Вы здесь

Седьмое доказательство. Второе начало термодинамики (Виктор Печорин)

Второе начало термодинамики

Незнание второго начала термодинамики равносильно незнанию произведений В. Шекспира.

Чарльз Сноу

Пусть общее количество энергии во Вселенной равно нулю, – возразят нам, – но ведь это как бы усредненное значение. При этом энергия отдельных объектов во Вселенной может отличаться от нуля и сильно отличаться – как в положительную, так и в отрицательную сторону. Не получится ли у нас как в том анекдоте, когда дежурная медсестра заверяла главврача, что во время ее дежурства все было хорошо, средняя температура больных – 36 °С.

– А как вы определяли среднюю температуру? – поинтересовался главврач.

– У половины больных температура 42 °С – у них жар, а у второй половины 30 °С, поскольку они уже померли. А в среднем – 36 °С.

Суть вопроса заключается вот в чём: могут ли внутри системы, в целом обладающей нулевой энергией, сами собой, без какого бы то ни было внешнего воздействия, возникнуть разности потенциалов, позволяющие ей совершать некоторую работу?

Для наглядности рассмотрим два простых примера.

Предположим, у нас есть система, состоящая из двух сообщающихся сосудов, в которые налита вода. Уровни воды в обоих сосудах одинаковы – так всегда бывает в сообщающихся сосудах. Возможно ли, что бы уровни воды в сосудах сами собой вдруг изменились?

Теперь возьмем более простую систему, состоящую из одного сосуда с водой. Плотность воды в каждом месте сосуда одинакова, приблизительно 1 г/см3. Возможно ли, чтобы без всякого внешнего воздействия в каком-то месте сосуда вода вдруг приобрела большую (или меньшую) плотность? Например, в одном месте сосуда плотность воды стала бы 1,2 г/см3 а в другом – 0,8 г/см3?

Ответ представляется очевидным. Конечно, ни то, ни другое – невозможно!

Однако не торопитесь с выводами.

Правильный ответ, – говорит нам наука, – такой: уровень воды самопроизвольно подниматься, конечно, не может, а вот плотность её увеличиться без постороннего вмешательства – пожалуйста!

Да в чем же разница? – спросите вы, – и почему никто никогда такого явления не наблюдал?

А разница между двумя рассмотренными нами случаями в том, что переход на более высокий уровень запрещает Первое начало термодинамики, имеющее безусловный характер, тогда как внутренними свойствами вещества ведает Второе начало термодинамики, которое носит вероятностный характер. Объясняется это довольно просто. Первое начало имеет дело с макрообъектом, в данном случае – с жидкостью, поведение которой предсказуемо, и мы точно знаем, чего можно от нее ожидать, а чего нельзя. А Второе начало определяет поведение частиц, составляющих вещество, предсказать поведение каждой из которых в принципе невозможно – мы можем говорить лишь о вероятности того, где каждая из этих частиц окажется в тот или иной момент времени. Поэтому, не запрещая, вроде бы, самопроизвольно менять плотность жидкости, Второе начало лишь замечает, что вероятность такого события исчезающее мала. То есть, в принципе такое событие могло бы иметь место, однако вряд ли такое случится на самом деле. Сильная вещь – наука!

Обычно, когда речь заходит о Втором начале термодинамики, приводят другой пример. Представьте себе замкнутую систему, состоящую из двух сосудов, соединенных трубкой. Сосуды заполнены каким-нибудь газом, да хоть обычным воздухом, который, само собой, равномерно распределяется по всему предоставленному ему объему. Как сделать так, чтобы в одном сосуде воздух нагрелся, а в другом охладился? Вспомним, что температура тела (и газа тоже) определяется интенсивностью колебаний составляющих его частиц. Чем быстрее движутся частицы, тем выше температура (и ниже плотность). При любой исходной температуре в газе имеются частицы, колеблющиеся с разной скоростью. Вот если бы мы могли разделить их: медленные – налево, быстрые – направо – тогда бы между сосудами возникла разница температур. Но как это сделать?

Наука убеждает нас: если сидеть у таких сосудов очень долго, очень-очень долго, века, тысячелетия, миллионы, а может быть и миллиарды лет, или еще дольше, то однажды произойдет чудо, и все быстрые частицы соберутся в одном сосуде, а медленные – в другом.

Можно этому верить, можно нет.

Вот, у Максвелла, например, не хватило терпения: он предложил на трубке, соединяющей сосуды, установить кран и посадить у крана демона, который бы в одну сторону пропускал только быстрые частицы, а в другую – только медленные. Этот неутомимый демон вошел в учебники под названием «демон Максвелла».




Но в жизни таких демонов не бывает, а потому и самопроизвольного возникновения разности потенциалов в замкнутой системе не бывает тоже.

На практике Второе начало термодинамики означает, что равномерное, равновесное состояние Вселенной является наиболее вероятным, и поэтому она всегда, в любой момент времени, стремится именно к такому состоянию, что сопровождается неуклонным возрастанием энтропии.

Это явление выражает закон возрастания энтропии, который можно сформулировать следующим образом: «В изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс».

По существу это утверждение является ещё одной формулировкой Второго начала термодинамики.

Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия.

А когда такое равновесие наступило, выйти из него (перейти в неравновесное состояние) система самостоятельно уже не может.

Согласно Второму началу термодинамики, для того, чтобы вывести Вселенную из равновесного состояния, её необходимо «раскачать», а для этого на неё должно быть оказано некоторое внешнее воздействие. Иначе говоря, процессы, происходящие во Вселенной, необъяснимы в рамках самой Вселенной, и для того, чтобы их объяснить, надо выйти за эти рамки!

Таким образом, физика, в лице термодинамики, привела нас к следующему парадоксальному выводу: если в системе, которую мы полагаем замкнутой, вдруг появляются какие-то энергетические аномалии (неравномерности), приводящие к убыванию энтропии, то причину этих аномалий с большей вероятностью следует искать не внутри системы, а вовне. Применительно к Вселенной этот вывод можно сформулировать так: хотя Вселенная является абсолютно замкнутой (в физическом смысле) системой, на самом деле должно быть нечто, что существует за ее пределами и способно оказывать на нее воздействие.