Вы здесь

Статистика. Ответы на экзаменационные билеты. 10. Абсолютные показатели вариации (А. В. Яковлева, 2009)

10. Абсолютные показатели вариации

К абсолютным показателям вариации относятся:

1) вариационный размах (R);

2) среднее абсолютное (линейное) отклонение (в);

3) дисперсия (G2);

4) среднеквадратическое отклонение (G).

Вариационный размах R — это разность между

наибольшей и наименьшей вариантами вариационного ряда:


R =хmaxхmin


Вариационный размах является наиболее простой характеристикой рассеяния вариационного ряда. Недостатки данного показателя:

1) неточно характеризует колеблемость, потому что зависит только от двух значений признака;

2) зависит от объема совокупности, т. е. с увеличением объема совокупности увеличивается вероятность размера вариационного размаха.

Среднее абсолютное отклонение в это вели чина, которая рассчитывается как среднее арифметическое абсолютных отклонений в данной совокупности.

Различают простое и взвешенное среднее абсолютное отклонение.

Среднее абсолютное простое отклонение рассчитывается по формуле:

где – n– объем совокупности;

x – выборочное среднее.


Среднее абсолютное взвешенное отклонение рассчитывается по формуле:

где x – выборочное среднее;

m – веса.

Недостатки данного показателя:

1) оторванность от других показателей. Это объясняется тем, что при построении показателя используется искусственный подход, т. е. отклонение берется по модулю (положительное);

2) недостаточная реакция на слабые различия в степени вариации.

Дисперсия – это среднее арифметическое квадратов отклонения наблюдаемых значений признака от – их среднего значения x.

Если значения признака, полученные в результате выборочного наблюдения, не группировать и не представлять в виде вариационного ряда, то для вычисления дисперсии используют формулу:

где n – объем выборки.

Среднеквадратическое отклонение – это квадратный корень из среднего арифметического квадратов отклонения наблюдаемых значений признака от – их среднего значения x, или квадратный корень из дисперсии.

Среднеквадратическое отклонение для несгруппированных данных рассчитывается по формуле: