсмокомплексе. Между горизонтами выделена аномалия типа «яркое пятно». В подошве эоплейстоцен-голоценового сейсмокомплекса наблюдается рельеф, свойственный формированию прирусловых валов на поверхности горизонта 1. На глубине 35–45 метров под дном наблюдается пологий рефлектор, в целом повторяющий контуры дна и не параллельный горизонту 1. Это, скорее всего, подошва газогидратной зоны (BSR). Сходные наблюдения имеют место по данным профилографа. По данным (Шлыкова и др., 2008) здесь также наблюдается проградация ледниковых дельт. На рис. 20 видно, что клиноформы в верхней части средне-верхнеплиоценового сейсмокомплекса осложнены хаотичным рельефом в районе подошвенного прилегания к внутреннему несогласию. Кроме того, в районе бровки шельфа отмечается наличие аномалии типа «риф» с возникновением осветления и хаотизации рефлекторов.
6. Хребет Книповича и его сочленение с хребтом Мона
Во время работ НИС «Академик Николай Страхов» были закартированы северный и южный сегменты хребта (рис. 21, 22, 23).
Рис. 21. Оттененный 3D рельеф зоны сочленения хребтов Книповича и Мона
В рифтовой хребта Книповича долине наблюдаются многочисленные поднятия, которые в большинстве своем представляют собой действующие подводные вулканы с лавовыми потоками, зафиксированные сонарной съемкой (Crane et al., 2001). Поперечный профиль рифтовой долины на большом протяжении V-образный. Крутизна западного и восточного бортов может существенно изменяться по простиранию рифтовой долины. Они осложнены террасовидными уступами.
В процессе батиметрической съемки хребта Книповича было обнаружено несколько форм подводного рельефа (хребты, поднятия, горы), соответствующих международно-признанным морфологическим критериям для их идентификации и присвоения собственных имен. В течение 3-х сессий международного подкомитета ГЕБКО по географическим названиям под эгидой ЮНЕСКО в период с 2007 по 2009 год был официально утвержден ряд названий открытых в экспедициях форм рельефа, предложенных Россией и согласованных с Норвегией. Эти названия отображены на рис. 22 и 23.
Рис. 22. Оттененный 3D рельеф северной части хребта Книповича. Координаты – UTM32.
Рис. 23. Оттененный 3D рельеф южной части хребта Книповича. Координаты – UTM32.
Рельеф северного сегмента представлен на рис. 22. Практически на всем протяжении перехода от склона к долине хребта у разлома Моллой отмечены длинные сглаженные ступени, амплитуда которых увеличивается в направлении падения склона от первых до нескольких десятков метров. В плане они образуют сложный извилистый рисунок, переходя одна в другую и повторяя, в целом, общее простирание склона. В нижней части склон осложняется серией террас. В этом районе установлены проявления дегазации, выраженные в рельефе – конуса сипов размером до 6–8 метров (Vanneste et al., 2005; Чамов и др., 2008).
Рифтовая долина имеет субмеридиональное простирание. Ширина долины в пределах полигона варьирует от 17 до 30 км. Поперечный профиль с севера на юг изменяется от корытообразного до V-образного. Борта рифтовой долины асимметричны и осложнены терассовидными уступами. Восточный борт рифтовой долины частично перекрыт мощными осадками и переходит в континентальный склон. К западному борту приурочена цепь наиболее высоких вершин гребневой зоны хребта.
Рифтовая долина хребта Книповича (см. рис. 22) в рамках рассматриваемого участка разделяется на несколько самостоятельных эшелонированных впадин, глубина которых изменяется от 3100 до 3600 м. При движении с севера на юг вдоль рифтовой долины четко прослеживается изменение основных морфометрических характеристик от сегмента к сегменту. Вторая и третья впадины разделены неовулканическим поднятием, шириной около 15 км, включающим в себя отдельные вулканические постройки и уступы северо-восточного простирания, расположенные на общем приподнятом основании. Нарушений этих уступов зонами предполагаемых трансформных разломов не наблюдается.
Гребневая зона хребта Книповича хорошо выражена на западном фланге. Она четко прослеживается вдоль всего рифта и осложнена серией крупных блоковых поднятий. Вдоль восточного борта хребта Книповича в пределах большей части полигона гребневая зона не устанавливается. Это обусловлено лавинной седиментацией осадочного материала на континентальном склоне. Лишь на юге полигона обнажается внешний край восточного борта, осложненный небольшим блоковым поднятием.
К западу от гребневой части восточного борта рифтовой зоны Книповича в рельефе четко выделяется ступень, которую можно интерпретировать как фланг рифтового сводового поднятия. Она характеризуется сложным грядово-блоковым рельефом. Вытянутые возвышенности и разделяющие их понижения ориентированы вдоль простирания рифтовой зоны хребта Книповича. При общей субмеридианальной ориентировке морфологичекого рисунка, наблюдаются наложенные блоковые структуры северо-западного простирания, что в общем, совпадает с простиранием крупных тектонических элементов на флангах.
По данным высокочастотного профилирования в районе выделяется две слоистые толщи, отличающие характером акустического разреза (рис. 24). Нижняя толща преимущественно акустически однородна. Её видимая мощность достигает 50 и более метров. Верхняя толща тонкослоистая, состоит из маломощных (1–5 м) отчетливо прослеживаемых по простиранию слоев с общей мощностью от первых до 20–25 м. Представляется, что она сложена голоценовыми тонкослоистыми глинистыми отложениями.
Рис. 24. Фрагмент профиля S24-p1-02
Изучение характера деформаций в осадках вместе с морфологическими особенностями рельефа показало (рис. 25), что в районе широко проявлены как деформации растяжения (сбросы), так и сжатия (взбросы и пологие складки в осадках). И те и другие, как нам представляется, являются результатом крупных правосторонних сдвиговых перемещений в районе между Шпицбергеном и Гренландией, локализованных в различных структурах района и существующих длительное время. Эти наблюдения согласуются с данными ряда зарубежных исследователей о том, что образование структур хребта Книповича определяется эволюцией зоны детачмента, формирующейся по механизму простого сдвига и осложнённой компрессионными процессами на её западном фланге (Crane et al., 2001).
Рис. 25. Фрагмент профиля S24-p1-06
Частым явлением является акустическое осветление верхней части разреза осадков вдоль напластования и в виде прорывов от глубоких слоев к поверхности (рис. 26), а также в форме акустической фациальной трансформации от стратифицированной записи к хаотической. Неоднородности этого типа (диапиры и мелкие бескорневые вертикально ориентированные линзы в осадочном чехле) характерны для областей разгрузки метана, при которой происходит формирование обводнённых насыщенных газом участков (плывунов, газовых пузырей). Процесс происходит премущественно по тектонически ослабленным зонам (вдоль разломов и зон трещиноватости) и по наиболее проницаемым грубозернистым (песчано-гравийным) разностям. Так, например, на рис. 26, хорошо видно, что наиболее крупный диапир приурочен к вертикальному тектоническому нарушению. Следствием является полное уничтожение первичных осадочных текстур, формирующих акустическое поле. В районе работ тектонические напряжения и создание внутрипластового давления, обеспечивающего восходящее движение флюидов, наиболее вероятно связано с крупномасштабными сдвиговыми деформациями.
Рис. 26. Фрагмент профиля S24-p1-06
Положение большинства галсов сейсмоакустического профилирования (НСП) было выбрано вкрест простирания структур хребта Книповича. Глубинность метода в условиях района составила около 1 км по неконсолидированным осадкам. В случае присутствия высокоамплитудных прослоев в верхней части разреза глубинность составляет 300–400 метров. На восточном борту хребта Книповича, где идет мощной снос осадков с континентального склона, акустический фундамент не виден.
Северо-западная часть района представляет собой поднятие, которое покрыто осадочным чехлом, содержащим сильные рефлекторы (рис. 27, 28). Мощность этих отложений от поверхности до сильных рефлекторов составляет от 200 до 600 метров. Причем наиболее глубокий рефлектор имеет субгоризонтальный характер и акустическим фундаментом океанического типа не является. Наиболее вероятно, что это кровля палеогеновых отложений (Гусев, Шкарубо, 2001). Акустический фундамент в этом районе не выявлен НСП, за исключением перехода в рифтовую долину.
Рис. 27. Фрагмент профиля S24-Р2-09. На врезке – положение профиля. Ориентировка запад-восток.
Рис. 28. Фрагмент профиля S24-Р2-12. На врезке – положение профиля. Ориентировка запад-восток.
Западный борт хребта Книповича представлена осадочных чехлом, залегающим на квестообразном (наклон на запад) поднятии (рис. 29, 30). Акустический фундамент в этой зоне, как правило, прослеживается везде. Мощность чехла колеблется от нуля в рифтовой долине до 700 метров на западном склоне поднятия. Далее на запад наблюдается осадочный чехол с акустической прозрачностью и практически полным отсутствием внутренних рефлекторов. Несмотря на большую мощность (до 1 сек) осадков, залегающих на шероховатом фундаменте, имеющем океанический характер, последний достаточно четко может быть прослежен на большинстве профилей. Район к западу от хребта представляет собой холмогорье, сложенное небольшими квестовыми поднятиями, имеющими западный пологий склон. Характерные для данной зоны фрагменты представлены на рис. 31, 32. Из приведенных фрагментов видно, что мощность осадочного чехла в той зоне не превышает 700 метров и акустически прозрачна.
Рис. 29. Фрагмент профиля S24-Р2-18. На врезке – положение профиля. Ориентировка запад-восток.
Рис. 30. Фрагмент профиля S24-Р2-20. На врезке – положение профиля. Ориентировка запад-восток.
Рис. 31. Фрагмент профиля S24-Р2-19. На врезке – положение профиля. Ориентировка запад-восток.
Рис. 32. Фрагмент профиля S24-Р2-22. На врезке – положение профиля. Ориентировка запад-восток.
В районе работ наблюдаются разнообразные тектонические нарушения первичной структуры коры: образования квестообразного поднятия, образование зародышей медианных хребтов внутри депрессии рифта со сбросами по бортам, сдвиговые деформации.
Квестообразные поднятия развиты в районе повсеместно (см. рис. 22) и свидетельствуют о том, что рифтинг сопровождается интенсивными процессами сжатия по периферии зоны растяжения. Зоны сжатия проявляются в пространстве волнами, о чем свидетельствует наличие разделенных деформациями зон ненарушенного осадочного чехла. Деформации, выраженные в рельефе и структуре осадочного чехла пологими складками, хорошо коррелируются в пространстве в субмеридиональном направлении и замки складок имеют конфигурацию, называемую «тектоническими волнами деформации». Это говорит о том, что в районе кроме сопряженных областей сжатия и растяжения имеется еще и сдвиг. Как правило, форма рельефа повторяет форму фундамента, что говорит о сравнительно молодом и даже современном возрасте выявленных деформаций.
Рифтинг хребта Книповича сопровождается образованием современных вулканических построек в зоне рифта, с кратерами небольших размеров, медианных хребтов и формированием сбросов по бортам, по которым происходит опускание фрагментов осадочного чехла практически в ненарушенном виде с довольно крутыми обнажениями, которые в экспедиции успешно драгировались. Это также говорит о современном и очень быстром характере тектонических процессов, поскольку расстояния между ненарушенными бортами с осадками достигают 20 км.
Сдвиговые деформации отмечены в пределах флангов полигона. Они отмечаются на направлениях, имеющих северо-западную ориентацию (см. рис. 22). В осадочном чехле они проявлены возникновением системы квест, ориентированных не ортогонально рифту Книповича, а вдоль направления деформации (рис. 33). На восточном борту рифта это направление и эта же линия сдвига отмечена наличием магматических формирований, существовавших до формирования осадочного чехла континентального склона (рис. 34).
Рис. 33. Фрагмент профиля S24-Р2-16-Т01. На врезке – положение профиля. Ориентировка северо-запад – юго-восток.
Рис. 34. Фрагмент профиля S24-Р2-22. На врезке – положение профиля. Ориентировка запад-восток.
Привязка данных НСП к данным бурения может быть осуществлена по литературным данным (Гусев, Шкарубо, 2001). Идентификация горизонтов проводилась по сравнению имиджа (образа) волнового поля. Таким образом, рефлекторы на глубине около 400 метров (см. рис. 27, 28) на поднятии Ховгард, скорее всего, являются кровлей палеогена. Промежуточные горизонты между ним и дном являются кровлей миоцена. Стратиграфическая привязка акустически прозрачных толщ представляет затруднения, поскольку столь большие и однородные мощности говорят или об очень быстром или об однородном осадконакоплении, и, конечно, об отсутствии перерывов, при которых могли произойти процессы литификации, создающие контраст между литифицированной толщей и свежими наносами. При наличии мощного источника сноса и сильного течения можно предположить, что чехол юго-западной части полигона сформирован очень быстро в плиоцен-четвертичное время при заметной турбидитовой компоненте в строении осадочного чехла в отличие от низкоэнергетичного пелагического осадконакопления.
Отметим, что амплитуда обрывов, сложенных осадочными породами, почти не успевшими подвергнуться интенсивной денудации, в южном обрамлении региона увеличивается до 1 км (рис. 35). Рифтинг и растяжение коры с неконсолидированным или частично литифицированным осадочным покровом, имеют место в условиях более мощного покрова, что говорит о том, что происходит наращивание разрываемой мощности осадочного чехла по оси хребта с севера на юг. Кроме того, деформации листрического характера (сбросы с плоскостью полого уходящей к центру растяжения) отмечаются в восточной части данного профиля и прикрыты слоем осадков 100–150 метров. Это говорит о том, что возможно зона растяжения была гораздо шире, или ось растяжения испытывала перескок с востока на запад. В оси рифта наблюдается акустически непрозрачное малоамплитудное поднятие.
Рис. 35. Фрагмент профиля S25_P4_01. На врезке – положение профиля. Ориентировка запад-восток.
Рельеф южного сегмента представлен на рис. 23. Он охватывает южную часть хребта Книповича, зону сочленения хребтов Книповича и Мона, а также западный фланг сводового поднятия хребтов Книповича и Мона.
Хребет Мона является продолжением системы спрединговых хребтов Атлантики и развивается в режиме растяжения, имея интенсивность магнитных аномалий на порядок выше, чем в районе хребта Книповича и скорость спрединга порядка 1,3–2,0 см/год. Считается, что хребет Книповича, напротив, характеризуется ультрамедленным наращиванием коры (порядка 0,45 см/год). В рамках отснятого полигона рельеф дна имеет очень сложное строение, сочетая морфоструктуры перехода между зонами с разными скоростями формирования.
Южный сегмент хребта Книповича имеет субмеридианальное простирание и характеризуется четко очерченной долиной с асимметричными бортами. Рифтовая долина разделена на систему изолированных впадин, однако в отличие от северной части рифта, бассейны сильно вытянуты в меридиональном направлении. Относительная высота западного борта достигает 1000 м. Углы наклона в среднем составляют 10–20, что является свидетельством высокой тектонической активности. На западном борту был закартирован фрагмент крупного блокового поднятия. Восточный борт значительно ниже (превышение над днищем долины около 500–600 м).
В северной части зоны сочленения четко прослеживается поперечная зона, включающая две гряды северо-восточного простирания. Северная представляет собой узкий хребет с четким гребнем. Южная гряда существенно положе и почти в два раза шире (около 8 км). Здесь не наблюдается, сколько нибудь выраженного гребня, однако имеется одна большая (около 1 км в диаметре) и множество маленьких (первые сотни метров) конусовидных вулканических построек. Северная впадина также представляет собой вытянутую структуру ширина которой составляет 7 км., а длина – около 30 км. Она характеризуется сложным грядово-холмистым рельефом и может быть разделена на несколько субвпадин. Ее борта существенно положе, чем севернее, однако сохраняется характерная для хребта Книповича ассиметрия склонов.
Далее на юг долина хребта Книповича сужается, и ширина крайней впадины составляет уже 5 км при длине около 35 км. Она подвернута относительно более северных на 10° по часовой стрелке. Западный склон круче и существенно выше восточного. Оба борта рифта имеют четкую бровку субмеридианального простирания. В зоне сочленения хребтов Книповича и Мона рифтовая долина меняет направление с субмеридионального на северо-восточное. Здесь четко выделяется обособленная впадина, отделенная от предыдущей неовулканическим поднятием. Рифтовая долина хребта Книповича не является непрерывным продолжением структур спредингового хребта Мона, как это принято было считать ранее, а представляет собой обособленный самостоятельный объект. Сводовое поднятие зоны сочленения хребтов Книповича и Мона имеет сложное крупноблоковое строение. Наблюдаются наложенные блоковые структуры северо-восточного простирания. Плановые размеры поднятий составляют около 15–20 км, при высоте порядка 1000–1200 м.
По данным высокочастотного профилирования выделяется толща осадков между грядами к западу от оси рифта (рис. 36) с видимой мощностью 45 м. Снизу вверх наблюдается чередование слоев, сложенных акустически прозрачными отложениями мощностью 5–8 м, разделенных более плотными горизонтами мощностью менее 1 м. В верхней части разреза мощности акустически прозрачных слоев резко сокращаются до 0.5–1 м, становясь сопоставимыми с мощностями акустически плотных отложений. Резко выделяется акустически плотный слой около 1.5–2 м мощности, являясь маркирующей поверхностью между грубо и тонкослоистыми пачками осадков (мощность верхнего горизонта 5–7 м). Уменьшение мощности всех горизонтов к востоку, в сторону первой гряды рифтовых гор, позволяет заключить, что формирование впадины происходило длительное время. Каких либо постседиментационных деформаций осадков не отмечается. Разделяющие гряды впадины заполнены слоистыми осадками видимой мощностью более 20 м. Надо отметить, что далеко не везде можно установить, запечатывают ли осадки поверхности сбросов или последние являются молодыми. Наибольшая мощность осадков наблюдается в удлиненной в северо-восточном направлении впадине с центром на 74°07’ с.ш. 7°25’ в.д. Здесь мощность осадков верхней толщи составляет 10 м, а видимая мощность нижней – более 20 м. Обе толщи представлены тонкослоистыми, горизонтально лежащими осадками. Мощность слоев варьирует от 0.5 до 2 м.
Рис. 36. Строение осадков западного склона хребта Книповича
Западный борт рифтовой долины представляет собой несколько сбросовых ступеней, покрытых слоистыми осадками видимой мощностью около 10 м. Ширина ступеней 2–5 км. Как правило, осадки запечатывают поверхности сместителей сбросов, в тоже время в районе 74°53.2’с.ш. 7°59.3’в.д. отчетливо виден молодой сброс амплитудой 9 м, смещающий все осадочные горизонты. Борт долины переходит в первую гряду рифтовых гор, прослеживающихся до 74°40’с.ш. на юге. На профиле по 74°40.7’с.ш. отчетливо видно, что блоки, образующие первую гряду, характеризуются крутыми восточными склонами и более пологими – западными. При этом мощности перекрывающих их осадков последовательно уменьшаются в восточном направлении (рис. 37). Такие структуры характерные для листрических сбросов.
Рис. 37. Листрические сбросы западного склона хребта Книповича
Дно рифтовой долины на данной широте представляет собой 2 сбросовых уступа небольшой амплитуды (около 10 м) с опущенными западными склонами, перекрытых полого залегающими осадками. Осадки образуют 2 горизонта. Нижний – 6 м имеет выдержанную мощность. Мощность верхнего увеличивается от 3 до 6 м в нижней, наиболее опущенной части. Это может свидетельствовать о синтектоническом накоплении осадков в ходе формирования сбросов. (рис. 38). В районе 74°47.9’ с.ш. 8°55.2’ в.д. прослеживается узкий (менее 1 км) линейный трог северо-восточного простирания, рассекающий все структуры восточного борта. По морфологии он соответствует сдвигу (рис. 39). Далее к востоку наблюдается угловое несогласие между верхней пачкой мощностью 5 м и нижележащими горизонтами (см. рис. 39). Пачки расслаиваются выклинивающейся однородной толщей мощностью более 5 м. В районе 74°10’с.ш. 9°10’в.д. верхний (слоистый) горизонт мощностью 5 метров залегает на акустически прозрачных осадках, образующих тела линзовидной формы с сильно варьирующей (от 0 до 7 м) мощностью. Они представляют собой средние части конуса выноса несортированных осадков.
Рис. 38. Строение осадков рифтовой долины хребта Книповича
Рис. 39. Линейный трог в пределах восточного борта рифтовой долины хребта Книповича
Переход к северной части района работ осуществлен по центральной части желоба Стурфьорд, где энергетика турбидитных потоков максимальна и происходит осаждение грубообломочной фракции терригенного материала. Это приводит к тому, что акустической стратификации осадков практически не наблюдается. Стратификация в нерегулярном виде возникает только в средней части континентального склона на глубинах около 1400 метров, что свидетельствует о спаде энергетики потоков выводящих осадки с шельфа и о миграции языков конуса выноса по латерали склона. При приближении к изобате 2500 метров континентального подножия средняя часть конуса выноса сменяется дистальной и зона «нерегулярных мигрирующих линз» с акустической прозрачностью сменяется ритмичным накоплением толщи (см. рис. 40) состоящей из пачек мощностью в 2–6 метров. Эта зона, по-видимому, совпадает с появлением влияния погребенных структур восточного борта хребта Книповича. Кроме того, наличие сбросовых нарушений амплитудой 5–7 метров, не сглаженных лавинным осадконакопленем, свидетельствует о подвижности восточного борта хребта на удалении до 70 км от рифтовой оси.
Рис. 40. Фрагмент профиля S26-039. По вертикали – миллисекунды от начала окна регистрации, по горизонтали – долгота и широта в формате ГрадМинСек. ххх. На врезке – положение профиля. Ориентировка восток-запад.
Рис. 41. Фрагмент профиля S26-р3-02. По вертикали – миллисекунды от начала окна регистрации, по горизонтали – долгота и широта в формате ГрадМинСек. ххх. На врезке – положение профиля. Ориентировка запад-восток.
При пересечении оси хребта и съемке на 30 км к западу от оси установлено, что западный борт в этом районе практически не затронут деформациями, в отличие от восточного борта, на котором наблюдается чередование сбросов, взбросов и пликативных деформаций. Отметим также разницу в динамике и ритмах рефлекторов по обе стороны рифта (рис. 41). На западном борту мощности пачек достигают 7–8 метров и перемежаются акустически прозрачными зонами. Это говорит о том что, скорее всего, современные отложения турбидитных потоков сходящих с шельфа не создают прямого продолжения условий осадконакопления через ось хребта. На западном борту мы можем иметь пелагическое осадконакопление с нормальными для глубоководной части скоростями (5–7 мм/тыс. лет), в отличие от лавинных значений на востоке (более 100 мм). Разнообразия деформаций на восточном фланге проиллюстрировано на рис. 41. На рис. 42 показан образец взброса в районе депрессии с пониженным рельефом на восточном борту между широтами 74°40’ и 75°20’ (см. рис. 23) и высокого (150 м) выступа акустического фундамента. У края восточного борта установлено наличие локальных акустически прозрачных линз, соответствующих мигрирующим частям конуса выноса, а также трещин отрыва при оползневых склоновых процессах. Рис. 43 демонстрирует наличие мигрирующих переслаивающихся линз в южной части депрессии мощностью до 30 метров. Данная депрессия является новообразованием и по ее периферии идет интенсификации процессов осадочного заполнения появившегося незаполненного пространства (accommodation space) ниже сглаженного уровня склона. Также выделяется система сбросов амплитудой 50–60 метров на восточном борту хребта непосредственно за выступом акустического фундамента.
Рис. 42. Фрагмент профиля S26-р3-04. По вертикали – миллисекунды от начала окна регистрации, по горизонтали – долгота и широта в формате ГрадМинСек. ххх. На врезке – положение профиля. Ориентировка запад-восток.
Рис. 43. Фрагмент профиля S26-р3-07. По вертикали – миллисекунды от начала окна регистрации, по горизонтали – долгота и широта в формате ГрадМинСек. ххх. На врезке – положение профиля. Ориентировка восток-запад.
На северном обрамлении депрессии повторяется схема структур южной части. Появляются акустически прозрачные линзы и небольшие взбросовые нарушения в средней части депрессии (рис. 44). Также видны деформации в середине депрессии взбросовые и значительные сбросовые нарушения осадков, линзы на континентальном склоне и уступ с ритмичной пачкой осадков мощностью 6–8 метров и акустически прозрачной, расположенной на западном склоне уступа.
Рис. 44. Фрагмент профиля S26-р3-09. По вертикали – миллисекунды от начала окна регистрации, по горизонтали – долгота и широта в формате ГрадМинСек. ххх. На врезке – положение профиля. Ориентировка восток-запад.
По данным НСП установлено, что растяжение вдоль рифта является современным процессом. Это следует из наличия малоамплитудных сбросов, затрагивающих осадочный чехол на западном борту рифта. Галс S25_P5_03 (рис. 45) показывает, что по мере продвижения на юг, амплитуда и абсолютное гипсометрическое положение квестообразных поднятий на восточном борту уменьшается, а на западном увеличивается и сопровождается эрозией переотложенного палеогена. Последний когда-то заполнял не затронутый растяжением массив, был расчленен и подвержен наклону на сегментах раздробленного фундамента, а вследствие дальнейшего подъема на западном борту испытал переотложение в межблочных впадинах. Причиной общего подъема структур западного борта может являться взаимодействие рифтовых структур хребтов Книповича и Мона.
Рис. 45. Фрагмент профиля S25_P5_03. (По оси Х – широта и долгота, вертикальная развертка – 5000 мс). На врезке – положение профиля. Ориентировка запад-восток.
Галс S25_P5_05 (рис. 46) показывает отчетливое проявление медианного поднятия по оси рифта. Кроме того, заметно, что фронт квестообразных поднятий отступает на запад по мере продвижения на юг положения профилей. Необходимо также отметить наличие выступа акустического фундамента, непокрытого осадочным чехлом, аналогичного тому, что наблюдались в северном сегменте хребта (галс S24-Р2_22). Галс S25_P5_06-2 (см. рис. 47) показывает наличие множественной эшелонированной (до 6 блоков) системы сбросов на западном борту рифта, с акустическим осветлением около некоторых блоков фундамента. Кроме того, увеличение амплитуды квест на западе имеет настолько большой размах, что можно формально говорить о горообразовании с удовлетворением формальным признакам, необходимым для присвоения названий. Существовавший, вероятно, осадочный покров на данном поднятии в настоящий момент отсутствует.
Рис. 46. Фрагмент профиля S25_P5_05. (По оси Х – широта и долгота, вертикальная развертка – 5000 мс). Ориентировка запад-восток.
Рис. 47. Фрагмент профиля S25_P5_06-2. (По оси Х – широта и долгота, вертикальная развертка – 6000 мс). На врезке – положение профиля. Ориентировка запад-восток.
Пересечение хребта на широте пририфтовой депрессии, упомянутой выше, показывает, что амплитуда обрывов, сложенных осадочными породами, по сравнению с северной частью хребта Книповича увеличивается более чем на 1 км. Рифтинг и растяжение коры с неконсолидированным или частично литифицированным осадочным покровом имеют место в условиях большей мощности, что наращивает размываемую мощность осадков по оси хребта с севера на юг. Кроме того, деформации листрического характера (сбросы с плоскостью полого уходящей к центру растяжения) отмечаются в восточных бортовых частях и прикрыты слоем осадков 100–150 метров. Это говорит о том, что возможно зона растяжения была гораздо шире, или ось растяжения испытывал перескок с востока на запад. В оси рифта наблюдается акустически непрозрачное малоамплитудное поднятие, имеющее характер медианного поднятия. Система наблюдений к северу показывает, что амплитуда сбросов по осадкам в районе депрессии достигает 1.5 км, а покрытие осадками структур акустического фундамента вблизи депрессии увеличивается до 500–600 м при понижении гипсометрического уровня дна на 150 м. Это означает, что имеет место погружение фундамента восточного борта минимум на 300–400 м по сравнению с окружающей депрессию частью фундамента. Оно сопровождается тектоническими нарушениями обстановки растяжения. К северной части депрессии (рис. 48) размах сбросов, фиксируемый по смещению осадков достигает почти 2 км. При этом в бортовых частях, как западной, так и восточной в непосредственной близости к рифту наблюдаются структуры сжатия с небольшими взбросовыми нарушениями. Их выявление дублируется также и данными профилографа, что подтверждает современные движения по этим нарушениям.
Рис. 48. Фрагмент профиля S26-р3-13. (По оси Х – широта и долгота, деление вертикальной развертки – 100 мс, разметка – 1000 мс). На врезке – положение профиля. Ориентировка восток-запад.
7. Южный фланг хребта Мона
Район работ располагался у подножия баренцевоморского континентального склона в северной части Лофотенской котловины. К северо-западу от исследуемого района располагается хребет Мона. Рельеф района выровненный (рис. 49) с отдельными поднятиями, которые представляют собой выходы коренных пород. Глубины дна постепенно уменьшаются в юго-западном направлении от 3000 до 2600 м. Источником сноса является конус выноса желоба Медвежинский (см. рис. 2). В рельефе выделяется промоина, расположенная на юго-западном окончании полигона. Выходы фундамента представляют собой две горы, наиболее высокая из которых расположена ближе в хребту Мона, вершина горы располагается на глубине 1900 м, относительная высота около 1000 м. Вторая гора представляет собой вытянутое в юго-западное направление поднятие, с относительной высотой около 500 м.
Рис. 49. Оттененный 3D рельеф южного фланга хребта Мона. Координаты – UTM32.
Данные высокочастотного профилирования показывают, что в этом районе наблюдается переслаивание акустически нестратифицированных осадочных линз (рис. 50) по профилям с субмеридиональным сечением, то есть снос материала для этих осадочных тел идет перпендикулярно простиранию профилей – с востока (с шельфа Баренцева моря). Отметим, что расстояния от этих линз до шельфа около 300 км, что в два раза превышает расстояние от аналогичных линз в районе восточного борта хребта Книповича. Отмеченной выше особенностью переслаивания является то, что по соотношению рефлекторов видна вертикальная (временная) непрерывность разреза во всех частях профиля: в ряде случаев он сжатый (condensed section), а в ряде случаев раздут до состояния акустически нестратифицированных линз. В западной части полигона (рис. 51) развитие линз затухает и практически все рефлекторы сжимаются до сжатого состояния (condensed section). В южной части профиля по раздуву мощностей отметим конседиментационную впадину, заполненную осадками. Процесс формирования впадины закончился сравнительно недавно после чего ее заполнение продолжилось обычным налеганием осадочных тел на стенки впадины. Эта же структура прослеживается и на субширотных профилях. Это значит, что депрессия линейная и имеет северо-западное простирание (см. рис. 49). Возникновение этой впадины, возможно, имеет тектоническую природу, связанную с локальным растяжением в коре в плейстоцене. В восточной части профиля наблюдается переход от сжатого разреза дистальных частей конуса выноса к возникновению акустически нестратифицированных линз, налегание которых друг на друга однозначно показывает, что направление сноса терригенного материала идет с востока с формированием трансгрессивной серий отложений. Осадочные тела смещаются в восточном направлении, что определяется по характеру их налегания.
Рис. 50. Фрагмент профиля S26-р6-0.4 По вертикали – миллисекунды от начала окна регистрации, по горизонтали – долгота и широта в формате ГрадМинСек. ххх. На врезке – положение профиля. Ориентировка юг-север.
Рис. 51. Фрагмент профиля S26-р6-11. По вертикали – миллисекунды от начала окна регистрации, по горизонтали – долгота и широта в формате ГрадМинСек. ххх. На врезке – положение профиля. Ориентировка юг-север.
Профили НСП, перпендикулярные направлению сноса, показывают стратификацию осадочного чехла, типичную для хаотичного осадконакопления средней части конусов выноса. Переслаивание линз хорошо видно также по данным профилографа (см. рис. 50).
На разрезе НСП видно, что мощность до фундамента достигает 900 м (рис. 52). Динамика волн вдоль рефлекторов крайне нестабильная, что отражает изменчивые условия осадконакопления. Практически вдоль всех рефлекторов прослеживается хаотично-шероховатый рельеф, возникший при пространственной нестабильности «языков» конуса выноса. Вариация амплитуд может происходить также из-за примеси вулканокластики. На западе района происходит сокращение мощности осадков до 500–700 м и появляются выступы акустического фундамента, которые, вероятно, существовали до накопления осадочного чехла, но по деформациям на склонах выступа, можно заключить, что здесь происходила новейшая активизация вертикальных тектонических движений фундамента. На рис. 52 видна конседиментационная депрессия в западной части района, отмеченная также по данным профилографа. Видимая мощность осадочного чехла сокращается до 400 метров. На профиле, параллельном хребту Мона (см. рис. 52), видно, что возможно мощность осадочного чехла в этой части района, залегающего на акустическом фундаменте достигает 1000 м, причем нижний отдел чехла сложен хаотичными отложениями без какой-либо стратификации. Под конседиментационной депрессией на юго-западе полигона прослеживается слабое рассеянное поле, возможно ассоциированное с плоскостью сбросового нарушения. По мере движения вверх по склону конуса выноса, хаотизация и акустическая прозрачность рефлекторов увеличивается, воль горизонта залегающего на глубине 200–250 метров под дном прослеживаются флуктуации рельефа, которые вероятно усилятся при дальнейшем продвижении вверх по склону.
Рис. 52. Фрагмент профиля S26-р6-14. По оси Х – широта и долгота, деление вертикальной развертки – 100 мс, разметка – 1000 мс. На врезке – положение профиля. Ориентировка восток-запад.
Выводы
1. Микрорельеф дна шельфа Баренцева моря представлен наложением разновозрастных борозд ледникового выпахивания, являющихся следствием движения килевых частей айсбергов по дну моря.
2. Желоб Орли представляет собой современный рифт со сложной морфологией дна и акустического фундамента, а также аномально высоким тепловым потоком. Он представляет собой морфоструктуру вдоль которой происходит активный снос материала донными течениями с юга на север.
3. На континентальном склоне Северного Ледовитого океана существуют крупные оползни.
4. Желоба Орли и Эрик-Эриксен имеют признаки современной тектонической активности с формированием субмеридиональной макротрещинноватости. Структуры Орли имеют южное продолжение в виде сбросовых нарушений и складчатых форм, и дислоцируют фундамент около Земли Короля Карла. В центральной части желоба Орли выделены медианные структуры, что свидетельствует об условиях растяжения.
5. В северной части желоба Орли и на его бортах несогласно залегают осадочные толщи. Поверхность несогласия представляет собой субгоризонтальную площадку, которая смещается сбросовыми нарушениями желоба вместе с осадочным чехлом и турбидитными отложениями.
6. В устье желоба Орли обнаружены аномалии смещения главной частоты сигнала в более низкий диапазон, что, как правило, происходит при насыщении пористой матрицы флюидом.
7. В толще осадков в устьевой части желоба Орли видны признаки миграции русла потока и прирусловых валов во времени. На восточном борту литифицированная толща до 1500 метров перекрыта акустически прозрачным комплексом, что также говорит об интенсивном выносе крупнообломочной турбидитной фракции и формировании конусов выноса. На западном борту наблюдаются нарушения, возникшие скорее всего из-за изостатической компенсации лавинного осадконакопления.
8. В пределах эрозионной структуры желоба Стурфьорд были зафиксированы борозды выпахивания ледникового происхождения и тектонические борозды, прослеживаемые до глубин 600 м.
9. На северном обрамлении Медвежинского поднятия наблюдаются выходы даек, которые по магнитным данным коррелируют с аналогичными образованиями в желобе Орли.
10. В северной части по желобу Стурфьорд проявлен устойчивый трехслойный характер рефлекторов. В центральной и южных частях наблюдается появление рефлектора физической природы (либо термальной, либо газогидратной) с резким увеличением динамики, имеющего вероятную зону разгрузки флюида в кольцевой депрессии. Наличие этого рефлектора подтверждается и данными сейсмоакустики.
11. Рельеф северного сегмента хребта Книповича определяется сложно построенной зоной перехода от континента к рифтогенным структурам зарождающегося океана, структурный парагенез которой определяется эволюцией крупномасштабного правого сдвига (Crane et al., 2001). Поле напряжений в этой тектонически активной зоне обуславливает деформации по двум основным направлениям: северо-восточному и северо-западному. Сопутствующие сдвигу процессы растяжения и сжатия маркируются в рельефе многочисленными системами сбросов и взбросов различной амплитуды.
12. Рифтовая долина северного сегмента хребта Книповича представляет собой сложно построенную зону, разбитую на систему впадин, имеющих в плане ромбовидную форму. Рельеф в пределах днища рифтовой долины с севера на юг от бассейна к бассейну меняется от выровненного до сложного грядово-холмистого. Амплитуда рельефа достигает местами 150 м. Впадины разделены неовулканическими хребтами, высота которых увеличивается при движении от сегмента к сегменту с севера на юг. Борта рифтовой долины осложнены серией террас и ступеней. Ступени, как правило, смещены друг относительно друга, что позволяет предположить их блоковое строение.
13. Данные высокочастотного профилирования на северных флангах хребта Книповича показывают наличие деформаций растяжения (сбросы) и сжатия (взбросы и пологие складки в осадках), являющихся результатом правосторонних сдвиговых перемещений в районе между Шпицбергеном и Гренландией.
14. На северных флангах хребта Книповича выявлены акустически прозрачные бесструктурные неоднородности разного размера, которые нарушают сплошную слоистость в пределах осадочных пачек верхних 100 м разреза, что является характерным признаком вариации газонасыщенности приповерхностных отложений.
15. Осадочный чехол на северных флангах хребта Книповича распределен неравномерно. Восточный борт, подверженный лавинной седиментации, погребен под мощной осадочной толщей, фундамент которой нами не выявлен. Западный борт на севере представлен осадочным чехлом с интенсивными рефлекторами на глубинах около 400 м под дном. На юге большая часть чехла акустически прозрачна.
16. Осадочный чехол на северных флангах хребта Книповича подвержен разнообразным тектоническим нарушениям, как современным, так и сформированным, по всей видимости, до рифтогенеза современной структуры хребта. Наблюдаются сбросы в пририфтовой зоне, взбросы на флангах, квестообразования вдоль линеаментов северо-западного простирания.
17. В северной части хребта Книповича вдоль бортов рифта наблюдаются крутые сбросовые плоскости амплитудой до 1 км с осадочным заполнением крыльев, не подверженном денудации, что может быть при современном и очень быстром рифтинге в условиях источника лавинной седиментации.
18. Хребет Мона является типичным спрединговым хребтом и развивается в режиме нормального сброса. Поле напряжений в тектонически активной зоне сочленения хребтов Книповича и Мона обуславливает деформации одновременно по нескольким направлениям, которые маркируются в рельефе многочисленными системами сбросов и взбросов различной амплитуды.
19. В районе сочленения с хребтом Мона долина хребта Книповича резко сужается и подворачивается, впадины рифта приобретают вытянутую чечевицеобразную форму. Долина хребта Книповича отделена от структур хребта Мона приподнятым поперечным блоком. Борта рифтовой долины Книповича как на севере, так и на юге асимметричны и осложнены серией террас и ступеней. Ступени, как правило, смещены друг относительно друга, что позволяет предположить их блоковое строение. В перемычках рифта наблюдаются вулканические постройки.
20. Верхние горизонты осадков южного сегмента хребта Книповича, как правило, имеют двучленное строение. Верхний горизонт представлен тонко, горизонтально слоистыми осадками, с мощностью слоев около 0.5–1 м. Нижний – гораздо более грубо слоистый с мощностью отдельных слоев 5–8 м. Видимая мощность нижнего горизонта 40 м.
21. В районе континентального подножия около депрессии рельефа на восточном борту хребта Книповича наблюдается переход к пелагическому осадконакоплению и присутствие различных видов деформаций: сбросовых, взбросовых и пликативных, не наблюдаемых на западном борту хребта. Это означает современную подвижность структуры на востоке. Характер стратификации осадков на западном борту отличен от восточного и это говорит о том, что отложения турбидитных потоков не имеют прямого продолжения через хребет.
22. Отложения конусов выноса, как в сжатых разрезах, так и в раздутых линзах переслаиваются и налегают друг на друга таким образом, что в целом разрез по линии абиссаль-шельф носит отчетливо трансгрессивный характер.
23. Рифтинг и растяжение коры в южной части хребта Книповича имеют место в условиях более мощного осадочного покрова, что говорит о том, что происходит также наращивание разрываемой мощности чехла по оси хребта с севера на юг. Наблюдаются признаки того, что зона растяжения была гораздо шире, или ось растяжения испытывала перескок с востока на запад и обратно. В оси рифта формируются медианные поднятия.
24. Изолированные поднятия акустического фундамента на бортах рифта по мере движения на юг переходят на западный борт.
25. По мере продвижения на юг амплитуда и абсолютное гипсометрическое положение квестообразных поднятий на восточном борту уменьшается, а на западном увеличивается и сопровождается эрозией переотложенного палеогена и сносом в межблочные впадины. Причиной общего подъема структур западного борта может являться взаимодействие рифтовых структур хребтов Книповича и Мона.
26. Увеличение амплитуды и частоты квест на западе имеет настолько большой размах, что можно формально говорить о горообразовании.
27. Вблизи хребта отмечаются многочисленные сбросовые нарушения, особенно в районе пририфтовой депрессии от 74°40 до 75°20. Местами встречаются узкие зоны со взбросовыми нарушениями. Это говорит о сложной динамике растяжения в данном районе, продолжающейся в настоящее время. Амплитуда проседания фундамента в районе депрессии может составить 300–400 метров.
28. Амплитуда сбросов по осадкам в рифтовой долине увеличивается почти до 2 км.
29. На южном борту хребта Мона направление сноса осадочного материала ориентировано с востока на запад и в пределах полигона наблюдается переход от переслаивания линз среднеэнергетической зоны конуса выноса к его дистальной части со сжатым разрезом. Направление источника сноса терригенного материала с севера на юг практически исключено. В пределах полигона наблюдается депрессия северо-западной ориентации, заполненная конседиментационным отложением осадков с переменной мощностью, свидетельствующая о локальном растяжении.
30. На южном борту хребта Мона отмечается наличие конседиментационной депрессии, переставшей функционировать некоторое время назад, под которой наблюдаются следы листрического сброса.
31. Переход к пелагическому осадконакоплению происходит на удалениях около 350 км от устья желоба Медвежинский, что в два раза дальше аналогичного перехода на конусе желоба Стурфьорд.
Исследования проводились при финансовой поддержке Норвежского Нефтяного Директората, программ фундаментальных исследований Президиума Российской Академии Наук №№ 14, 16, 17, ведущей научной школы НШ-3172.2008.5
Литература
Гусев Е.А., Шкарубо С.И. Аномальное строение хребта Книповича // Russian Journal of Earth Sciences. 2001. V.3. №.2. C. 145–161.
Дибнер В.Д. Геологическое строение острова Виктория // Геология советской Арктики. М.: Госгеолтехиздат. 1957. С. 21–22. (Тр. НИИГА. Т. 81)
Карякин Ю.В., Ляпунов С.М., Симонов В.А., Скляров Е.В., Травин А.В., Шипилов Э.В. Мезозойские магматические комплексы архипелага Земля Франца-Иосифа // Геология полярных областей Земли. Материалы XLII Тектонического совещания. Т. 1. М.: ГЕОС. 2009. C. 257–263.
Левашкевич В.Г. Закономерности распределения геотермического поля окраин Восточно-Европейской платформы (Баренцевоморский и Белорусско-Прибалтийский регионы) 2005.
Милановский Е. Е. Геология России и ближнего зарубежья (Северной Евразии). 1996. М.: МГУ. 448 с.
Мурдмаа И.О., Иванова Е.В. Послеледниковая история осадконакопления в шельфовых впадинах Баренцева моря // Литология и полезные ископаемые. 1999. № 6. С. 576–595.
Мусатов Е. Е. Распространение кайнозойского чехла на Баренцевоморском шельфе между архипелагами Шпицберген и Земля Франца-Иосифа // Океанология. 1996. Т. 36. № 3. С. 444–450.
Объяснительная записка к тектонической карте Баренцева моря и северной части Европейской России масштаба 1:2 500 000. М.: ИЛОВМ РАН. 1996. 94 с.
Столбов Н.М., Устинов Н.В., Голубкова Е.Ю. Какого возраста отложения складчатого фундамента архипелага Земля Франца-Иосифа? // Геолого-геофизические характеристики литосферы Арктического региона. Министерство природных ресурсов Российской Федерации, Всероссийский Научно-исследовательский институт геологии и природных ресурсов Мирового океана. С.Пб.: ВНИИОкеангеология. 2006. Т. 210. Вып. 6. С. 145–148.
Сущевская Н.М., Евдокимов А.Н., Маслов В.А., Кузьмин Д.В. Генезис базальтовых магм четвертичных вулканов архипелага Шицберген // Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» 2004. Т. 22. № 1. С. 1–4.
Хаин В.Е. Тектоника континентов и океанов (год 2000). М.: Научный Мир. 2001. 606 с.
Хуторской М.Д., Леонов Ю.Г., Ермаков А.В., Ахмедзянов В.Р. Аномальный тепловой поток и природа желобов в северной части свальбардской плиты // Докл. РАН. 2009. Т. 424. № 2. С. 227–233.
Чамов, Н.П., Добролюбова К.О., Пейве, А.А., Соколов С.Ю. Признаки присутствия газогидратов в верхней части осадочного чехла на бортах разломной зоны Моллой (пролив Фрама, Норвежско-Гренландский бассейн) // Бюлл. МОИП. Отд. Геол. 2008. Т. 83. Вып. 2. С. 51–60.
Шипилов Э.В., Тарасов Г.А. Региональная геология нефтегазоносных осадочных бассейнов Западно-Арктического шельфа России. Апатиты: КНЦ РАН. 1998. 306 с.
Шлыкова В.В., Казанин Г.С., Павлов С.П., Ступакова А.В., Голынчик П.О., Сафронова П.А. Сейсмостратиграфическая характеристика осадочного чехла Южно-Шпицбергенского шельфа и перспективы нефтегазоносности // Разведка и охрана недр. 2008. № 8. С. 39–44.
Geology of Franz Josef Land (edited by V.D. Dibner). Norsk Polarinstitutt. Meddelelse No. 146. Oslo. 1998. 190 p.
IBCAO (International Bathymetric Chart of Arctic Ocean). 2005. (http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html).
Hjelstuen B.O., Eldholm O., Faleide J. I. Recurrent Pleistocene mega-failures on the SW Barents Sea margin // Earth and Planetary Science Letters. 2007. V. 258. Pp. 605–618.
Ljones F., Kuwano A., Mjelde R., Breivika A., Shimamura H., Murai Y., Nishimura Y. Crustal transect from the North Atlantic Knipovich Ridge to the Svalbard Margin west of Hornsund // Tectonophysics. 2004. V. 378. Pp. 17–41
Murdmaa I., Ivanova E., Duplessy J., Levitan M., Khusid T., Bourtman M., Alekhina G., Alekseeva T., Belousov M., Serova V. Facies system of the Eastern Barents Sea since the last glaciation to present // Marine Geology. 2006. V. 230. Pp. 275–303.
Olesen, O. G., Gellein J., Brekke H. et al. Magnetic anomaly map, Norway and adjacent ocean areas. Scale 3 million. Geological Survey of Norway. 1997.
Smith D.G., Harland W. B., Hughes N. F., Pickton C.A.G. The geology of Kong Karls Land, Svalbard // Geological Magazine. 1976. V. 113. №. 3. Pp. 193–304.
The Geology of Svalbard (ed. – W. B. Harland). Geological Society, London, Memoir No. 17. 1997. 521 p.
Vanneste M, Guidard S., Mienert J. Вottom simulating reflection and geothermal gradients across the western Svalbard Margin // Terra Nova. 2005. V. 17. Iss. 6. Pp. 510–516.
Vanneste M., Mienert J. Bünz S. The Hinlopen Slide: A giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean // Earth and Planetary Science Letters. 2006. V. 245. Is. 1–2. Pp. 373–388
Winkelmann, D., Stein R., Triggering of the Hinlopen/Yermak Megaslide in relation to paleoceanography and climate history of the continental margin north of Spitsbergen // Geochem. Geophys. Geosyst. (G3). 2007. V. 8. № 6. Pp. 1–15. (An electronic journal of the earth sciences doi:10.1029/2006GC001485).
A. V. Zayonchek[81], H. Brekke[82], S. Yu. Sokolov[83], A.O. Mazarovich[84], K.O. Dobrolyubova[85], V. N. Efimov[86], A. S. Abramova[87], Yu. A. Zaraiskaya[88], A.V. Kokhan[89], E. A. Moroz[90], A. A. Peive[91], N.P. Chamov[92], K. P. Yampol’skii[93]. The Structure of Continent-Ocean transition zone at North-West Barents Sea Margin (results of 24–26-th cruises of RV «Akademik Nikolaj Strakhov», 2006–2009)
Abstract
Three geological-geophysical expeditions on R/V «Akademik Nikolaj Strakhov» in 2006–2009 (Geological Institute RAS, Norwegian Petroleum Directorate) resulted in detailed mapping by acoustic methods for significant areas of Knipovich ridge, southern slope of Mohn ridge, Storfjord and Orli troughs, continental slope and Franz-Joseph Land vicinity with total survey length about 22 000 km. Were discovered: northward zone of Svalbard shelf plate destruction, outcrops of dyke complexes and other volcanogeneous edifices on the shelf, gas hydrates release occurrences, modern tectonic displacements on continental slope and in sedimentary cover of Knipovich and Mohn ridges boards and many other facts. North-West margin of Barents sea shelf exposes the similarity with rift onshore structures at Northern areas of Spitzbergen Island, that could show the uniform conditions of their formation, and with the consideration of the data from neighbors areas at deep ocean gives the basis for development of model, connecting the geodynamic processes at continental and oceanic lithosphere.