Вы здесь

Семь этюдов по физике. Этюд первый. Самая красивая из теорий (Карло Ровелли, 2014)

Этюд первый

Самая красивая из теорий

В юности Альберт Эйнштейн прожил больше полугода довольно бесцельно. Нельзя добиться успеха, не «теряя» времени, – к сожалению, родители подростков часто склонны об этом забывать. Он был в Павии, где воссоединился со своей семьей после того, как бросил обучение в Германии, не вытерпев строгостей тамошней гимназии. Это был конец XIX века, а в Италии – начало промышленной революции. Его отец, инженер, поставлял электроприборы для первых электростанций на Паданской равнине. Альберт читал Канта и посещал отдельные лекции в местном университете – для собственного удовольствия, без зачисления и необходимости думать об экзаменах. Вот так становятся серьезными учеными.

Затем Эйнштейн поступил в политехнический институт в Цюрихе и погрузился в изучение физики. Несколько лет спустя, в 1905 году, он послал три статьи в самый престижный научный журнал того времени – Annalen der Physik. Каждая из них заслуживает Нобелевской премии. Первая показывает, что атомы на самом деле существуют. Вторая закладывает фундамент для квантовой механики, речь о которой пойдет в следующей главе. Третья представляет его первую теорию относительности (сегодня известную как «специальная теория относительности»), теорию, объясняющую, что время течет не одинаково для всех: два идентичных близнеца обнаруживают, что перестали быть одного возраста, если один из них перемещался с большой скоростью.

Эйнштейн в одночасье стал знаменитым ученым и получил предложения о работе из множества университетов. Но кое-что не давало ему покоя: несмотря на мгновенное признание, его теория относительности не увязывалась с тем, что мы знаем о тяготении, то есть с тем, как падают предметы. Он начал осознавать это, когда писал статью, обобщающую его теорию, и задумался, не нуждается ли закон «всемирного тяготения», как его сформулировал сам отец физики, Исаак Ньютон, в пересмотре, чтобы сделать его совместимым с новой концепцией относительности. Эйнштейн с головой ушел в проблему. На ее решение у него уйдет десять лет. Десять лет лихорадочных исследований, попыток, заблуждений, замешательства, ошибочных статей, блестящих идей, неверно понятых мыслей.

В конце концов в ноябре 1915 года он опубликовал статью, в которой давалось полное решение: новая теория тяготения, названная им общей теорией относительности, его шедевр и «самая красивая из существующих физических теорий», по мнению выдающегося русского физика Льва Ландау.

Есть непререкаемые шедевры, которые глубоко нас трогают: «Реквием» Моцарта, «Одиссея», Сикстинская капелла, «Король Лир». Для того чтобы в полной мере оценить их гениальность, порой требуется длительное обучение, но наградой станет истинная красота, и не только: нашим глазам откроется новое видение мира. Жемчужина Эйнштейна, общая теория относительности, – шедевр такого порядка.

Помню волнение, охватившее меня, когда я начал ее понимать. Стояло лето. Я был на пляже в Кондофури в Калабрии, в солнечном сиянии античного Средиземноморья, на последнем году моего обучения в университете. Заниматься лучше всего получается в каникулы, не отвлекаясь на учебный процесс. Я занимался по книге, погрызенной по краям мышами, поскольку раньше ночами я закрывал ею норы этих несчастных созданий в довольно обветшалом, хипповском доме на умбрийском склоне, где укрывался от скуки университетских занятий в Болонье. Я то и дело отрывал взгляд от книги и глядел на сверкающее море: мне казалось, будто я действительно вижу искривление пространства-времени, угаданное Эйнштейном. Как по волшебству: словно друг нашептывал мне на ухо небывалую сокровенную правду, внезапно приподнимая полог реальности, чтобы раскрыть более простой, более глубокий порядок. С тех самых пор, как мы обнаружили, что Земля круглая и вращается, как сумасшедшая юла, мы поняли, что реальность не такая, какой нам кажется: всякий раз, познавая новую ее грань, мы переживаем глубокий эмоциональный опыт. Очередная завеса упала.

Однако среди многочисленных научных прорывов, следовавших один за другим на протяжении всей истории, прорыв Эйнштейна, пожалуй, не имеет себе равных. Почему?

Да хотя бы потому, что, чуть только понимаешь, как теория работает, она поражает своей простотой. Опишу ее суть.

Ньютон попытался объяснить причину, по которой предметы падают, а планеты вращаются. Он вообразил, что существует сила, притягивающая все материальные тела друг к другу, и назвал ее силой тяготения. Как эта сила проявлялась по отношению к удаленным друг от друга объектам, между которыми не было ничего, оставалось неясно – и великий отец современной науки опасался выдвигать предположения. Ньютон также считал, что тела перемещаются по пространству и что пространство – вместительный пустой контейнер, большая коробка, содержащая в себе Вселенную, необъятная структура, по которой все объекты движутся прямо, пока сила не вынудит их траектории искривиться. Из чего сделано это пространство, этот контейнер для мира, изобретенный Ньютоном, он сказать не мог. Однако за несколько лет до рождения Эйнштейна два выдающихся английских физика, Майкл Фарадей и Джеймс Максвелл, добавили в ньютоновский бесстрастный мир ключевой ингредиент: электромагнитное поле. Это поле – реальная сущность: распределенное повсюду, оно переносит радиоволны, наполняет пространство, колеблется, как поверхность озера, и «передает» электрическую силу. Еще с юности Эйнштейн был зачарован этим электромагнитным полем, вращающим роторы на электростанциях, построенных благодаря его отцу, и вскоре начал понимать, что гравитация, как и электричество, должна также переноситься полем: должно существовать «гравитационное поле», аналогичное электрическому. Он задался целью понять, как это гравитационное поле работает и как его можно описать уравнениями.

И тогда необычайная мысль посетила его, абсолютно гениальная идея: гравитационное поле не распределено по пространству, гравитационное поле и есть само это пространство. Вот в чем смысл общей теории относительности. Ньютоновское «пространство», в котором движутся предметы, и «гравитационное поле» – совершенно одно и то же.

Это был миг прозрения. Серьезное упрощение мира: пространство больше не было чем-то отличным от вещества, оно стало одной из «материальных» составляющих мира. Колеблющейся, изгибающейся, искривляющейся, закручивающейся. Мы не содержимся внутри невидимой жесткой структуры: мы погружены в гигантскую гибкую раковину улитки. Солнце искривляет пространство вокруг себя, и Земля вращается вокруг него не под действием загадочной силы, а потому, что несется по прямой в пространстве, которое изгибается, – как шарик, скатывающийся в воронку. Нет никаких таинственных сил, порождаемых в центре воронки; ее изогнутые стенки – вот что заставляет шарик скатываться. Планеты вращаются вокруг Солнца, а предметы падают, потому что пространство искривляется.

Как описать это искривление пространства? Самый выдающийся математик XIX столетия Карл Фридрих Гаусс – его называют королем математиков – вывел формулу для описания двумерных искривленных поверхностей, таких как поверхности холмов. Затем он попросил своего одаренного студента обобщить теорию, чтобы охватить пространства трех или более измерений. Упомянутый студент, Бернхард Риман, написал впечатляющую докторскую диссертацию на эту тему, которая кажется совершенно бесполезной. Вывод его работы состоял в том, что свойства искривленного пространства отражает определенное математическое понятие, которое мы знаем сегодня как риманову кривизну и обозначаем буквой R. Эйнштейн написал уравнение, гласящее, что R эквивалентна энергии материи. Иными словами, пространство искривляется там, где есть материя. Вот и все. Уравнение умещается на половине строчки, полностью. Предвидение – что пространство искривляется – стало уравнением.

Однако в этом уравнении – целая вселенная. И невероятное богатство теории раскрывается в фантасмагорической цепи предсказаний, которые напоминают исступленный бред безумца, но все до единого подтвердились.

Прежде всего, уравнение описывает, как пространство изгибается около звезды. Из-за этого искривления не только планеты действительно обращаются вокруг звезды, но свет перестает распространяться по прямой линии и отклоняется от нее. Эйнштейн предсказал, что Солнце вынуждает свет отклоняться от прямой. В 1919 году это отклонение было измерено – предсказание оправдалось. Но не только пространство искривляется, время тоже. Эйнштейн предсказал, что время бежит быстрее высоко наверху, чем внизу, ближе к Земле. Это было измерено и оказалось верным. Если человек, живший на уровне моря, встретится со своим близнецом, жившим в горах, он обнаружит, что родственник чуть старше его. И это лишь начало.

Когда большая звезда сжигает все свое сгораемое вещество (водород), она умирает. Остатки звезды больше не поддерживаются теплом сгорания и сжимаются под собственным весом в точку, где искривляют пространство настолько, что оно схлопывается в настоящую дыру. Это знаменитые черные дыры. Когда я учился в университете, их считали предсказаниями заумной теории, вызывающими мало доверия. Сегодня астрономы наблюдают их в небе сотнями и очень детально изучают.

Но и это еще не все. Пространство целиком способно расширяться и сжиматься. Более того, уравнение Эйнштейна показывает, что пространство не может не изменяться, оно должно расширяться. В 1930 году расширение Вселенной действительно зарегистрировали. То же уравнение предсказывает, что расширение должно было запуститься взрывом молодой, чрезвычайно маленькой и необычайно горячей Вселенной – тем, что сейчас мы называем Большим взрывом. Опять же никто поначалу в это не верил, но подтверждения все накапливались, пока в небе не было непосредственно зарегистрировано космическое фоновое излучение – рассеянное свечение, оставшееся от тепла, выделившегося при исходном взрыве. Предсказание, порожденное уравнением Эйнштейна, оказалось верным. А дальше теория утверждает, что пространство колышется, как поверхность моря. Эффекты от этих «гравитационных волн» наблюдаются в небе на двойных звездах и соответствуют предсказаниям теории с поразительной точностью – до одной стомиллиардной. И так далее.

Если вкратце, теория описывает многоцветный и потрясающий мир, где вселенные взрываются, пространство схлопывается в бездонные дыры, время замедляется вблизи планет и по безграничному межзвездному пространству бежит рябь, словно по поверхности моря… И все это, постепенно вырисовывавшееся из моей погрызенной мышами книги, не было сказкой, выдуманной сумасшедшим в припадке безумия, или галлюцинацией, вызванной жгучим средиземноморским солнцем и ослепительным морем Калабрии. Это было реальностью.

Или, лучше сказать, проблеском реальности, чуть приоткрывшейся по сравнению с нашим замутненным и банальным повседневным взглядом на нее. Реальности, кажущейся сотканной из той же материи, что и наши сны, но тем не менее более подлинной, чем наши неопределенные ежедневные грезы.

Все это результат изначального прозрения: пространство и гравитационное поле суть одно и то же. И простого уравнения, которое я не могу не привести здесь, даже несмотря на то, что вы почти наверняка не сумеете в нем разобраться. Возможно, кто-то из читателей все-таки сможет оценить его дивную простоту:

Rab – 1/2 R gab = Tab

Вот и все.

Вам, конечно, придется изучить и усвоить риманову геометрию, чтобы овладеть техникой для прочтения и использования этого уравнения. Это требует некоторой решимости и усердия. Но меньших, чем необходимо для того, чтобы оценить изысканную красоту позднего струнного квартета Бетховена. Награда в обоих случаях – истинная красота и новый взгляд на мир.