Глава 1
Становление современной логики
1. Задачи логики как науки
Слово «логика» употребляется довольно часто, но в разных значениях. Нередко говорят о логике событий, логике характера и т. п. В этих случаях имеется в виду определенная последовательность и взаимозависимость событий или поступков. «Быть может, он безумец, – говорит один из героев рассказа Г. К. Честертона, – но в его безумии есть логика. Почти всегда в безумии есть логика. Именно это и сводит человека с ума». Здесь «логика» означает наличие в мыслях определенной общей линии, от которой человек не в силах отойти.
Как раз в этом смысле употреблял слово «логика» Гегель, попытавшийся сконструировать некую «диалектическую логику», противостоящую (формальной) логике и допускающую противоречия в мышлении.
Слово «логика» употребляется также в связи с процессами мышления. Так, мы говорим о логичном и нелогичном мышлении, имея в виду его определенность, последовательность, доказательность и т. п. Кроме того, логика – особая наука о мышлении. Она возникла еще в IV в. до н. э., а позднее стала называться также формальной логикой.
Самым общим образом логику можно определить как науку о законах и операциях правильного мышления.
Трудно найти более многогранное и сложное явление, чем человеческое мышление. Оно изучается многими науками, и логика – одна из них. Всякое движение нашей мысли, постигающей истину, добро и красоту, опирается на логические законы. Мы можем не осознавать их, но вынуждены всегда им следовать.
Сфера конкретных интересов логики существенно менялась со временем, но основная цель всегда оставалась неизменной: исследование того, как из одних утверждений можно выводить другие.
Логика занимается также многими другими вопросами: операциями определения и деления (классификации), проблемами значения выражений языка, операциями доказательства и опровержения, правдоподобными рассуждениями, дающими из истинных посылок только вероятное заключение, и др. Но основная задача логики – определить «что из чего следует».
Логическое исследование призвано выявить и систематизировать схемы правильного рассуждения. Эти схемы представляют собой логические законы. Рассуждать логично – значит рассуждать в соответствии с законами логики.
Отсюда понятна важность данных законов. Об их природе, источнике их обязательности высказывались разные точки зрения. Ясно, что логические законы не зависят от воли и сознания человека. Их принудительная сила для человеческого мышления объясняется тем, что они являются, в конечном счете, отображением в голове человека наиболее общих отношений самого реального мира, практики его познания и преобразования человеком. Именно поэтому законы логики кажутся самоочевидными и как бы изначально присущими человеческой способности рассуждать.
Французский дипломат Талейран заметил однажды, что реалист не может долго оставаться реалистом, если он не идеалист, а идеалист не может долго оставаться идеалистом, если он не реалист. Применительно к нашей теме эту мысль можно истолковать как указание на две основные опасности, всегда подстерегающие логическое исследование. С одной стороны, логика отталкивается от реального мышления, но она дает абстрактную его модель. С другой стороны, прибегая к абстракциям высокого уровня, логика не должна, вместе с тем, отрываться от конкретных процессов рассуждения.
Как и математика, логика не является эмпирической, опытной наукой. Но стимулы к развитию она черпает из практики реального мышления. Изменение последней, так или иначе, ведет к изменению самой логики.
Современная логика с особой наглядностью подтверждает это. Она активно реагирует на изменения в стиле и способе теоретического мышления, на осмысление его особенностей в теории науки.
2. Два основных этапа в развитии логики
Рассуждение – это всегда принуждение. Размышляя, мы постоянно ощущаем давление и несвободу.
От нашей воли зависит, на чем остановить свою мысль. В любое время мы можем прервать начатое размышление и перейти к другой теме. Но если мы решили провести его до конца, то мы сразу же попадем в сети необходимости, стоящей выше нашей воли и наших желаний. Согласившись с одними утверждениями, мы вынуждены принять и те, что из них вытекают, независимо от того, нравятся они нам или нет, способствуют нашим целям или, напротив, препятствуют им. Допустив одно, мы автоматически лишаем себя возможности утверждать другое, несовместимое с допущенным.
Если мы, допустим, убеждены, что все металлы проводят электрический ток, мы должны признать также, что вещества, не проводящие ток, не относятся к металлам. Уверив себя, что каждая птица летает, мы вынуждены не считать птицами курицу и страуса. Из того, что все люди смертны и Сократ является человеком, мы обязаны заключить, что он смертен.
В чем источник этого постоянного принуждения? Какова его природа? Что именно следует считать не совместимым с принятыми уже утверждениями и что должно приниматься вместе с ними? Какие вообще принципы лежат в основе деятельности нашего мышления?
Над этими вопросами человек задумался очень давно. Из этих раздумий выросла особая наука о мышлении – логика.
Платон настаивал на божественном происхождении человеческого разума. «Бог создал зрение, – писал он, – и вручил его нам, чтобы мы видели на небе движение Разума мира и использовали его для руководства движениями нашего собственного разума». Человеческий разум – это только воспроизведение той разумности, которая господствует в мире и которую мы улавливаем благодаря милости бога.
Первый развернутый и обоснованный ответ на вопрос о природе и принципах человеческого мышления дал ученик Платона Аристотель. «Принудительную силу наших речей» он объяснил существованием особых законов – логических законов мышления. Именно они заставляют принимать одни утверждения вслед за другими и отбрасывать не совместимое с принятым. «К числу необходимого, – писал Аристотель, – принадлежит доказательство, так как если что-то безусловно доказано, то иначе уже не может быть; и причина этому – исходные посылки…» Подчеркивая безоговорочность логических законов и необходимость всегда следовать им, Аристотель с грустью замечал: «Мышление – это страдание», ибо «коль вещь необходима, в тягость она нам». Сейчас мы, конечно, думаем иначе: чем больше законов природы и общества нам известно, тем шире наша свобода.
С работ Аристотеля началось систематическое изучение логики и ее законов. Раньше логики возникли, пожалуй, только математика, философия и теория аргументации, называвшаяся в древности «риторикой».
Интересно отметить, что почти одновременно с древнегреческой логикой логическая теория мышления начала складываться в Древней Индии и в Древнем Китае. Однако развивалась она там медленно и неуверенно и за многие века мало чего добилась. Проблема в своеобразии культуры данных регионов, и, прежде всего, в отсутствии острой необходимости в строго рациональном мышлении. Для развития логики имеется хорошая почва в тех обществах, которые строятся на принципах демократии и в которых процедура убеждения опирается не на традицию и, тем более, не на принуждение или прямое насилие, а главным образом на доказательную речь.
Эволюция каждой науки носит характер чередования периодов «спокойного» развития научной дисциплины и ее резкого преобразования. Долгие периоды медленного и постепенного накопления знания в рамках одной и той же понятийной системы сменяются довольно кратковременными, но резкими, можно сказать скачкообразными, периодами радикально новых открытий и ломки всей понятийной структуры научной дисциплины. «Скачки» в процессе развития научной дисциплины принято называть «научными революциями».
Примерами научных революций могут служить переход от геоцентрической системы Птолемея к гелиоцентрической системе Коперника, переход от представлений об особой «огненной материи» (флогистоне) к теории окисления Лавуазье, переход от классической механики Ньютона к общей теории относительности Эйнштейна и др. Научная революция в психологии, сделавшая ее самостоятельной наукой и отделившая ее от философии, произошла во второй половине XIX в. и была связана с проникновением в психологию эмпирического метода.
Научная революция в логике во второй половине XIX – начале XX вв. была следствием сближения логики, являвшейся до этого одной из ветвей философии, с математикой. Логическое доказательство было представлено как процедура, подобная математическому вычислению, протекающему по простым правилам, имеющим чисто формальный характер.
В длинной и богатой событиями истории логики отчетливо выделяются, таким образом, два основных этапа. Первый – от древне греческой логики до возникновения в конце XIX – начале XX веков совершенно новой логики; второй – с этого времени до наших дней. Первый этап именуется традиционной логикой, второй – современной логикой. Традиционная логика является не особым направлением, а предысторией современной логики. Все собственно логическое содержание традиционной логики вошло в состав современной логики и со ставило ее незначительную и не особенно важную часть.
На первом этапе логика развивалась очень медленно. Обсуждавшиеся в ней проблемы мало отличались от проблем, поставленных еще Аристотелем. Это дало повод И. Кан ту в конце XVII в. утверждать, что логика, подобно геометрии Евклида, является завершенной наукой, не продвинувшейся со времени Аристотеля ни на один шаг и не имеющей собственной истории. Традиционная логика была философской наукой. Она развивалась в рамках философии, пользовалась, как и философия в целом, только естественным языком, дополненным немногими специальными символами и понятиями, законам логики давалось философское истолкование и обоснование. Современная логика как самостоятельная область знания возникла на стыке философии и математики. Это произошло, прежде всего, благодаря внедрению в логические, до того философские исследования, математических методов.
Отличительная черта человека – его разумность или, как говорит философия, рациональность. Совокупность принципов мышления, охватываемых понятием рациональности, не является вполне ясной и не имеет отчетливой границы. Но очевидно, что рациональность предполагает, прежде всего, соответствие требованиям логики. Хотя эти требования также не являются однозначно определенными, они составляют ядро рациональности. Логика – необходимый инструмент анализа законов и операций правильного мышления и, соответственно, незаменимое средство получения нового знания.
3. Правильное рассуждение
В рассказе Л. Н. Толстого «Смерть Ивана Ильича» есть эпизод, имеющий прямое отношение к логике.
Иван Ильич видел, что он умирает, и был в постоянном отчаянии. В мучительных поисках какого-нибудь просвета он ухватился даже за старую свою мысль, что правила логики, верные всегда и для всех, к нему самому не приложимы. «Тот пример силлогизма, которому он учился в логике: Кай – человек, люди смертны, потому Кай смертен, казался ему во всю его жизнь правильным только по отношению к Каю, но никак не к нему. То был Кай – человек, вообще человек, и это было совершенно справедливо; но он был не Кай и не вообще человек, а он всегда был совсем, совсем особенное от всех других существо… И Кай точно смертен, и ему правильно умирать, но мне, Ване, Ивану Ильичу, со всеми моими чувствами, мыслями, мне – это другое дело. И не может быть, чтобы мне следовало умирать. Это было бы слишком ужасно».
Ход мыслей Ивана Ильича продиктован, конечно, охватившим его отчаянием. Только оно способно заставить предположить, что верное всегда и для всех окажется вдруг неприложимым в конкретный момент к определенному человеку. В уме, не охваченном ужасом, такое предположение не может даже возникнуть. Как бы ни были нежелательны следствия наших рассуждений, они должны быть приняты, если приняты исходные посылки. Только в этом случае мы вправе назвать наше мышление «последовательным» или «логичным».
Заметить несостоятельность многих доказательств можно и без специальных знаний. Вполне достаточно естественной логики, тех интуитивных представлений о правильности рассуждения, которые складываются у нас в процессе повседневной практики мышления.
Однако далеко не всегда эта интуитивная логика успешно справляется со встающими перед нею задачами. Правильно ли рассуждает человек, когда говорит: «Если бы шел дождь, земля была бы мокрой, но дождя нет, следовательно, земля не мокрая». Это рассуждение интуитивно обычно оценивается как правильное, но достаточно небольшого размышления, чтобы убедиться, что это не так. Верно, что в дождь земля всегда мокрая; но если даже дождя нет, из этого вовсе не следует, что она сухая: земля может быть мокрой после вчерашнего дождя, после таяния снега и т. п.
Рассуждение идет по неправильной схеме: «Если есть первое, то есть второе; второе есть; значит, есть и первое». Эта схема может привести к ошибочному заключению, что нетрудно проиллюстрировать на простом примере: «Если у человека повышенная температура, он болен; у него нет повышенной температуры; значит, он не болен» – оба исходных утверждения верны, но вывод не верен – большинство болезней протекает без повышенной температуры.
Психологи занимаются проблемой связи мышления с культурой общества, предполагая, что люди разных эпох и соответствующих им культур мыслят по-разному. Ни к чему определенному эти исследования пока не привели, но они показали, сколь высок процент логических ошибок в рассуждениях, опирающихся на интуитивную логику.
Bo время исследования, проводившегося в Либерии и в США, предлагалась такая задача, представленная в форме сказки:
«Два человека, которых звали Флюмо и Йакпало, захотели жениться. Они отправились на поиски невесты, захватив с собой подарки: деньги и болезнь. Зайдя в дом, в котором жила красивая девушка, они сказа ли хозяину: «Если ты не выдашь свою дочь за одного из нас и не примешь его подарки, тебе придется плохо». Флюмо сказал: «Ты должен взять деньги и болезнь». Йакпало сказал: «Ты должен взять деньги или болезнь». За кого из них выдал хозяин свою дочь и почему?»
Оказалось, что даже эту несложную задачу многие испытуемые не сумели решить правильно. Причем процент неверных ответов был одинаковым в двух группах испытуемых, заметно различавшихся по уровню своего образования. Можно отметить, что хозяину следовало принять предложение Йакпало: взять деньги, но не болезнь («или, или»), лучше, чем брать деньги вместе с болезнью («и»).
Эти простые примеры показывают, что логика, усвоенная стихийно, даже в обычных ситуациях может оказаться ненадежной. Навык правильного мышления не предполагает каких-либо теоретических знаний, умения объяснить, почему что-то делается именно так, а не иначе. Интуитивная логика почти всегда недостаточна для критики неправильного рассуждения. К тому же сама она, как правило, беззащитна перед лицом критики.
Одна пожарная команда все время опаздывала на пожары. После очередного опоздания брандмейстер издал приказ: «В связи с тем, что команда систематически опаздывает на пожар, приказываю со следующего дня выезжать всем за 15 минут до начала по жара». Понятно, что этот приказ по своей сути абсурден. Над ним можно посмеяться, но выполнить его нельзя. Какие именно принципы логики им нарушены? Как убедительно показать, что приказ логически несостоятелен? Интуитивной логики для ответа на подобные вопросы явно недостаточно.
Л. Н. Толстой сказал о первых годах своей жизни: «Разве не тогда я приобрел все то, чем я теперь живу, и приобрел так много, так быстро, что во всю остальную жизнь я не приобрел и сотой доли того? От пятилетнего ребенка до меня только шаг. А от новорожденного до пятилетнего – страшное расстояние».
Среди ранних приобретений детского разума огромную ценность представляет, конечно, язык: его словарный фонд и грамматика. Но не меньшую ценность имеет умение логически правильно мыслить. Незаметно и быстро оно усваивается в детстве.
Ребенок может сказать: «У тебя большой шар, а у меня красный», «Принеси мне коробочку точно такой величины, но чтоб была побольше» и т. п. Но постепенно его мышление становится все более упорядоченным и последовательным.
Слова складываются во фразы, фразы начинают связываться между собой так, что становится невозможным, приняв одни, не принять другие. Период «детской логики» заканчивается, ребенок начинает рассуждать «как взрослый». Усвоение языка оказывается одновременно и усвоением общечеловеческой, не зависящей от конкретных языков логики. Без нее, как и без грамматики, нет, в сущности, владения языком.
В дальнейшем стихийно сложившееся знание грамматики систематизируется и шлифуется в процессе школьного обучения. На логику же специального внимания не обращается, ее совершенствование остается стихийным процессом. Нет поэтому ничего странного в том, что, научившись на практике последовательно и доказательно рассуждать, человек затрудняется ответить, какими принципами он при этом руководствуется. Почувствовав сбой в рассуждении, он оказывается, как правило, не способным объяснить, какая логическая ошибка допущена. Это под силу только теории логики.
4. Развитие современной логики
Современная логика отличается от традиционной логики методом построением специальных формализованных языков, или исчислений. Они позволяют избежать двусмысленности и логической неясности естественного языка. Новые методы дают логике такие преимущества, как большая точность формулировок, возможность изучения более сложных, с точки зрения логической формы, объектов. Многие из проблем, исследуемых в математической логике вообще невозможно сформулировать с использованием только традиционных методов. Современную логику иногда называют также «символической» или «математической».
Название «символическая логика» указывает на особенность применяемых логикой искусственных языков. Слова обычного языка заменяются в них специальными символами. Введение формализованного символического языка означает принятие особой теории логического анализа рассуждений.
Символы применял в ряде случаев еще Аристотель, а затем и все последующие логики. Однако в символической логике в использовании символики сделан качественно новый шаг: ее языки содержат только специальные символы.
Имя «математическая логика» призвано подчеркнуть сходство методов, применяемых в современной логике, с методами математики. В настоящее время имена «математическая логика» и «символическая логика» постепенно становятся все менее употребительными.
В середине XIX века ирландский математик Д. Буль истолковал умозаключение как результат решения логических равенств. В результате теория умозаключения приняла вид своеобразной алгебры, отличающейся от обычной алгебры лишь отсутствием численных коэффициентов и степеней. С работ немецкого логика Г. Фреге начинается применение логики для исследования оснований математики. Значительный вклад в развитие логики в дальнейшем внесли английские философы и логики Б. Рассел, А. Н. Уайтхед, немецкий математик Д. Гильберт и др. В 30-е годы фундаментальные результаты получили К. Гёдель, А. Тарский, А. Чёрч.
В классических, сложившихся первыми, разделах современной логики многое было отражением определенного своеобразия математического рассуждения. Кроме того, связь по преимуществу с одной наукой, математикой, поддерживала иллюзию, будто логика движется в силу только внутренних импульсов и ее развитие совершенно не зависит от эволюции теоретического мышления и не является в каком-либо смысле отображением последней.
Не успела классическая логика сложиться и окрепнуть, как началась энергичная ее критика. Эта критика велась с разных направлений. Результатом ее явилось возникновение целого ряда новых разделов современной логики, составивших в совокупности неклассическую логику. В ряде случаев оказалось, что реализованные при этом идеи активно обсуждались еще в античной и средневековой логике, но были основательно забыты в Новое время.
Неклассическая логика представляет собой совокупность достаточно разнородных логических теорий, возникших в известной оппозиции к классической логике и являющихся во многом не только критикой последней и попыткой ее усовершенствования, но также ее дополнением и дальнейшим развитием идей, лежащих в основе современной логики.
Экстенсивный рост логики не завершился и сейчас. Из числа зарубежных логиков, творчество которых оказало особенно заметное влияние на развитие современной логики в последние десятилетия, следует упомянуть У. Куайна, Г. Х. фон Вригта, Д. Дэвидсона, С. Крипке, Я. Хинтикку, Н. Решера и др.
В России почти всегда были люди, стоявшие на уровне достижений логики своего времени и внесшие в ее развитие определенный вклад. История отечественной логики не богата, однако, именами.
В конце XIX – начале XX вв., когда научная революция в логике набирала силу, ситуация в отечественной логике была довольно сложной. И в теории, и в практике преподавания господствовала так называемая «академическая логика», избегавшая острых современных проблем и постоянно подменявшая логику невнятной методологией науки, изложенной к тому же по чужим и устаревшим образцам.
Ведущие русские философы не имели представления о современной им логике. Их рассуждения были пронизаны религией, постоянные споры о «соборности», «всеединстве» и т. п. – все это больше напоминало схоластику, чем философию, очищенную огнем Просвещения.
Не случайно М. М. Бахтин, всегда считавший себя философом и тяготевший, по его собственному признанию, к Марбургской школе неокантианства, называл отечественную философию конца XIX – начала XX вв. «мыслительством», которому еще предстояло подняться до уровня систематической и современной философии.
Судьба тех немногих русских ученых, находившихся на уровне достижений логики своего времени, чаще всего была незавидной. Сдержанное отношение к математической логике, разделявшееся даже многими русскими математиками, во многом осложнило творчество специалиста в области алгебры логики П. С. Порецкого. Он первым начал читать в России лекции по математической логике, но многие свои работы вынужден был публиковать за рубежом. Физик П. Эренфест еще в 1910 г. высказал гипотезу о возможности применения современной логики в науке и технике. В дальнейшем его гипотеза нашла воплощение в электронно-вычислительной технике.
Классическая логика подходит к противоречию несколько прямолинейно. Согласно одному из ее законов, из логически противоречивого высказывания следует все, что угодно. Это означает, что противоречие запрещается под угрозой разрушения теории. Однако никто реально не пользуется этим разрешением выводить из противоречий все, что попало. Практика научных рассуждений резко расходится в данном пункте с логической теорией. В качестве реакции на это рассогласование с конца 40-х гг. ХХ века начали разрабатываться различные варианты паранепротиворечивой логики. Она исключает возможность выводить из противоречия любые утверждения, так что противоречие перестает быть смертельной угрозой, нависшей над теорией. Этим не устраняется, конечно, принципиальная необходимость избавляться от противоречий в процессе дальнейшего развития теории. Одним из первых, в 1909 г., сомнения в неограниченной приложимости закона противоречия высказал Н. А. Васильев, только что вернувшийся после обучения в Геттингене. Он считал нужным ограничить также действие закона исключенного третьего, и в этом смысле явился одним из идейных предшественников интуиционистской логики.
Новаторские идеи Васильева были восприняты в штыки, истолковывались неверно, а то и просто объявлялись безграмотными. Васильев тяжело переживал подобную «критику» и вскоре оставил занятия логикой.
В 20-е гг. коммунистический режим не наложил еще запрета на занятия современной логикой. Интересных результатов добился в этот период М. Шёйнфинкель. Он высказал идею о возможности сведения фундаментального понятия функции к более элементарным понятиям, что положило начало исчислению ламбда-конверсии А. Чёрча и позднее комбинаторной логике Х. Б. Карри. В последней делается попытка полного исключения всех операторов, переменных и всех связок, кроме обозначения для применения сингулярной функции к ее аргументу. В итоге получается формализованный язык, в котором все простые символы, за исключением единственной связки, являются константами, и который, тем не менее, годится для получения некоторых или даже всех результатов, для которых используются переменные.
А. Н. Колмогоров предложил минимальную логическую систему, основанную на еще более решительном неприятии законов классической логики, содержащих отрицание, чем в интуиционистской логике. Он показал, что если в некоторой теореме классической логики, в которой нет связок, отличных от условной связи и отрицания, заменить вхождения каждой переменной на ее двойное отрицание, то получающаяся формула будет теоремой минимальной логики. В. И. Гливенко доказал, что формулировка классической логики получается из формулировки интуиционистской логики добавлением в качестве дополнительной аксиомы только закона исключенного третьего. В 40–50-е гг. А. А. Марков и его школа разработали новую, конструктивистскую интерпретацию интуиционистской логики.
Все это были интересные, но частные результаты, не оказавшие сколько-нибудь заметного влияния на развитие мировой логики. Систематические, получившие резонанс и за рубежом исследования в области современной логики начинаются у нас в стране только в 60-е гг. В этот период выходят в свет книга А. А. Зиновьева, посвященная многозначной логике, и его книга, обосновывающая оригинальную теорию логического следования.
5. Основной принцип логики
Основной задачей логики является отделение правильных способов умозаключения (вывода) от неправильных. Правильные выводы называются также обоснованными, последовательными или логичными.
Правильное умозаключение – умозаключение, схема которого представляет собой закон логики, в силу чего из обоснованных (в случае описательных высказываний – истинных) посылок с необходимостью вытекает обоснованное (истинное) следствие. Если посылки являются обоснованными, можно сказать, что правильное умозаключение всегда дает из таких посылок обоснованное заключение.
Правильным является, например, следующее умозаключение, использовавшееся в качестве стандартного примера еще в Древней Греции:
Все люди смертны. Все греки люди. Следовательно, все греки смертны.
Первые два высказывания – это посылки, третье – заключение.
Еще один пример правильного умозаключения, связанный со знаменитым опытом Фуко.
«Если Земля вращается вокруг своей оси, маятники, качающиеся на ее поверхности, постепенно изменяют плоскость своих колебаний; Земля вращается вокруг своей оси; значит, маятники на ее поверхности постепенно изменяют плоскость своих колебаний».
Как протекает это рассуждение о Земле и маятниках? Сначала устанавливается условная связь между вращением Земли и изменением плоскости колебания маятников. Затем констатируется, что Земля действительно вращается. Из этого выводится, что маятники в самом деле постепенно изменяют плоскость своих колебаний. Это заключение вытекает с какой-то принудительной силой. Оно как бы навязывается всем, кто принял посылки рассуждения. Именно поэтому можно сказать также, что маятники должны изменять плоскость своих колебаний, с необходимостью делают это. Схема данного рассуждения проста: если есть первое, то есть второе; имеет место первое; значит, есть и второе. Принципиально важным является то, что, о чем бы мы ни рассуждали по такой схеме – о Земле и маятниках, о человеке или химических элементах, о мифах или богах, рассуждение останется правильным. Чтобы убедиться в этом, достаточно подставить в схему вместо слов «первое» и «второе» два утверждения с любым конкретным содержанием.
В правильном умозаключении, опирающемся на закон логики, из обоснованных (истинных) посылок всегда с необходимостью следует обоснованное (истинное) заключение. Этим объясняется тот огромный интерес, который логика проявляет к правильным умозаключениям. Они позволяют из уже имеющегося знания получать новое знание, и притом с помощью «чистого» рассуждения, без всякого обращения к опыту, интуиции и т. п. Правильное рассуждение как бы разворачивает и конкретизирует наши знания. Оно дает стопроцентную гарантию успеха, а не просто обеспечивает ту или иную – быть может, и высокую – вероятность обоснованного (истинного) заключения.
Логика занимается не только связями утверждений в правильных умозаключениях, но и многими иными проблемами: смыслом и значением выражений языка, различными отношениями между понятиями, операциями определения и логического деления понятий, вероятностными, или правдоподобными, рассуждениями, парадоксами и логическими ошибками и т. д. Но главная задача логики – анализ правильности рассуждения, формулировка законов и принципов, соблюдение которых является необходимым условием получения обоснованных, в частности, истинных, заключений в процессе вывода.
Согласно основному принципу логики, правильность рассуждения зависит только от его логической формы, или структуры, и не зависит от конкретного содержания входящих в него утверждений.
Логическая форма – способ связи входящих в рассуждение содержательных частей.
Основной принцип логики предполагает – и это следует специально подчеркнуть, – что каждое наше рассуждение, выраженное в языке, имеет не только содержание, но и определенную форму. Предполагается также, что содержание и форма отличаются друг от друга и могут быть отделены друг от друга. Содержание рассуждения не оказывает никакого влияния на его правильность, поэтому от него следует отвлечься. Для оценки правильности существенной является лишь форма. Ее необходимо выделить в чистом виде и затем на основе одной «бессодержательной» формы решить вопрос о правильности рассматриваемого рассуждения.
Особым интересом логики к логической форме наших рассуждений объясняется то, что иногда эту науку называют также, вслед за И. Кантом, «формальной логикой».
Понятие логической формы является довольно абстрактным. Смысл его лучше всего раскрыть на примерах.
Сравним два утверждения: «Все металлы проводят электрический ток» и «Все планеты имеют форму куба». По содержанию они совершенно различны, к тому же первое из них является истинным, а второе ложным. И, тем не менее, их сходство несомненно – это сходство, а точнее говоря тождество, их строения, формы. Чтобы выявить данное сходство, нужно отвлечься от содержания утверждений и от обусловленных им различий. Оставим поэтому в стороне металлы и планеты, электрический ток и кубы. Заменим все содержательные компоненты утверждений латинскими буквами, скажем, S и Р, не несущими никакого содержания. В итоге получим в обоих случаях выражение «Все S есть Р» («Все металлы есть проводящие электрический ток» и «Все планеты есть имеющие форму куба»). Это и есть форма рассматриваемых утверждений. Такую же логическую форму имеют утверждения «Все кометы имеют хвост», «Все люди добры» и т. п. Но утверждения «Все люди не являются бессмертными» и «Все личинки мух не имеют головы» имеют уже другую логическую форму – «Все S не есть Р».
Еще один пример выявления логической формы. Возьмем два условных высказывания: «Если сейчас день, то сейчас светло» и «Если сейчас ночь, то сейчас темно». Заменим входящие в эти высказывания простые утверждения «Сейчас день» и «Сейчас ночь» буквой А, а утверждения «Сейчас светло» и «Сейчас темно» – буквой В. Получим, что форма этих двух высказываний одна и та же – «Если А, то В».
Логическую форму имеют не только высказывания, но и состоящие из них рассуждения.
Возьмем, к примеру, умозаключение: «Если у человека повышенная температура, он болен; у человека повышенная температура; следовательно, человек болен». Логическая форма этого умозаключения: «Если А, то В; А; следовательно, В». Умозаключение такой формы будет правильным, какие бы конкретные высказывания ни подставлялись вместо букв А и В («Если сейчас день, то светло; сейчас день; значит, сейчас светло», «Если совершено преступление, должно последовать наказание; совершено преступление; значит, должно последовать наказание» и т. п.).
Поскольку правильность рассуждения зависит только от его формы и не зависит от содержания, мышление всех людей подчиняется одним и тем же принципам. С точки зрения логики полинезиец мыслит точно так же, как китаец или европеец, женщина так же, как и мужчина, старик так же, как и молодой человек, и т. п.
6. Могущество искусственного языка
Старая логика пользовалась для описания мышления обычным языком, на котором повседневно общаются люди. Но он имеет целый ряд особенностей, мешающих ему, к сожалению, успешно справляться с этой задачей. Его правила, касающиеся построения сложных выражений из простых, расплывчаты. Интуитивные критерии осмысленности утверждений ненадежны. Структура фраз скрывает реальную логическую форму. Большинство выражений многозначно. Обычный язык, возникший как средство общения людей, претерпел долгую и противоречивую эволюцию. Многое в нем остается не выявленным, а только молчаливо предполагается. Все это не означает, конечно, что обычный язык никуда не годен и его следует заменить во всех областях какой-то искусственной символикой. Он вполне справляется с многообразными своими функциями. Но, решая многие задачи, он лишается способности точно передавать форму нашей мысли.
Для целей логики необходим искусственный язык, строящийся по строго сформулированным правилам. Этот язык не предназначен для общения. Он должен служить только одной задаче – выявлению логических связей наших мыслей, но решаться она должна с предельной эффективностью. Принципы построения искусственного логического языка были разработаны в современной логике. По словам немецкого логика Г. Клауса, «создание его имело такое же значение в области мышления для техники логического вывода, какое в области производства имел переход от ручного труда к труду механизированному». Специально созданный для целей логики язык получил название «формализованного». Слова обычного языка заменяются в нем отдельными буквами и различными специальными символами. Формализованный язык – это «насквозь символический» язык. Введение его означает принятие особой теории логического анализа рассуждений.
В обычном языке деление на синтаксис и семантику во многом условно. И синтаксические и семантические правила этого языка расплывчаты и всегда имеют исключения. В нем нет, например, ясного определения осмысленного предложения, нет перечня тех частей, которые должны быть в каждом предложении, чтобы оно могло считаться правильно построенным, и т. д. В формализованном языке синтаксическая и семантическая части четко разграничены. Вначале такой язык строится без всякой ссылки на ту действительность, которую он будет описывать. И только потом вводятся правила придания значений употребляемым в нем комбинациям знаков, указывается его интерпретация. Построение формализованного языка отличается тщательностью, с которой формулируются синтаксические и семантические правила, отсутствием неправильностей и исключений. Разделение синтаксиса и семантики позволяет определить понятие логического вывода чисто формально, не обращаясь к содержанию конструируемых и преобразуемых выражений. Вывод оказывается подчиненным простым предписаниям, подобным правилам сложения и вычитания. Исчезают неясность и двусмысленность, всегда присутствующие при обращении с такой трудно уловимой вещью, как «смысл выражения». Место обычного в процессе рассуждения оперирования идеальными смыслами занимает манипулирование материальными вещами. Выведение одних идей из других превращается в «вычисление» по простым правилам.
Использование формализованного языка для описания способов правильного рассуждения невозможно переоценить. Без него нет современной логики. В определенный период своего развития каждая наука созревает для коренной перестройки своего языка. В свою очередь, создание нового языка, обладающего неизмеримо большими, чем прежний, выразительными возможностями, оказывается мощным стимулом для дальнейшего развития этой науки. Отмечая эту взаимосвязь между успехами науки и преобразованием ее языка, французский химик XVIII века А. Лавуазье писал: «Так как слова сохраняют и передают представления, то из этого следует, что нельзя ни усовершенствовать язык без усовершенствования науки, ни науку – без усовершенствования языка, и что как бы ни были достоверны факты, как бы ни были правильны представления, вызванные последними, они будут выражать лишь ошибочные представления, если у нас не будет точных выражений для их передачи».
Революция в логике привела к созданию логически совершенного языка. Последний сделал возможным дальнейшее изучение и описание закономерностей правильного мышления. «Чему, спрашиваю я, одолжены своими блистательными успехами в последнее время математические и физические науки, слава нынешних веков, торжество ума человеческого? Без сомнения, искусственному языку своему, ибо как назвать сии знаки различных исчислений, как не особенным, весьма сжатым языком, который, не утомляя напрасно нашего внимания, одной чертой выражает обширные понятия». Эти слова, сказанные знаменитым русским математиком XIX века Н. Лобачевским, с полным правом можно отнести не только к искусственным языкам математики и физики, но и к формализованному языку современной логики.
7. Современная логика и другие науки
В заключение этого, по необходимости краткого, разговора о том, чем занимается современная логика, следует сделать несколько замечаний о ее связях с другими науками. С момента своего возникновения логика была самым тесным образом связана с философией. В течение многих веков логика считалась, подобно этике, эстетике, психологии и др., одной из «философских наук». И только во второй половине XIX века формальная – к этому времени уже математическая – логика отпочковалась, как принято выражаться, от философии. Примерно в это же время от философии отделилась и стала самостоятельной научной дисциплиной и психология. Но если в психологии этот процесс был связан, прежде всего, с проникновением в нее опыта и эксперимента и сближением ее с другими эмпирическими науками, то в отделении формальной логики решающую роль сыграло проникновение в нее математических методов и сближение с математикой.
Самостоятельность, обретенная логикой, не означала, конечно, того, что она утратила всякую связь с философией. Просто в новую историческую эпоху прежняя связь приобрела другой характер. Взаимосвязь новой логики с философией не только не оборвалась, но, напротив, парадоксальным образом даже окрепла. Обращение к философии является необходимым условием прояснения формальной логикой своих оснований. С другой стороны, использование в философии понятий, методов и аппарата современной логики, несомненно, способствует более ясному пониманию самих философских понятий, принципов и проблем.
Тесная связь современной логики с математикой придает особую остроту вопросу о взаимных отношениях этих двух наук. Среди многих точек зрения, высказывавшихся по этому поводу, были и две крайние, ведущие, в общем-то, к тому же самому конечному результату – объединению математики и логики в единую научную дисциплину, сведению их в одну науку. Согласно Г. Фреге, Б. Расселу и их последователям математика и логика – это всего лишь две ступени в развитии той же самой науки. Математика может быть полностью сведена к логике, и такое чисто логическое обоснование математики позволит установить ее истинную и наиболее глубокую природу.
Этот подход к обоснованию математики получил название логицизма. Наиболее законченное изложение он нашел в изданном в 1910–1913 годах трехтомном труде «Principia Mathematica» написанном Б. Расселом совместно с А. Уайтхедом. Сторонники логицизма добились определенных успехов в прояснении основ математики. В частности, было показано, что математический словарь сводится к неожиданно краткому перечню основных понятий, которые принадлежат словарю чистой логики. Вся существующая математика была сведена к сравнительно простой и унифицированной системе исходных, принимаемых без доказательства положений, или аксиом, и правил вывода из них следствий, или теорем.
Однако в целом логицизм оказался утопической концепцией. «Математика не выводима из формальной логики, – подводит итог математик и логик Д. Бочвар, – ибо для построения математики необходимы аксиомы, устанавливающие факты из области объектов, и, прежде всего, – существование в последней определенных объектов. Но такие аксиомы обладают уже внелогической природой».
Другой формой объединения математики и логики в одну науку было объявление математической, или современной, логики одним из разделов современной математики. Многие математики и сейчас еще считают главной – если не единственной – задачей математической логики уточнение понятия математического доказательства и исключение парадоксальных, противоречащих интуиции утверждений из математических теорий. «Математическая логика, – пишет, например, английский логик Р. Гудстейн, – имеет своей целью выявление и систематизацию логических процессов, употребляемых в математическом рассуждении, а также разъяснение математических понятий. Сама она является ветвью математики, использующей математическую символику и технику, ветвью, развивающейся в целом в течение последних ста лет, и притом такой, которая по своей плодотворности, по силе и важности своих открытий вполне может претендовать на место в авангарде современной математики». Тенденция включать математическую логику в число математических дисциплин и видеть в ней только теорию математического доказательства является, конечно, ошибочной. На самом деле задачи логики гораздо шире. Она исследует основы всякого правильного рассуждения, а не только строгого математического доказательства, и ее интересует связь между посылками и следствиями в любых областях рассуждения и познания, а не только в одной лишь математике. Математическая логика, истолкованная исключительно как один из разделов математики, не только лишается способности прояснять и уточнять основания математики, но и сама становится непостижимой.
С первых дней своего возникновения современная логика способствовала решению логических проблем и преодолению трудностей, встававших перед математикой. Каждый новый шаг в прогрессе логики быстро сказывался на развитии математической науки. С другой стороны, без использования математических методов и понятий не было бы и современной логики. Но это не означает, разумеется, что одна из этих наук должна быть поглощена другой. Тенденция ставить логику на службу, прежде всего, математике является, однако, по-своему показательной. Она выразительно подчеркивает тесную взаимосвязь логики и математики, их плодотворное и взаимобогащающее воздействие друг на друга.
Современная логика тесно связана также с кибернетикой – наукой о закономерностях управления процессами и системами в любых областях: в технике, в живых организмах, в обществе. Основоположник кибернетики Н. Винер не без оснований подчеркивал, что само возникновение кибернетики было бы немыслимо без математической логики. Автоматика и электронно-вычислительная техника были бы невозможны без использования алгебры логики – этого исторически первого раздела современной логики. В управляющих схемах, применяемых в ЭВМ, значительное место занимают релейно-контактные схемы, моделирующие логические операции. Описание таких операций, даваемое логикой, способствует детальному анализу логического строения мысли и открывает поразительные перспективы автоматизации логических процессов, богатые возможности использовать для их осуществления автоматические машины. «Математическая логика, – заключает математик Г. Поваров, – является необходимым инструментом для машинизации умственного труда».
Современная логика находит широкие приложения не только в кибернетике, но и во многих других областях науки и техники. Очерчивая эти приложения, американский логик Э. Беркли пишет: «Математическая логика используется при исследовании правил, условий и договоров, при проектировании электрических схем для вычислительных машин, телефонных систем и регулирующих устройств, при программировании автоматических вычислительных машин и вообще при описании и проектировании многих типов схем и механизмов». Столь широкие технические приложения современной логики покажутся особенно впечатляющими, если вспомнить, что еще лет пятьдесят тому назад она казалась большинству весьма абстрактной математической дисциплиной, далекой от практического применения.
Сейчас логический анализ правильного мышления активно ведется в целом ряде как давно освоенных, так и новых областей. Самым общим образом их можно обозначить так:
1. Исследование логических особенностей дедуктивных наук. Этот раздел достаточно глубоко и всесторонне разработан математиками и логиками. Многие результаты, полученные здесь (например, теорема Гёделя о неполноте и др.) имеют принципиальное философско-методологическое значение.
2. Применение логического анализа к опытному знанию. К этой сфере относятся изучение логической структуры теорий, способов их эмпирического обоснования, исследование различного рода правдоподобных рассуждений (индуктивный вывод, аналогия, моделирование, методы установления причинной связи на основе наблюдения и эксперимента и т. п.), трудностей применения теорий на практике и т. д. Особое место занимают проблемы, связанные с изучением смыслов и значений теоретических и эмпирических терминов, с анализом семантики таких ключевых терминов, как закон, факт, теория, система, измерение, вероятность, необходимость и т. д.
В последнее время существенное внимание уделяется логическому исследованию процессов формирования, роста и развития знания. Они имеют общенаучный характер, но пока изучаются преимущественно на материале естественнонаучных теорий. Были предприняты, в частности, попытки построения особой диахронической логики для описания развития знания.
3. Применение логического анализа к оценочно-нормативному знанию. Сюда относятся вопросы семантики оценочных и нормативных понятий, изучение структуры и логических связей высказываний о ценностях, способов их обоснования, анализ моральных, правовых и других кодексов и т. д. Тема ценностей стала одной из центральных в сегодняшней методологии. Знание не сводимо к истине, оно включает также ценности. Без них нет ни гуманитарной, ни естественной науки. Всякая научная теория включает ценности, и притом в самой разнообразной форме: в форме иерархии своих положений, в форме ценностных составляющих господствующей парадигмы, (номинальных) определений, конвенций и т. д. Интенсивные исследования в этой области показали несостоятельность неопозитивистского требования исключения ценностей из науки. Это требование несовместимо не только с реальной практикой этики, эстетики, политэкономии и подобных им дисциплин, непосредственно занятых обоснованием и утверждением определенных ценностей, но и с практикой научного познания в целом, которое, как и всякая человеческая деятельность, немыслимо без целей и иных ценностей. В изучении внутренних и внешних ценностей научных теорий важную роль призвана играть и логика.
4. Логический анализ приемов и операций, постоянно используемых во всех сферах мыслительной деятельности. К ним относятся объяснение, понимание, предвидение, определение, обобщение, классификация, абстрагирование, идеализация, сравнение, экстраполяция, редукция и т. п.
5. Применение логического анализа для исследовании наиболее важных категорий («причинность», «детерминизм», «онтологическая, или физическая, необходимость», «научный закон», объяснение, предсказание, понимание и др.).
Этот краткий перечень областей и проблем современных логических исследований не является, конечно, исчерпывающим. Но уже он показывает как широту интересов современной логики, так и сложность стоящих перед нею задач.
Пока у читателя есть только общее представление о том, чем занимается современная логика. Трудно говорить поэтому о каких-либо деталях ее отношений с другими науками. Нет также возможности привести конкретные примеры применений логики для решения содержательно интересных проблем. К этим вопросам целесообразно вернуться позднее, в заключительном разделе книги.