Вы здесь

Статистика. Ответы на экзаменационные билеты. 20. Методы выявления основных тенденций динамического ряда (А. В. Яковлева, 2009)

20. Методы выявления основных тенденций динамического ряда

Уровни динамического ряда изменяются под влиянием двух групп факторов: систематических (детерминированных) и случайных. Задача исследователя состоит в устранении в какой-то мере случайных факторов и выявлении основной тенденции развития уровней динамического ряда.

Эта задача может быть решена двумя способами:

1) сглаживанием по методу скользящих средних;

2) аналитическим выравниванием по методу наименьших квадратов.

Суть сглаживания уровней динамического ряда по методу скользящей средней заключается в следующем. Данный метод основан на идее перехода от менее крупных интервалов времени к более крупным. Такие средние величины называются скользящими. Они образуют сглаженный динамический ряд, по которому судят об основных тенденциях ряда. В сглаживании постепенно участвуют все уровни ряда путем передвижки на один уровень вперед.

Например, первое значение х1 сглаженного динамического ряда рассчитывается по формуле:

Второе значение х2 сглаженного динамического ряда рассчитывается по формуле:

где к период сглаживания.

Таким образом, полученные средние величины х1, х2 … образуют сглаженный ряд динамики.

Сглаживание можно производить и для четного периода, например для четырех лет. Вспомогательный ряд скользящих средних рассчитывается так же, как и при нечетном периоде, а основной рассчитывается постепенно на основе двух соседних средних вспомогательного ряда по формуле простой средней.

Аналитическое выравнивание – это более сложный прием выявления основных тенденций динамического ряда. Данный процесс включает два этапа:

1) выбор вида кривой (функции), форма которой соответствует характеру изменения динамического ряда;

2) определение параметров и выравненных значений уровней динамического ряда.

На первом этапе на линейном графике по фактическим данным строят ломаную кривую. При этом по оси абсцисс откладывают время, а по оси ординат – значения динамического ряда. Затем глазомерно оценивают ее и выбирают наиболее подходящую кривую. Это может быть прямая или парабола, показательная функция и т. д. Во всех случаях выбранная кривая должна удовлетворять методу наименьших квадратов. Его суть:

где у – фактические уровни динамического ряда;

yt – выровненные или теоретические уровни для каждого периода t.

На втором этапе аналитического выравнивания параметры функции, например прямой yt = a0 + a1t, определяются с помощью системы нормальных уравнений, например:

Определив а0 и а1, подставляют их значения в уравнение прямой, где t – время.

Параметр а0 интерпретируется как вычисленный теоретический уровень срединного члена ряда. Параметр а1 трактуется как средняя скорость изменения уровня ряда (средний абсолютный прирост).