Вы здесь

Современные биотехнологии в сельском хозяйстве. 1. Обоснование применения биологически активных веществ в промышленном птицеводстве ( Коллектив авторов, 2012)

1. Обоснование применения биологически активных веществ в промышленном птицеводстве

1.1 Обоснование применения молочной сыворотки (СГОЛ-1) в промышленном птицеводстве

Известно, что важным резервом восполнения дефицита протеина в рационах птицы является использование побочных продуктов переработки молока: обрата, сыворотки, пахты.

По данным А.Г. Храмцова, ежегодно в мире получают до 130 млн. т. молочной сыворотки, в том числе в России около 7 млн. т. В связи с недостаточным использованием ее на пищевые цели необходимо особое внимание обращать на нее как на кормовой продукт, применение которого в этом качестве, может значительно повлиять на увеличение продуктивности сельскохозяйственных животных и снизить ее себестоимость.

Высокая питательная ценность и уникальные биологические свойства молока предопределяют необходимость использования всех его компонентов. В отношении молочной сыворотки , которая является побочным продуктом при производстве творога, сыра и казеина, эта проблема решается в наименьшей степени. Между тем на долю сыворотки в процессе производства основных продуктов приходится от 80 до 90 % массы используемого молока и в нее переходит до 50 % сухих веществ молока.

Химический состав молочной сыворотки может значительно различаться, что зависит как от качества исходного сырья, так и от вида основного производимого продукта и технологии его производства. Т.И. Сенкевич, К.Л. Ридель приводят следующий химический состав подсырной и творожной натуральной сыворотки (таблица1).

Биологическая ценность молочной сыворотки обуславливается содержащимися в ней белковыми соединениями ,углеводами, липидами, минеральными солями, витаминами, ферментами, органическими кислотами, иммунными телами, микроэлементами [80]. Энергетическая ценность молочной сыворотки примерно составляет 1/3 энергетической ценности цельного молока. Относительно низкое количество белка в сыворотке частично уравновешивается его высоким качеством.

Белки, содержащиеся в молочной сыворотке по своему составу относятся к наиболее ценным белкам животного происхождения. Важнейшими из них являются бета- лактоглобулин, альфа- лактоглобулин, имунноглобулины и протеозопептоны. Сывороточные белки имеют высокую питательную ценность. Свыше 50 % общего содержания сывороточных белков приходится на долю бета- лактоглобулина. Протеиновые отношения альфа- лактоглобулина и бета- лактоглобулина равны соответственно 4,0 и 3,5. По данным многих авторов [53,75, 89, 13, 14, 84], молочные белки имеют аминокислотный состав, близкий к аминокислотному составу мышечных белков и превосходящий по содержанию незаменимых аминокислот белки растительного происхождения. По сравнению с другими белками сочетание незаменимых аминокислот в сывороточных является одним из лучших, поэтому молочные белки имеют повышенную биологическую ценность. Сывороточные белки благоприятно отличаются высокой степенью перевариваемости. Показатель перевариваемости (PER) сывороточного белка – 3,2, что значительно выше показателя стандартного препарата казеина [2,5] – основного белка цельного молока. Аминокислотный состав сывороточных белков и казеина различаются. В альбумине содержание триптофана в 4 раза больше, чем в казеине, цистина в глобулине в 7 раз больше, а в альбумине в 19 раз больше, чем в казеине [5].

Высокая биологическая ценность сывороточных белков зависит напрямую от высокого количества в них незаменимых аминокислот, особенно лизина, из общего количества которого (703 мг/г азота) доступным является 83 %. Важной особенностью молочных белков является и способность при расщеплении всасываться непосредственно из кишечника в кровь [27].


Таблица 2 – Химический состав подсырной и творожной натуральной сыворотки


Молочная сыворотка отличается большим количеством свободным аминокислот, которых в подсырной в 4 , а в творожной в 10 раз больше, чем в исходном молоке. 35 % азота сыворотки представляют небелковые азотные соединения, более 20 % из которых – свободные аминокислоты [112].

В связи с достаточно высоким содержанием лизина сывороточные белки могут быть использованы в качестве добавок для улучшения качества различных зерновых продуктов. По данным Т. Сенкевича. К.Л. Риделя, добавка 40 % нативного сывороточного белка удваивает величину протеинового отношения зерновых продуктов. В информации В.В. Молочникова и др. указывается, что биологическая ценность белков в значительной степени определяется наличием в них молочной сыворотки: так, в смеси с казеином она возрастает с 73 % до 92 %, в смеси с белками пшеницы – с 56 % до 105 % – 112 %. Смесь концентрата сывороточных белков с некоторыми другими растительными белками дает еще больший эффект [80, 53].

До 70 % сухого вещества молочной сыворотки представлено углеводами – главным образом лактозой и продуктами ее гидролиза (глюкозой и галактозой), которые являются основными поставщиками энергии [91].

Как указывают А.Г. Храмцов, И.А. Евдокимов, А.Д. Лодыгин и др., лактоза способствует развитию бифидофлоры в кишечнике, которая защищает организм от инфекции, создавая кислую среду в толстом кишечнике и ингибируя развитием патогенных и гнилостных микроорганизмов. Тем самым она косвенно уменьшает и уровень аммиака в крови [112, 106].

А. Г. Храмцов и др. указывают, что гидролиз лактозы в кишечнике протекает замедленно, обеспечивая постепенный приток энергии, в связи с чем ограничиваются процессы брожения и нормализуется жизнедеятельность полезной кишечной микрофлоры. В результате этого замедляются гнилостные процессы газообразование и всасывание токсических гнилостных продуктов. Лактоза способствует поддержанию оптимального соотношения кальция, фосфора и магния в крови. По сравнению с другими углеводами, лактоза исключает инактивацию витамина С и ферментов [110, 108].

Однако высокий уровень лактозы в рационах сельскохозяйственных животных оказывает неблагоприятное воздействие на процессы пищеварения, выражающееся в виде расстройств и жидкого стула. Это побуждает осторожно подходить к увеличению количества молочных продуктов в рационах животных [97, 108].

В сыворотку переходят практически все соли и микроэлементы молока; в ней обнаружено более 30 макро-, микро- и ультрамикроэлементов. Кальций молочных продуктов полностью усваивается, в отличие от содержания его в других продуктах. Сыворотка является также хорошим поставщиком фосфора, серы и водорастворимых витаминов, которые не только переходят все в сыворотку, но некоторые, например холин, даже накапливаются [110].

В молочной сыворотке содержится от 0,05 % до 0,5 % жира, что обусловлено его содержанием в исходном сырье и технологией выработки основного продукта. Молочный жир в сыворотке диспергирован больше, чем в молоке, что положительно влияет на его усвояемость.

Немаловажное значение имеет и наличие в ней молочной кислоты, оказывающей существенное влияние на кишечник. Молочная кислота и лактаты в желудочно- кишечном тракте животных стимулируют соковыделение и угнетают развитие гнилостной и другой вредной микрофлоры.

Молочная сыворотка обладает выраженным свойством возбуждать секрецию желудочных пищеварительных желез, тем самым улучшая перевариваемость кормов [98,99, 114].

По данным М.В. Залашко, Л.С. Залашко, многочисленными опытами было доказано, что молочная сыворотка является наиболее действенным и самым безопасным средством, возбуждающим секрецию печени и способствующим выделению желчи, что помогает кишечному пищеварению. Включение в рацион поросят-отъемышей молочной сыворотки дает возможность не допускать их гибель от дистрофии печени. Положительное ее влияние заключается в том, что она содержит и-урацилкарбоновую кислоту – вещество, способное включаться в пиримидиновые нуклеотиды. Она ускоряет восстановительные процессы в печени, которые нарушаются при токсической дистрофии, и благоприятно влияет на рост и развитие поросят [30].

Так, по данным J. Heit (цит. по М.В. Залашко), лечебным продуктом сыворотка считалась еще в Древней Греции. Сыворотке приписывалось "мочегонное, успокаивающее слизистую оболочку, препятствующее гниению содержимого кишечника, общеукрепляющее действие" [30].

Положительное действие сыворотки на организм связано как с ее солевым составом, так и с необычайным соотношением в ней белков, жиров и углеводов. Еще более полезные качества приобретает молочная сыворотка в процессе ее биотехнологической переработки, например, путем сквашивания ее молочнокислыми бактериями [95, 96].

Молочная сыворотка, с содержанием в сухом веществе более 70 % молочного сахара, около 14,5 % белковых веществ, до 7,5 % жира и не менее 8 % минеральных солей, практически не имеет себе равных среди естественных субстратов, используемых в качестве питательной среды для микроорганизмов [18, 111].

Диетическое в лечебное действие кисломолочных продуктов на организм животных объясняется благотворным воздействием молочно-кислых организмов, молочной кислоты, углекислого газа, спирта, витаминов, антбиотиков и других веществ, образующихся в ходе биохимических процессов, протекающих при брожении молочных продуктов [16, 18].

Усвояемость молочнокислых продуктов выше, чем свежих. Она повышается вследствие частичного расщепления в них белков на более простые и легкоусвояемые вещества. Молочнокислые продукты активируют секреторную деятельность желудка и кишечника. В результате железы пищеварительной системы интенсивнее выделяют ферменты, что ускоряет переваривание и усвоение корма животными. Обладая приятным острокислым вкусом, эти продукты возбуждают аппетит и способствуют повышению потребления кормов животными [79, 148, 150].

Р.Д. Гудбанд, Р.Х. Хайнес (1998), отмечают, что при увеличении уровня включения в рационы молочной сыворотки до 20 % от сухого вещества потребление кормов и приросты молодняка свиней повышались [136].

Механизм положительного действия кисломолочных продуктов при длительном применении многообразен. Он заключается в повышении уровня питания организма, в нормализации его функций, в поливитаминной терапии, благоприятном действии на обмен веществ, усилении окислительно-восстановительных процессов, в регуляции секреторной и двигательной функций желудочнокишечного тракта и возбуждении сердечно-сосудистой системы и дыхательного центра. По мнению А.И. Семенищева, при длительном применении кисломолочных продуктов в организме улучшаются физиологические и биохимические процессы, повышается обмен веществ. Кисломолочные продукты отвечают требованиям комплексной терапии [79].

Воздействие кисломолочных продуктов на организм молодняка сельскохозяйственных животных обусловлено не только их высокой питательной ценностью и хорошей усвояемостью, но и наличием антибиотических свойств.

Из кисломолочных продуктов выделены антибиотики: низин, лактолин, стрептомицин, лактомицин, диплококцин и др. Эти вещества могут оказывать на многие микроорганизмы сильное бактерицидное и бактериостатическое действие [86, 87, 104].

Известно, что при систематическом скармливании кисломолочных продуктов количество нежелательных гнилостных микробов в кишечнике резко уменьшается, а число молочнокислых – значительно увеличивается, в результате чего устраняется возможность отравления организма индолом, скатолом и другими ядами, обычно образующимися в процессе жизнедеятельности гнилостных бактерий. Исследованиями Е.С. Воронина, Я.Я. Ставцевой, О.А. Оуарза-хал, Д.Е. Коннер и др., доказано, что молочнокислые палочки и стрептококки полностью подавляли развитие стафилококков и значительно ингибировали различные виды сальмонелл [13, 14, 84, 144, 2].

Молочная сыворотка является источником биологически активных веществ – жизненно необходимых элементов питания животных. Анализ литературных данных, проведенный П.Ф. Ведяшкиным, показывает, что в молоке имеются неидентифицированные вещества, способствующие росту животных, и многие ученые утверждают, что накапливание в молоке и молочных продуктах веществ, обладающих биологическими свойствами, обуславливается ростом и развитием молочнокислых бактерий. К ним, в частности, относятся дикарбоновые кислоты и оксикислоты, жирные ароматические непредельные кислоты, фенокислоты и гуминовые ароматические кислоты. Большое количество органических кислот в сыворотке способствует регулированию рН желудочного сока, тем самым, влияя на состав желудочной микрофлору в сторону увеличения молочнокислых микроорганизмов, для оптимального развития которых нужна более кислая среда [10, 20].

В связи с тем, что применение молочной сыворотки на пищевые цели ограничено, ее используют в кормовых целях. В натуральном виде ее широко применяют для кормления сельскохозяйственных животных. Благодаря высокой питательной ценности отходы молочной промышленности, в частности молочная сыворотка, используются для приготовления различных кормосмесей и добавок на корм птице. Питательная ценность сыворотки составляет 0,127 кормовой единицы. Там, где имеются ее излишки и невелики транспортные расходы, целесообразно использовать ее на корм в свежем виде. Однако такой способ является крайне неэффективным из-за трудностей транспортировки, хранения и необходимости тепловой обработки ее перед отправкой на фермы, так как сыворотка из сырого молока может привести к распространению различных инфекций. Серьезным недостатком является, и непродолжительный срок хранения свежей сыворотки, за 12 часов она теряет около 25 % своей энергетической ценности.

Все это вынуждает молочную промышленность разрабатывать и применять технологии получения на ее основе, или с ее применением разнообразных продуктов, многие из которых используются в кормлении сельскохозяйственных животных, отличаются длительным сроком хранения, компактностью и повышенными кормовыми качествами [38, 39, 40].

Традиционными направлениями промышленной переработки молочной сыворотки является ее сгущение и сушка. Наименее трудо- и энергоемким процессом является ее сгущение в вакуум-выпарных установках, что позволяет значительно уменьшить ее объем, повысить концентрацию питательных веществ и срок хранения. В процессе сгущения сыворотки при температуре от 60 °C до 65 °C одновременно достигается и ее пастеризация.

По данным А.Г. Храмцова, П.Г. Нестеренко, у нас в стране выпускается сгущенная молочная сыворотка с содержанием сухих веществ 40 % и 60 %. Сыворотка с содержанием сухих веществ 40 % имеет текучую консистенцию и выдерживает хранение до 10 дней, а с содержанием сухих веществ 60 % – еще больше: при температуре от минус 2 °C до 5 °C – до двух месяцев, а от минус 10 °C до 3 °C – до 6 месяцев [113].

Приведенные в литературе данные химического анализа А.Г. Храмцова и др., показывают, что сгущенная сыворотка, при содержании 40 % и 60 % сухого вещества, содержит соответственно (г на 1 кг продукта): переваримого протеина – 44 и 65, золы – 32 и 56, молочного сахара – 310 и 400, молочного жира – 3,4 и 5,3. Питательность 1 кг сгущенной сыворотки составляет 1500 и 2300 ккал, при содержании 0,8 и 1,2 кормовой единицы соответственно. Микроэлементы, присутствующие в натуральной сыворотке, сохраняются и в сгущенной [112].

Анализ молочной промышленности США и Канады, проведенный Т.Сенкевичем, К.Л. Риделем показал, что в этих странах выпускают три вида сгущенной сыворотки:

1) сгущенная с 25,5 % содержания сухих веществ;

2) концентрированная с 28 % содержанием сухих веществ;

3) концентрированная с 40 % содержанием сухих веществ.

Сгущенная сыворотка в этих странах используется главным образом в процессе приготовления комбикормов для сельскохозяйственных животных [80].

На больших молокоперерабатывающих предприятиях успешно применяется сушка молочной сыворотки, что позволяет значительно сократить расходы на ее транспортировку и сохранить наиболее ценные ее компоненты. Удаление воды в процессе сушки делает продукт устойчивым к хранению в течении нескольких месяцев. Сухая сыворотка представляет собой мелкий гигроскопический порошок, питательность которого, по данным А.Г. Храмцова и др., составляет 36003850 ккал в 1 кг. Содержание: углеводов от 63 % до 73,6 %; белков от 10,77 % до 14,09 %; жира от 0,7 % до 5,38 %; золы от 4,45 % до 9,88 %.

Сухую молочную сыворотку используют при производстве ЗЦМ для молодняка сельскохозяйственных животных, производстве комбикормов и непосредственно в составе кормосмесей [107].

Производят сушку сыворотки и с различными добавками, примером чего являются продукты "Белакт" и "БКлакт", технология приготовления которых разработана совместными усилиями ВНИИ молочной промышленности, Белгородского СХИ и специалистами Белгородского молочного комбината [41].

Эти продукты состоят из сухого обрата и сладкой подсырной или кислой творожной сыворотки в соотношении 1:1 по сухому веществу. Получают их путем предварительного раздельного сгущения, смешивания и распылительной сушки. Полученные продукты находят широкое применение в производстве ЗЦМ и комбикормов-стартеров [107].

Путем техники разделения на мембранах, ультра- и гель- фильтрации и последующего осаждения из молочной сыворотки и побочных продуктов производства молочного сахара получают ценные кормовые продукты: сухой сывороточный концентрат (ССК) и сухой белковый концентрат (СБК), технология производства которых разработана Северо- Кавказским филиалом ВНИИМС (г. Ставрополь). Сывороточные белковые концентраты содержат от 40 % до 75 % белка и используются в виде белково-углеводной добавки в кормлении скота и птицы.

Целесообразной и экономически выгодной является промышленная переработка молочной сыворотки на биологически ценные кормовые добавки на основе микробиологического синтеза и ферментативного катализа. Переработка молочной сыворотки на основе биотехнологии обеспечивает максимальное использование компонентов молока, повышение ее номинальной стоимости за счет получения более ценных продуктов [32, 40, 147, 149].

По мнению В.В. Евелевой и др., К.К. Полянского, из всех известных в настоящее время способов биосинтеза наименее трудо- и энергоемкие связаны со сбраживанием лактозы молочнокислыми бактериями, поскольку при их использовании происходит почти полное превращение лактозы в молочную кислоту [25, 71]. Микробиологическая переработка сыворотки – путь наиболее рационального ее использования, когда с помощью микроорганизмов возможно получение целого ряда продуктов, по своей ценности превышающих исходное сырье. Наличие в сухом веществе молочной сыворотки до 70 % лактозы, являющейся прекрасным энергетическим материалом для многих видов микроорганизмов, выдвигает на первый план проблему использования ее в качестве естественной питательной среды, на которой возможно получение различных продуктов метаболизма микробов (молочная и другие органические кислоты, спирт, витамины, белок, ферменты, жир и пр.) [132, 134, 135].

Исследованиями А.Г. Храмцова, П.Г. Нестеренко установлено, что необычайно широкая номенклатура кормовых продуктов производится в странах с развитой молочной промышленностью [112].

Во Франции предложен способ переработки молочной сыворотки, основанный на использовании таких микроорганизмов, как волокнистые грибки. Полученная биомасса состоит из белков (не менее 38 %), жиров, минеральных солей, витаминов. Продукт используется для кормовых целей. Там же разработан способ производства продукта для кормовых целей на основе молочной сыворотки путем ее дрожжевания и в дальнейшем добавления определенного количества соевой муки. В сухом веществе готового продукта содержится от 4 % до 5 % белка. Продукт рекомендован для откорма молодняка [135, 137, 141]. В Швеции из молочной сыворотки вырабатывают продукт под торговой маркой «Ewoplus». Молочную сыворотку подвергают ультра-фильтрации. Затем туда вносят мочевину. В результате химической реакции получают продукт, содержащий лактозилмочевину, сывороточный белок, незначительное количество непрореагировавших лактозы и мочевины, а также соли. Продукт используется в корм птице в сгущенном или сухом виде [35, 122, 123, 143].

В России и странах СНГ методами биологической обработки получают сыворотку молочную сгущенную сброженную, сгущенную сквашенную, сгущенную гидролизованную, концентрат-обогатитель, сыворотку молочную обогащенную для добавки в корм молодняка сельскохозяйственных животных, биологически обработанный заменитель цельного молока – БИО-ЗЦМ, кормовой продукт "Пролине", кормовые продукты "Промикс" и "Провилакт", продукт "ПВ-1", кормовую добавку "БИКОДО" и т.д. [40].

По данным С.М. Белова, в нашей стране около 70 % творожной сыворотки скармливается животным, однако, лишь только около 25 % поставляется животноводческим хозяйствам в обогащенном виде, т.е. с добавками некоторых видов полезных микроорганизмов. В связи с этим, возрастает интерес специалистов к биологическим способам переработки сыворотки с помощью дрожжей, бактерий [7, 100].

Сыворотка молочная сгущенная сброженная приготавливается из пастеризованной сыворотки, которую сбраживают закваской из штаммов молочнокислых бактерий, затем инактивируют ферменты нагреванием и сгущают в вакуумвыпарной установке. Готовый продукт – тегучая масса светло-желтого цвета с легко перемешиваемым осадком. Его основной химический состав: сырого белка – от 7 % до 8,6 %, углеводов – от 25 % до 27 %, молочной кислоты – от 2,8 % до 3,5 %, минеральных солей – от 2,4 % до 3 %. Продолжительность хранения: при температуре от 8 °C до 10 °C – не более 10 дней, при температуре от минус 10 °C до минус 3 °C – не более 6 месяцев [11].

Сыворотка молочная сухая сброженная получается по разработанной ВНИИ ПАКК технологии, в результате которой сбраживание сыворотки осуществляется молочно-кислыми бактериями с нейтрализацией образующейся молочной кислоты кальциевыми соединениями, затем ее концентрируют до содержания сухих веществ не менее 20 % и сушат. Конечный продукт, содержащий преимущественно лактат кальция, белковые соединения и минеральные компоненты может быть использована в качестве кормовой лечебно – профилактической добавки [40, 88, 126].

Сыворотка молочная обогащенная – предназначена для скармливания в целях профилактики желудочно-кишечных заболеваний. Раскисленную пастеризованную сыворотку сквашивают закваской из чистой культуры ацидофильной палочки штамма 126. После охлаждения расфасовывают и хранят при температуре 8 °C не более двух суток. Ценность этой сыворотки обуславливается наличием ацидофильной палочки, которая легко приживается в желудочно-кишечном тракте животных и обладает антибиотическими свойствами по отношению к возбудителям желудочно-кишечных заболеваний. Она также способна расщепить до 20 % лактозы с образованием связанной и свободной молочной кислоты. Молочная кислота и лактаты в желудочно-кишечном тракте стимулируют соковыделение и угнетают развитие гнилостной и другой вредной микрофлоры. Продукт можно вводить в рацион всех видов сельскохозяйственных животных из расчета 20-30 мл. на 1 кг живой массы. Применение обогащенной сыворотки увеличивает продуктивность животных и птиц, сокращает на от 10 % до15 % число случаев желудочно-кишечных заболеваний у молодняка [22, 70, 72, 83, 116, 139].

Целесообразно применять в кормлении птицы дрожжевую сыворотку, приобретающую качественно новые свойства и резко отличающуюся от исходного продукта. По содержанию основных компонентов дрожжеванная сыворотка приближается к обезжиренному молоку. Белок дрожжей, выращенных на молочной сыворотке, сходен с белком молока не только по номенклатуре незаменимых аминокислот, но и по их содержанию [25, 128, 138].

Работами М.В. Залашко с сотрудниками получен целый ряд продуктов с использованием дрожжеванной сыворотки – это прежде всего БИО-ЗЦМ, «Промикс» и «Провилакт» [22, 30, 85].

«Промикс » представляет собой жидкость слегка кисловатого вкуса с выраженным дрожжевым запахом, «Провилакт» – мелкий гигроскопический порошок. Оба они предназначены для использования в рационах сельскохозяйственных животных взамен обезжиренного молока, что снижает себестоимость выращивания и откорма [6, 22].

В настоящее время распространено приготовление на сельхозпредприятиях ацидофильного молока из сыворотки и обрата с использованием сухой бактериальной культуры ацидофильной палочки, для производства которой организована спецлаборатория при учебно-опытном заводе Вологодского молочного института. Для заквашивания сыворотки применяется АБК (ацидофильная бульонная культура) и ПАБК (пропионово-ацидофильная бульонная культура). Препараты применяются с лечебной, профилактической целью и как стимуляторы роста [60, 61, 68].

E. Cobczak (Варшавский с. – х. университет) проводил работу по ферментации молочной сыворотки пропионовыми бактериями и добавки к ней винмассы спиртовой промышленности. Продукт характеризуется высокой концентрацией летучих жирных кислот, витамина B12 и используется для кормовых целей, из-за высокого содержания пропионовой и уксусной кислот является устойчивым [124].

При производстве бактериальных концентратов для кисломолочных продуктов высвобождается культуральная среда – бактофурат (БФ), содержащая определенное количество питательных веществ и продукты метаболизма молочнокислых организмов [125, 127].

Из промывных вод от производства молочного сахара или молочной сыворотки вырабатывается продукт "ПВ-1". Он является высококонцентрированным молочным продуктом. По химическому составу представляет собой сложный биологический компонент с наличием почти всех составных частей молока, за исключением жира и белка. В результате исследования под руководством П.Ф.Ведяшкина было установлено, что препарат "ПВ-1" обладает биологической активностью и может быть использован как регулятор процессов живого организма и применяться в виде добавки в корм для улучшения роста, развития и продуктивности бройлеров [10].

Благодаря достижениям биотехнологической науки разработана технология производства бифидогенной кормовой добавки "БИКОДО" из мелассы молочного сахара, которая может выпускаться в жидком, сгущенном, сухом и блочном видах. Она содержит бифидус-фактор – лактозу, способствующую достижению нормального уровня естественной микрофлоры в кишечнике сельскохозяйственных животных. Применение "БИКОДО" в рационах цыплят способствует снижению случаев желудочно-кишечных инфекций, падежа на от 5 % до 8 %, увеличению прироста на 6 % (106).

По данным С.А. Рябцева, лактоза – дисахарид, состоящий из остатков молекул галактозы и фруктозы, который не переваривается в переднем отделе желудочнокишечного тракта, а проходит в толстый кишечник, где и используется для развития бифидобактерий [76].

Вместе с тем, постоянно изыскиваются все новые, более рациональные и эффективные направления производства и использования кормовых продуктов из нежирного молочного сырья.

Исследованиями П.Г., Нестеренко, В.В. Москаленко установлена возможность производства гранулированных кормов долговременного хранения на основе молочной сыворотки и кормовых добавок растительного происхождения (травяная мука, шрот, отруби, углеводно-белковые добавки и др.). В Великолукском СХИ разработана технология получения сыпучей кормовой добавки с использованием молочной сыворотки и природных цеолитов и т.д. [57].

Перспективным направлением является использование ее в качестве среды для молочно-кислых организмов и производства новых фармакологических препаратов – пробиотиков [129, 130, 131, 132].

Пробиотики обладают разносторонним фармакологическим действием. Их положительный эффект обусловлен участием в процессах пищеварения и метаболизма организма – хозяина, биосинтезом и усвоением белка и многих других биологически активных веществ, обеспечением резистентности микроорганизмов [92, 93, 118, 139, 143]. По мнению А. Холлистера, действие пробиотиков включает: угнетение процессов размножения бактериальных патогенов молочно- кислыми бактериями, предохранение от углеводной перегрузки, способствуюшей размножению патогенной флоры, усвоение углеводов с помощью ферментов, конкурирующую ингибицию, адсорбцию токсинов патогенных бактерий [140 ].

Пробиотики являются эффективным и лечебно- профилактическим и ростостимулирующими препаратами. Их применяют для нормализации экологических систем животных, особенно в условиях промышленного ведения животноводства. Это экологически чистые препараты, они физиологичны по своему действию, безвредны для животных, просты в наработке, дешевы, технологичны для группового применения [4, 130, 142, 143].

Применение пробиотиков в птицеводстве получило широкое распространение как за рубежом, так и в нашей стране, и считается особенно необходимым при выращивании молодняка [144, 145, 146].

Одним из современных способов утилизации молочной сыворотки, включающей гидролиз содержащихся в ней белков и лактозы, является ее микробиологическая переработка, в частности, молочнокислыми бактериями и стрептококками. Ферментативно-гидролизованная сыворотка, обогащенная лактатами (СГОЛ-1), представляет собой один из продуктов, полученных таким способом.

Используемый в наших исследованиях кормовой продукт СГОЛ-1 (сыворотка сгущенная, гидролизованная, обогащенная лактатами) – продукт, полученный из сыворотки коровьего молока, прошедший специальную подготовку и биотехнологическую обработку по разработанной и запатентованной технологии, в основе которой лежит глубокая ферментация с помощью молочнокислого брожения бактериями Str. lactis и Str. thermophilus и дальнейшее сгущение творожной, подсырной или казеиновой сыворотки, с нейтрализацией образующейся молочной кислоты гидрокарбонатом натрия.

СГОЛ-1 получают путем выращивания на сыворотке молочнокислых микроорганизмов, которые используют труднопереваримую лактозу. В результате в сыворотке накапливается молочная кислота, которая обладает бактериостатическим действием, витамины группы В и аскорбиновая кислота, а также биологически активные пептиды, обладающие стимулирующим действием [94].

Молочнокислые микроорганизмы, попадая в желудочно-кишечный тракт, размножаются и подавляют вторичную, условно-патогенную микрофлору. Ферменты, содержащиеся в СГОЛе, способствуют лучшему перевариванию питательных веществ у молодняка с первых дней жизни. Кроме того, продукт способствует повышению устойчивости живых организмов к радиационному облучению.

В состав СГОЛ-1 входят ценные компоненты: витамины А, В1 В2, Вз, В4, В6, С, Е, Н, К, РР; аминокислоты, продукты гидролиза белков и нуклеиновых кислот; соли молочной кислоты, углеводы, олигосахариды и молочнокислые бактерии. Солевой состав препарата скоррелирован организмом коровы и содержит все компоненты, необходимые для нормального развития млекопитающих. Высокое содержание пробиотических компонентов сообщает препарату СГОЛ-1 лечебнопрофилактические свойства. Препарат обладает широким спектром действия, стимулирует работу пищеварительного тракта, нормализует моторно-секреторную деятельность желудка и кишечника, профилактирует возникновение воспалительных процессов в них.

Химический состав СГОЛ-1 и СГОЛ-2

Вода от 55 % до 60 %. Белок молочный гидролизованный 5,6 %. Белок молочно-кислых бактерий от 1,2 % до 1,4 %. Жир от 1,0 % до 1,4 %. Галактоза от 12 % до 13 %. Лактоза от 1,5 % до 2,0 %. Глюкоза от 1,5 % до 2,0 %. Молочная кислота от 1 % до 2 %. Лизин 9,9 % в сухом веществе. Метионин от 2,4 % до 4,1 % в сухом веществе.

Минеральные вещества: натрий – 0,7 %, калий – 0,3 %, кальций – 0,36 %, магний – 0,056 %, фосфор – 0,556 %, железо – 0,07 %. Витамины (мг на 100 г продукта):




Продукт прошел всестороннее обследование в биохимических лабораториях Центрального института усовершенствования врачей, Центрального института глазных болезней МЗ РФ, Научного института питания МЗ РФ. Было установлено, что "СГОЛ1" обладает существенными иммуномодулирующими, бактериостатическими, витаминостабилизирующими свойствами, эффективно коррегирует обменные процессы, антиаллергичен, обладает способностью повышать радиорезистентность.

В соответствии с "Требованиями к документации, представляемой в Ветеринарный фармакологический совет для получения разрешения на проведение производственных испытаний новых фармакологических средств, кормовых добавок и других химических веществ" (1974); "Методическими указаниями по определению токсических свойств препаратов, применяемых в ветеринарии и животноводстве" (1988) [51]; "Методической оценки качества мяса и мясопродуктов" (1978) [43] было проведено исследование препарата "СГОЛ-1" в лаборатории общей патологии НИВПФиТ г. Воронежа. В результате проведенного исследования противопоказаний к его применению установлено не было. Рекомендовано его внедрение в ветеринарную практику.

Получено разрешение Госфармкомиссии на производство и применение препарата "СГОЛ-1".

Имеется "Временное наставление по применению препарата "СГОЛ-1" в животноводстве и ветеринарии", утвержденное директором ВНИИВПФиТ академиком В.Т. Самохиным [15].

Согласно этому наставлению рекомендовано использовать "СГОЛ-1" путем приема внутрь в смеси с кормом или питьем 1-2 раза в день в разовых дозах 0,5-1 г/кг массы тела – молодняку и 0,5 г/кг – взрослым животным, независимо от их вида.

Проверка действия добавки "СГОЛ-1" проводилась в опытных кормлениях: свиней (Сумская область, с.Пушкаревка), кур (Челябинская область, Ар-гаяшевская птицефабрика), пушных зверей (Московская область, Истринский р-н, племзавод колхоза "Путь к коммунизму", Балашихинский р-н, зверосовхоз "Салтыковский") и других.

Получены следующие результаты:

1. Добавление 200 г "СГОЛ-1" в ежедневный рацион свиней увеличивает прирост на от 200 до 400 г в сутки, значительно уменьшает падеж молодняка.

2. При выращивании цыплят на мясо с 2 г "СГОЛ-1" на 1 голову в сутки обеспечивает увеличение прироста на от 11 % до 23 %.

3. Добавление 2 г "СГОЛ-1" в день на 1 голову в рацион норок сокращает их падеж, увеличивает прирост живой массы на от 6 % до 8 %.

Отмечено, что увеличение прироста происходит даже на фоне использования кормов, не отвечающих требованиям ГОСТ 18221-72, и то, что увеличение прироста значительно превышает количество добавки "СГОЛ-1". Это объясняется детоксицирующим действием препарата, а также тем, что при его использовании рацион пополняется ценными сывороточными протеинами и улучшается переваримость питательных веществ кормов.

Готовый продукт представляет собой густую тягучую жидкость бело- желтоватого цвета с кислым вкусом и молочно-сывороточным запахом. В процессе хранения продукт кристаллизуется и уплотняется, превращаясь в пастообразную массу, легко разжижающуюся при слабом нагревании. Срок хранения продукта – 6 месяцев при обычных условиях [94].

Анализ отечественных и зарубежных исследований по данной проблеме показал, что опубликованный по данному вопросу материал немногочислен. Однако обеспечение птиц полноценными кормами является важнейшей задачей в связи с увеличивающимися потребностями населения в продуктах питания. И поэтому замена традиционных кормов в птицеводстве более дешевыми альтернативными кормами, в частности, сгущенной гидролизованной сывороткой обогащенной лактатами является актуальной проблемой, чему и посвящены настоящие исследования.

1.2 Обоснование применения иммуномодуляторов при выращивании птицы

В условиях промышленного птицеводства резко изменились условия содержание птицы и приспособление (адаптация) ее к этим условиям происходит посредством стресса. Под стрессом понимают состояние организма, возникающее при действии чрезвычайных раздражителей и приводящее к напряжению неспецифических адаптационных механизмов организма. Более того, стрессы и иммунодефициты являются не только предшественниками многих заболеваний птицы, но и сами по себе вызывают патологические состояния различной тяжести, и как правило, снижают продуктивность и сохранность поголовья. Вот почему на сегодняшний день потребовалось более тщательно подойти к проблеме использования в птицеводстве различных стимуляторов продуктивности. Многочисленные исследования показали, что многие из средств, корректирующих стрессы и иммунодефициты, проявляют одновременно положительное влияние на здоровье и продуктивность птицы.

При промышленном содержании птицы чрезвычайными раздражителями или стрессорами являются: нежелательные, связанные с нарушением содержания и кормления птиц, которые в свою очередь, подразделяются на кормовые, физические (например, свет, шум), химические (повышенное содержание в воздухе вредных газов, пестициды), а также неизбежные – транспортировка, вакцинация, различные технологические приемы.

Нормальное функционирование иммунной системы возможно только при условии взаимосвязи всех звеньев иммунологических реакций и факторов естественной резистентности. Но известно, что в эмбриональный период жизни механизмы иммунологической защиты организма птиц несовершенны, и полностью еще не сформированы, а именно: отсутствует связь эмбриона с материнским организмом, главные органы иммунной системы – тимус и клоакальная сумка формируются раздельно и соответственно продуцируют Т- и В- клетки, но малый срок развития эмбриона не позволяет в этот период осуществлять их расселение по вторичным лимфоидным органам. В связи с этим у вылупившихся утят несовершенство защиты против неблагоприятных факторов проявляется повешенной поглотительной функцией ретикулоэндотелиальной системы на фоне пониженной ферментативной активности, удлинение срока между поступлением антигенов в организм и первичным появлением антител при отсутствии или только незначительном проявлении клеточных реакций.

Таким образом, воздействие различных неблагоприятных факторов сначала на эмбрион, а затем развитие адекватных этим фактора последствий в постнатальный период может привести к возникновению иммунодефицитов.

Известно, что при ряде инфекционных заболеваний (ИББ), а также под воздействием некоторых химических средств, в том числе и лекарственных, угнетаются иммунные реакции. В организме может уменьшится продукция Т- и В- лимфоцитов, развивается более выраженная реакция торможения миграции лейкоцитов, уменьшается поглотительная способность нейтрофилов, угнетается продукция Т- хелперов, Т- киллеров и различных медиаторов иммунного ответа. Возникает дисбаланс в иммунной системе. Такому дисбалансу во многом способствуют нарушения кормления (белковый дефицит) птиц и воздействие на организм различных ксенобиотиков (все увеличивающаяся химизация народного хозяйства). Вот почему в последнее время птицеводы все чаще сталкиваются с новой патологией у птиц – иммунодефицитом. В сложившейся ситуации просто необходимо использовать иммуномодуляторы, корректирующие иммунологические процессы в организме. Эти препараты: корректируют иммунный статус организма, повышают устойчивость к неблагоприятным факторам, усиливают иммунный ответ при вакцинации; обладают ростостимулирующими свойствами; оказывают адаптогенное действие.

Иммунодефициты делят на две большие группы: первичные, обусловленные генетически детерминированными состояниями и вторичные, связанные с приобретенными в процессе жизни патологиями.

Из очень большого количества факторов, приводящих к нарушению функции иммунной системы птицы, выделяют основные: дефицит важнейших компонентов питания; витаминов, макро – и микроэлементов; поступление микотоксинов; стрессы различной этиологии; химиотерапевтические вещества, гербициды и инсектициды; инфекционные заболевания.

Нарушения иммунологических реакций, вызываемые избытком или недостатком белка, отдельных аминокислот, компонентов липидного обмена, витаминов и др., встречаются в птицеводстве гораздо чаще, чем иммунологические дефекты наследственного характера.

В практике птицеводства используют иммуномодуляторы, относящиеся к следующим группам веществ: витамины, адаптогены, препараты на основе имедозола, препараты, полученные из бактерий, крови и лимфоидных органов, цитомедины.

Так, в целях стимуляции функции иммунной системы при инфекционных болезнях, стрессах, микотоксикозах, и др. рекомендуется увеличить норму витаминов в 1,5-2 раза до устранения причин иммунодефицита. Особенно эффективно увеличение в рационе цыплят до 3- недельного возраста витамина Е в дозе 20-30 мкг/кг корма. Это усиливает иммунные реакции организма, снижает поствакцинальный стресс. Кроме того, при различных стрессах рекомендовано увеличение витамина С в рационе кур от 100 до 150 мг/кг корма.

В практике птицеводства нашли широкое применение адаптогены – препараты, стимулирующие естественную резистентность организма. Из адаптогенов животного происхождения применяют тканевые препараты по В.П. Филатову. Их готовят чаще всего из селезенки крупного рогатого скота, свиней и овец. В своем составе они содержат видоизмененные компоненты нуклеиновых кислот, полипептиды, аминовые и карбоновые кислоты, которые стимулируют неспецифическую активность клеточных функций организма, повышают прирост живой массы на от 50 до 100 г и сохранность поголовья птицы на от 1,5 % до 2,0 %. Данные препараты вводят из расчета 0,2 мл/кг живой массы подкожно 1раз в 7 суток.

На сегодняшний день разработаны рекомендации по повышению иммунной защиты организма и стимуляции роста птицы с помощью экстрактов из тимуса, клоакальной сумки и костного мозга. Выпаивание их молодняку птиц с водой в дозе от 1 до 2 мл/гол. один раз в сутки в течение 10 дней позволяет восстанавливать нарушенную реактивность организма при иммунодефицитах, стимулировать иммуноморфогенез в период вакцинации. При этом увеличивается среднесуточный прирост живой массы на от 1,5 до 3,0 г и сохранность птицы – на от 2 до 3 %.

Для коррекции иммунодефицита у птицы, вызванного стрессом, используют целый ряд других препаратов, таких как кватерин, камизол, фумаровую кислоту, этимизол, полиоксидоний и препараты на основе имидозола. Все эти препараты обладают выраженными иммуномодулирующими свойствами и используют при вакцинации суточного молодняка.

В последнее время все больше внимания уделяется изучению регуляторных пептидов, содержащихся в специализированных тканях организма и принимающих участие в межклеточной сигнализации – цитомединам.

1.2.1 Цитомедины – пептидные биорегуляторы

В последние годы успешно развивается новое научное направление – биорегулирующая терапия, где наряду с традиционными лекарственными средствами, предусматривается использование новых препаратов – цитомединов, специфических биорегуляторов в популяциях клеток организма.

Наибольший интерес с практической точки зрения приобрели интерфероны, интерлейкины, монокины, препараты из тимуса (вилочковой железы), а так же синтетические фрагменты, модулирующие их активный центр. В практике птицеводства, в основном, пока применяются лишь препараты из тимуса.

Основанием для получения тимусных препаратов явились данные о центральной роли тимуса и пептидных факторов, синтезируемых этой железой, в функционировании иммунной системы.

Еще в 30-50 годы. Исследования отечественных ученых показали, что размеры тимуса у только что вылупившихся цыплят связаны с их жизниспособностью и потенцией к росту. Биологическое значение тимуса состоит в способности «задавать темп» скорости формирования структур в эмбриональном и раннем постнатальном периодах развития, а так же управлять иммунными реакциями организма, а именно: защитой от вирусов, микробной, микозной и паразитарной инфекцией, устойчивостью к опухолевым клеткам собственного организма и токсинам. Поэтому различные нарушения развития тимуса и синтеза тимических факторов приводит к возникновению в организме иммунодефицитных состояний.

Тимусные препараты обладают широким спектром воздействия на иммунную, нервную, эндокринную и другие системы, действуют В малых дозах, имеют высокий индекс терапевтической широты, практически безвредны, так как являются продуктами метаболизма организма.

К настоящему времени цитомедины выделены почти из всех тканей и органов животного организма, однако наиболее полно изучена функциональная активность пептидных биорегуляторов из органов иммунной системы. Арсенал иммуномодуляторов очень широк. Известны разнообразные вещества, обладающие иммуномодулирующим действием: полиэлектролиты, дрожжевая РНК, бактериальный липополисахарид, ненасыщенные жирные кислоты, незаменимые аминокислоты, витамины, гормоны.

В.Г. Морозов и В.Х. Хавинсон сформулировали представление о новом классе информативных молекул – цитомединах, осуществляющих перенос специфической информации, необходимой для нормального функционирования, развития и взаимодействия клеток. Цитомедины представляют собой пептиды с молекулярной массой 1000-10000 дальтон. Они участвуют в регуляции функциональной активности тех клеточных популяций, которые послужили исходным материалом для их выделения.

В настоящее время выделено и охарактеризовано по биологической активности и структуре более 20 иммунологических факторов тимуса.

Одной из хорошо изученных групп цитокинов являются медиаторы, синтезируемые иммунокомпетентными клетками – регуляторами иммунной системы. Источником получения таких медиаторов могут быть как клетки человека, так и всех видов животных.

Медиаторы иммунной системы, учитывая, что иммуннологический ответ реализуется трехклеточной системой, включающей макрофаги, Т- и В-лимфоциты, условно подразделяют на три основные группы. К первой группе отнесены препараты преимущественно регулирующие неспецифическую резистентность. Вторую группу составляют препараты влияющие на функциональную активность Т-системы иммунитета. Третья группа объединяет корректоры В-системы.

Полагают, что в основе механизма стимулирующего действия иммунотропных средств заложен эффект неспецифической защиты. В комплексную систему защиты входят: фагоцитоз, комплемент-опсонин, пропердин, продукция лизоцима, образование интерферона. Также в нее входит спонтанная клеточная цитотоксичность, эффекторами которой являются ЕК, макрофаги, полиморфноядерные лейкоциты, Тклеточные предшественники, Т-и В-лимфоциты.

Механизм действия иммуностимуляторов можно рассматривать также с позиции гипотезы системы биологических регуляторов – цитомединов, которые осуществляют перенос специфической информации, необходимой для нормального функционирования, развития и взаимодействия клеточных популяций. В основе функционирования цитомединов лежит тканеспецифичность, геномный уровень регуляции, специфическая индукция процессов цитодифференцировки клеток-мишеней.

Предполагают, что существует система пептидных регуляторов, способных осуществлять специфическую связь малых групп клеток между собой и тем самым влиять на их функциональную активность.

Наибольший интерес представляют стандартные полипептидные фракции из тимуса: тимозин, тимопоэтин, тимостимулин, тимарин, тималин, тимоген, Т – активин и другие; низкомолекулярные пептиды, стимулирующие в первую очередь клеточный иммунитет. Например, тимозин – комплекс кислых полипептидов с молекулярной массой 10000 дальтон. Для его получения используют, в основном, гипофиз телят в возрасте до 2 лет. Тимозин также можно получить из крови, мозга селезенки, печени, легких. Тимозин обладает значительной гетерогенностью. Так, в составе одной из фракции (тимозин-5) обнаружено 30 различных компонентов белковой природы, из них 12 выделено и идентифицировано.

Тимопоэтин – это полипептид, выделенный из тимуса животных в 1971 г, состоит из 49 аминокислотных остатков. Препарат регулирует процессы лимфопоэза, обеспечивает дифференцировку Т-клетоку, силивает реактивность Т-лимфоцитов на ФГА и Кон А.

Т-активин представляет собой смесь полипептидов с молекулярной массой 1500-1600 D. Он усиливает миграцию стволовых клеток из костного мозга и киллерную активность, способствует восстановлению соотношения кортикальных и медуллярных лимфоцитов. Т-активин по биологической активности сходен с тимозином и тимарином. Тимарин был выделен из экстрактов тимуса телят.

Опытным путем установлено, что этот экстракт при введении животным стимулировал реакции клеточного и гуморального иммунитета. В процессе дальнейшей очистки, проведенной при помощи ионообменной хроматографии, из экстракта и был выделен полипептидный фактор тимуса – тимарин с молекулярной массой около 5000 D состоящий из 48 аминокислотных остатков.

Вторым по значению после тимозина можно поставить отечественный препарат тималин, полученный также из тимуса телят. Тималин состоит из трех основных компонентов (1000-5000 D), различающихся между собой по электрохимическим свойствам. Каждый из компонентов содержит от 6 до 10 фракций веществ пептидной природы. Пептиды, содержащиеся в тималине, при взаимодействии с поверхностной мембраной Т-лимфоцитов активируют экспрессию специфических рецепторов и тем самым повышают функциональную активность этих клеток. В популяции незрелых клеток тималин увеличивает количество Т-хелперов, а в популяции дифференцированных клеток – Т-супрессоров.

Кроме того, он усиливает сопротивляемость организма птицы к срессовым факторам, стимулирует обменные процессы и интенсивность роста повышает эффективность вакцинации цыплят против БМ и НБ. Его действие реализуется через тимус. Этот препарат применяют при иммунодефицитных состояниях и для активации иммунного ответа.

Выявлено, что применение тималина при ИДС способствует нормализации количественных и функциональных показателей Т-системы иммунитета, а также процессов фагоцитоза. Установлено, что в основе механизма действия препарата тимуса лежит его регулирующее влияние на внутриклеточные биохимические процессы и экспрессию дифференцированных антигенов на поверхности лимфоцитов, ингибирующее влияние на глюкокортикоидную функцию надпочечников и метаболизм.

Тимоген синтетический аналог тималина – глютамил триптофан был получен в 1988 г. Представляет собой дипептид, белый или белый с желтоватым оттенком порошок без запаха, хорошо растворим в воде, синтезированный по аналогии с веществом, выделенным методом высокоэффективной жидкостной хроматографии из тималина [87]. Клинические изучения показали безопасность применения тимогена, отсутствие у него побочных эффектов, осложнений. Экспериментально установлено, что для достижения аналогичного эффекта доза синтетического препарата в 100 раз меньше применяемой дозы тималина. Он оказывает регулирующее влияние на показатели клеточного иммунитета при экспериментальной патологии [42, 78].

Предполагают, что имеется две «точки» приложения иммуномодулирующего действия тималина и тимогена. Одна из них находится на участке превращения костномозговых предшественников Т-клеток в тимоциты, а другая – на этапе созревания тимоцитов в периферические Т-лимфоциты [102]. Сравнительное изучение биологической активности тимогена и природных препаратов тимуса показало сходство их действия на иммунологическую реактивность. Однако тимоген оказывал аналогичное действие в дозах в 10-100 раз меньших, чем природные препараты тимуса. Применение тимогена способствует восстановлению количества Т- и В-лимфоцитов в лимфоидных органах животных с вторичным иммунодефицитом и нормализует функциональную активность лимфоцитов и нейтрофилов крови [161].

Тимопептиды способны оказывать стимулирующее действие на гистогенез тимуса в ранние сроки эмбрионального развития, но при этом тормозят развитие бурсы. Реципроктные связи в морфофункциональной активности вилочковой железы и бурсы при введении экзогенных пептидов тимуса могут играть роль афферентного сигнала при сопряжении функции иммунной системы и гипофиза – центрального органа эндокринной системы [175,114].

Наряду с иммуномодуляторами, выделенными из тимуса, ведется поиск путей их получения из других органов. Так, из оптического ганглия промысловых видов кальмаров выделен ганглин, проявляющий активность как в отношении Т-клеток, так и в В-клеток. Кроме того, он повышает трансплантационный иммунитет [45]. Из бурсы кур получен иммуномодулятор бурсилин. Он нормализует ответ на Тзависимые антигены, увеличивает число лимфоцитов с иммуноглобулиновыми рецепторами. Бурсилин нормализует показатели иммунитета и гемокоагуляции у бурсэктомированных цыплят [17]. Обнаружено, что не только в тимусе, но и в костном мозге вырабатываются иммунорегуляторные пептиды, названные миелопептидами. Они синтезируются в процессе нормального метаболизма клетками костного мозга различных видов животных и человека [46]. Миелопептиды оказывают влияние на функционирование клеток В-ряда, усиливая антителообразование в момент максимального развития иммунной реакции. Они обладают способностью коррегировать дефекты В-системы иммунитета [28,113]. Из миелопептидов наиболее полно изучен стимулятор антителопродуцентов (САП) и гемалин. САП представляет собой рибонуклеопротеид с молекулярной массой около 1300 [29, 30].

Гемалин – препарат полипептидной природы, выделенный из костного мозга телят путем уксусно-кислой экстракции с последующей ионообменной хроматографией [34]. Установлено, что гемалин регулирует функциональную активность Влимфоцитов, способствует их дифференцировке, а именно увеличивает в крови количество В- и Т-лимфоцитов и их субпопуляций [33, 87, 88, 89]. Выявлено стимулирующее действие гемалина на свертывающую систему крови. Полученные результаты позволяют судить о том, что гемалин может быть эффективно применен при нарушении функциональной активности В-системы иммунитета и гемостаза [32].

При сопоставлении и сравнении препаратов, приготовляемых из различных органов по аналогичным методикам, выявлены существенные различия в их биологических свойствах. Так, установлено, что в зависимости от вида клеток, на которые направлено действие факторов, может проявляться стимулирующее, угнетающее или модулирующее действие [34, 82, 83, 109]. Полипептиды тимуса, селезенки, лимфатических узлов, костного мозга, регулируют соотношение Т- и Влимфоцитов. При этом полагают, что соотношение Т- и В-лимфоцитов в крови регулируется, главным образом, факторами тимуса и костного мозга, а соотношение Т- и В-лимфоцитов в лимфоидных органах – факторами циркулирующих лимфоцитов. Цитомедины участвуют в регуляции функциональной активности тех клеточных популяций, которые послужили исходным материалом для их выделения [34, 83, 108, 115]. Таким образом, пептидные биорегуляторы, обладая широким спектром действия на нервную, эндокринную и иммунную систему, усиливают сопротивляемость организма к стресс-факторам, стимулируют обменные процессы и интенсивность роста. В тоже время эти вопросы в мясном птицеводстве изучены явно недостаточно.

1.2.2 Применение иммуномодуляторов в птицеводстве

Как и в других отраслях животноводства, в птицеводстве применяют биорегуляторные пептиды, которые способствуют профилактике заболеваний, повышению адаптационных возможностей, улучшению иммунных процессов, ускорению структурно-функционального становления их тканей, органов и организма птицы в целом.

Термин «иммуномодулятор» (modulatio – перемена состояния изменение) употребляют тогда, когда говорят о веществах, нормализующих работу иммунной системы. Однако в отечественной литературе наравне с термином «иммуномодулятор» употребляется термин «иммуностимулятор» [55].

В настоящее время накоплен определенный опыт применения иммуномодуляторов в птицеводстве [14, 64, 66, 69, 70]. Экспериментальным путем установлено, что они оказывают прямое влияние на иммунокомпетентные органы у цыплят на 510 сутки после введения препарата [15].

Тималин, введенный бурсэктомированным циклофосфаном цыплятам, оказал незначительный лечебный эффект, а при гидрокортизоновой супрессии, когда в основном нарушался Т-клеточный иммунитет, практически восстанавливал нарушенное звено иммунитета [77].

В настоящее время сотрудниками ВНИВИП разработана схема применения тималина:

первый раз – в форме аэрозоля в инкубаторе, за 16 часов до окончания инкубации, при наклеве эмбрионов и выводе цыплят не менее 90 %; второй раз – аналогично, в форме аэрозоля в специальном помещении инкубатория или внутримышечно с вакциной против болезни Марека. Применение тималина позволяет повысить сохранность молодняка на от 1,5 % до 2,0 % и эффективность вакцинации против БМ в 1,5-2 раза. Установлено, что тималин, наряду с повышением иммунного статуса у птиц, стимулирует рост и повышает сохранность цыплят. Так, при его применении в условиях птицехозяйства отход цыплят за 1-60 и 61-90 сутки выращивания был ниже на 2,9 и 1,9 % соответственно, а среднесуточный прирост живой массы, за весь период, выше на 0,8 % [52, 54].

Н.В. Садовниковым были проведены исследования по изучению влияния тимогена на показатели живой массы цыплят – гипотрофиков. В суточном возрасте им был аэрозольно введен тимоген в дозе 400 мкг/м3. Цыплятам контрольной группы был введен изотонический раствор хлорида натрия. Контроль за живой массой подопытных цыплят показал, что в 30-суточном возрасте средняя живая масса цыплят в опытной группе была на 18 % (Р < 0.05) выше, по сравнению с контролем, а в 60суточном возрасте разница составила 38,5 % (Р < 0,05). В возрасте 110 дней средняя живая масса цыплят-гипотрофиков в опыте была выше средней живой массы сверстников на 28,3 % (Р < 0,01). Сохранность поголовья в опытной группе цыплят увеличилась на 22 % [68].

З.Ф. Джановой, проводившей исследования по сочетанному применению пробиотика бифидумбактерина и иммуномодулятора тималина для профилактики колибактериоза цыплят, установлено, что применение тималина в 1- и 7-суточном возрасте в дозе 40 мкг/кг внутримышечно, способствует увеличению количества бифидобактерий в слизистой оболочке тонкого отдела кишечника на 16-е и 21-е сутки на 1,6 и 1,2, а при сочетанном применении БСВ и тималина в эти же сроки отмечен аддитивный эффект увеличения количества бифидобактерий, соответственно на 4,8 и 4,6 % [7].

Конец ознакомительного фрагмента.