23. Функциональная, статистическая и корреляционная зависимости. Определение регрессии
Большинство социально-экономических явлений и процессов, исследуемых статистикой, взаимосвязаны между собой. Поэтому одна из основных задач статистики состоит в установлении и измерении причинно-следственных связей между изучаемой случайной величиной Y и одной или несколькими случайными (или неслучайными) величинами Х1, Х2, …, Хn.
При изучении причинно-следственных связей выделяют факторные и результативные признаки. Результативные признаки Y выступают в роли функции, т. к. они изменяются под воздействием факторных признаков. Факторные признаки Х1, Х2, …, Хn выступают в роли аргументов функции, т. к. они влияют на изменение результативных признаков.
Различают два вида связей между случайными величинами – функциональную и корреляционную.
Функциональная зависимость характеризуется полным соответствием между зависимой (результативной) переменной Y и факторной переменной Х. Но в связи с тем что факторные и результативные переменные подвержены воздействию случайных факторов, как общих для обоих переменных, так и индивидуальных, то строгая функциональная зависимость на практике встречается редко.
Предположим, что результативная переменная /зависит от случайных факторов Т1, Т2, М1, М2, а факторная переменная Х зависит от случайных факторов Т1, Т2, К1, то Y и Х связаны статистической зависимостью, т. к. среди случайных факторов есть общие – Т1 и Т2.
Конец ознакомительного фрагмента.