Вы здесь

Сварочные работы. Электродуговая. Газовая. Холодная. Термитная. Контактная сварка. Технология сварочных работ (Ю. Ф. Подольский, 2013)

Под техникой сварки понимают приемы манипулирования электродом или горелкой, выбор режимов сварки, приспособлений и способы их применения для получения качественного шва. Однако качество швов зависит не только от техники сварки, но и от других факторов, таких как состав и качество применяемых сварочных материалов, состояние свариваемой поверхности, качество подготовки и сборки кромок под сварку.

Подготовительные слесарные операции

Благодаря доступности электроинструментов в наше время работы по раскрою и подготовке металла к сварке значительно упростились. Фактически с помощью одной только углошлифовальной машинки в большинстве случаев можно быстро раскроить материал, опилить фаски, а затем и зачистить сварные швы. Но болгарка выручает не всегда. Для работы в узких местах, при сложной конфигурации исходного материала, его малых размерах и т. п. она неудобна. Например, прорезать болгаркой небольшое окно в металлическом листе, не захватывая лишний материал, не получится. Тонкий металл из-за высокой скорости вращения отрезного или шлифовального диска очень легко пережечь. К тому же ограничиться раскроем и зачисткой удается не всегда. И тут на помощь приходят старые добрые ручные инструменты.

Рубка металла

Операция по разделению на части или по удалению излишних слоев металла называется . При помощи рубки удаляют наплывы, снимают кромки, заусенцы, твердую корку, делят заготовки на части, делают отверстия, пазы, канавки, углубления, разделывают трещины под сварку и т. п. Точность обработки при рубке составляет 0,5–0,7 мм.

Линии разметки под рубку лучше наносить керном в виде пунктира. При разметке кромок под сварку удобно наносить две риски в виде параллельных линий: внутренняя показывает верхнее ребро фаски, а внешняя – нижнее ребро фаски.

Режущим инструментом при ручной рубке являются зубило и крейцмейсель[13], ударным – слесарный молоток. Угол заострения лезвия зубила или крейцмейселя в зависимости от твердости обрабатываемого материала должен составлять: для чугуна, бронзы и твердой стали – 70°, стали средней твердости – 60°, меди, латуни, алюминиевых и драгоценных сплавов – 45° и менее.

Слесарные молотки бывают с круглым и квадратным бойком. Сила удара молотка по зубилу зависит от веса молотка, величины размаха и скорости движения руки. Тяжелый молоток увеличивает силу удара, но в то же время делает работу более утомительной. Рекомендуемая масса молотка – от 600 до 800 г.

При рубке заготовки кладут на толстую стальную плиту или наковальню или зажимают в тиски. Для рубки лучше применять стуловые тиски, они более устойчивы. При использовании параллельных тисков необходимо, чтобы они были тяжелыми и прочными, с шириной губок 125–150 мм. Рубить следует по направлению к неподвижной губке, предварительно подложив под деталь деревянную или металлическую подкладку, чтобы не испортить тиски.

Зубило следует держать легко в кулаке левой руки за среднюю часть стержня, удерживая главным образом безымянным пальцем и мизинцем и слегка придерживая средним и указательным пальцами. Стоять надо прямо, не нагибаясь, вполоборота по отношению к тискам так, чтобы левая нога была выдвинута вперед, а правая отнесена назад[14]. Во время рубки надо смотреть на лезвие зубила, а не на головку, иначе при ударе легко промахнуться.

Рубку пруткового, полосового и толстого листового металла производят на плите или наковальне. Зубило ставят вертикально, материал надрубают с обеих сторон и затем отламывают, перегибая то в ту, то в другую сторону. Круглые прутки предварительно надрубают по окружности, а затем, поворачивая пруток, наносят сильные удары до полного разделения.

При вырубании заготовки из листового металла или получении в нем отверстия лист кладут на плиту, зубило держат вертикально и ведут его вдоль разметочной линии, оставляя припуск на последующую обработку (рис. 11, ). Сначала легкими ударами делают надрубы вдоль всей линии разметки, а затем сильными ударами прорубают материал насквозь. Лист толщиной до 2 мм прорубают с одного удара, предварительно подложив прокладку из мягкой стали, чтобы не повредить зубило. Толстые листы рубят до тех пор, пока с противоположной стороны не появится след от зубила, и, перевернув лист, окончательно вырубают заготовку.


Рубка:


При рубке в тисках листовой материал устанавливают так, чтобы разметочная линия совпала с уровнем губок. Толстые заготовки при рубке по разметке устанавливают так, чтобы риски были выше губок на 3–4 мм.

В ряде случаев, например при изготовлении художественно-декоративных элементов (для заборов, лестничных ограждений и т. п.), металл не разрубают полностью, а надрубают, формируя таким образом заусенцы, завитки, вилки и т. п. Если необходимо от стержня квадратного сечения или полосы отсечь ветвь значительно меньшей толщины, чем остающаяся часть стержня, это делают, как правило, вертикально в тисках (рис. 11, ). Заготовку зажимают в тисках и зубилом под соответствующим углом отсекают нужную ветвь. В этом случае заготовку как бы обтесывают. Эта операция требует значительного опыта для того, чтобы рассекание было ровным, а отсекаемые ветви были одной и той же толщины. Чтобы облегчить рубку, заготовку следует нагреть.

При черновой рубке срубают стружку от 1,5 до 2 мм. При чистовой рубке снимают слой металла толщиной 0,5–1 мм. Угол наклона зубила должен быть 35–40°. При меньших углах зубило легко соскальзывает, при бóльших – врезается.

В процессе рубки холодного металла в нем возникает структурное напряжение, в результате чего в заготовке могут появиться трещины. Чтобы избежать этого, заготовку можно предварительно отжечь.

Для получения при рубке равных фасок требуется внимательность в работе и равномерный нажим на инструмент. При рубке фаски на кромках листов следует убедиться в надежности закрепления края листа для предупреждения сдвига их при ударах.

При чистовой рубке стали и меди полезно обтирать лезвие зубила тряпкой, смоченной в машинном масле или мыльной воде, при рубке алюминия – скипидаром. Чугун следует рубить сухим зубилом.

Пользоваться надо только острозаточенным зубилом. При заточке зубил и крейцмейселей на наждачных станках не следует сильно прижимать их к абразивному кругу, что может привести к перегреву и отпуску режущей кромки. Грани лезвия должны иметь одинаковую ширину и угол наклона к осевой линии.

Разрезание

Разделение заготовки на части, удаление излишков металла, вырезание отверстий называется . Тонкий листовой металл разрезают ножницами, профильный материал, трубы и толстые листы – ножовкой. Допустимая толщина листового металла, разрезаемого ручными ножницами, различается: для стали это 0,7 мм, для меди – 1,0 мм, для алюминия – 2,5 мм.

Более толстый листовой, а также полосовой и прутковый металл разрезают рычажными или машинными ножницами. Различают прямые правые и прямые левые ножницы. У правых ножниц верхнее лезвие (по отношению к нижнему) находится справа, у левых – слева. В большинстве случаев применяют правые ножницы, так как линии разметки при работе ими хорошо видны; левыми ножницами пользуются при вырезании криволинейных деталей, при этом резать нужно по часовой стрелке, располагая ножницы так, чтобы они не закрывали лезвием линии разметки. Если ту же операцию проводят правыми ножницами, то процедуру выполняют против часовой стрелки (рис. 12). Применяют также ножницы с кривыми лезвиями специально для разрезания по кривым линиям.

Круглое отверстие можно вырезать следующим образом. После разметки лист кладут на деревянную подкладку и зубилом прорубают его крестообразно в центре. Потом лист переворачивают, края проруба отгибают и обрезают. Вставив лезвие ножниц в получившееся отверстие, режут, отгибая лишний металл вниз, по спирали до линии разметки, а затем короткими шагами вырезают круг. Если нужно получить диск, после разметки сначала обрезают углы листа. Когда отгибаемая (лишняя) часть станет слишком длинной и начнет мешать, ее отрезают.

Работа ножницами по металлу:

– прямолинейное разрезание; – криволинейный рез


Разрезание листового металла производят по заранее нанесенной разметке, а ножницы располагают так, чтобы верхнее лезвие всегда находилось над разметочной линией. При разрезании листа отрезаемую часть отгибают левой рукой вверх, что облегчает процесс и предохраняет правую руку от пореза.

При разрезании листа на узкие полосы его нужно положить на стол и следить за тем, чтобы нижнее лезвие опиралось на стол, а отрезаемые полосы отгибались вперед.

Ножницы раскрывают несильно – примерно на 2/3 длины лезвия, тогда они хорошо захватывают и режут металл; сильно раскрытые ножницы выталкивают металл. Лезвия ножниц должны быть перпендикулярны плоскости листа, при перекосе они мнут металл, образуются заусенцы, а ножницы заедает. Ножницы нужно все время плотно прижимать к краю прореза, иначе неизбежно появятся заусенцы.

Стуловые (или кровельные) ножницы применяют для разрезания более толстых листов (до 2–3 мм). Они отличаются тем, что верхняя рукоятка удлинена до 400–800 мм, а нижняя изогнута и крепится к верстаку. На этих ножницах работают всей рукой, а не кистью, как в ручных, что значительно увеличивает силу разрезания.

У рычажных ножниц нижнее лезвие неподвижное, закреплено на столе, а верхнее сочленено с ним посредством шарнира. Ножницы снабжены прижимным устройством, которое гасит опрокидывающий момент, возникающий в процессе резания. Они позволяют разрезать стальные листы толщиной до 2 мм.

Существует также целый ряд машинных или механических ножниц: дисковые, вибрационные и др.

Профильный металл и трубы разрезают ручными или механическими ножовками. Полотно в ручной ножовке устанавливают зубьями вперед. Степень натяжения полотна не должна быть слабой, иначе разрез получится косым, а полотно легко сломается. При чрезмерном натяжении полотно также легко ломается при малейшем перекосе. Натяжение полотна проверяют поворотом его на 1/8 часть окружности, взяв двумя пальцами посередине его длины.

При работе ножовку держат за ручку правой рукой, а левой поддерживают передний ее конец в горизонтальном положении. Левой рукой, которая находится впереди, производят нажим, а правая рука только поступательно перемещает ножовку. Во время движения назад (к себе) нажим не производится, так как при холостом ходу он ведет к быстрому затуплению зубьев. Завершая разрезание, усилие уменьшают.

При разрезании толстых заготовок полотно смазывают машинным маслом. Если распил получается косой (идет не по риске), не следует пытаться исправить направление поворотом ножовки – полотно сломается. Нужно начать новый разрез с противоположной стороны, повернув заготовку. Если полотно сломалось, нужно иметь в виду, что старое, изношенное полотно дает более узкий пропил. Поэтому новым полотном надо пройти сделанный разрез без нажима и по возможности начать резать с другой стороны.

При разрезании массивных заготовок длина пропила большая и резать трудно, поэтому, чтобы облегчить работу, ножовку наклоняют последовательно то к себе, то от себя. В этом случае резание идет не по всей ширине и процесс резания облегчается.

Граненые изделия начинают резать с грани, а не с угла. Полосовой металл разрезают по узкой грани – это производительней. Очень тонкий материал режут по широкой грани, так как при врезании зубья цепляются и полотно может легко сломаться. Обычно для облегчения врезания делают небольшой пропил трехгранным напильником или направляют полотно сбоку большим пальцем левой руки. Полезно сделать по линии разметки небольшую борозду зубилом или краем напильника. Это углубление поможет выдержать правильнее направление распила.

Очень тонкий материал зажимают между деревянными брусками толщиной 15–30 мм и режут вместе с брусками.

Для отрезания полосы от листа полотно поворачивают относительно станка на 90° и режут осторожно, так как от собственного веса ножовки полотно легко ломается.

Новое ножовочное полотно сначала хорошо использовать для разрезания мягких металлов (меди, латуни, алюминия и др.), а когда оно немного притупится – для стали и чугуна.

При вырезании отверстий в листовом металле сначала сверлят отверстие, в которое можно ввести полотно, затем собирают ножовку и приступают к резанию.

При разрезании труб ножовку сначала держат горизонтально; когда стенка трубы окажется пропиленной, ее наклоняют на себя. Затем трубу поворачивают на 45–90° от себя и продолжают резать.

Разрезаемое изделие следует надежно зажимать в тисках, иначе в процессе разрезания оно может сместиться и хрупкое полотно сломается.

Опиливание

Операцию по обработке металла напильником называют . При этом с детали снимают слой металла, чтобы придать ей необходимую форму, размеры и обеспечить чистоту поверхности.

Обязательное условие успешной работы напильником – прочное закрепление опиливаемого предмета. Лучше всего заготовки зажимать в тиски. Обрабатываемая поверхность не должна слишком выступать над поверхностью губок. Изделия с тонкими стенками или выступами зажимают в тисках, пользуясь медными, свинцовыми или деревянными прокладками.

Работать напильником удобнее стоя. Опиливаемый предмет должен находиться на уровне локтя опущенной руки. Напильник держат правой рукой так, чтобы его ручка упиралась в мякоть ладони, большой палец располагался сверху вдоль ручки, а остальные пальцы прихватывали ручку снизу. При выполнении большинства опиловочных работ, особенно грубых, инструмент прижимают к обрабатываемой детали левой рукой, положенной на конец напильника. При чистовой обработке поверхностей напильником малого размера на него не нужно сильно нажимать, поэтому его передний конец удерживают щепотью – большим пальцем сверху, а средним и указательным – снизу. Мелкими напильниками и надфилями работают, как правило, одной рукой.

Нажимать на напильник нужно только при его движении вперед, так как зубья насечки режут именно в этом направлении. При обратном движении нажимать на напильник не надо, но и отрывать его от поверхности ни в коем случае не следует, так как при этом теряется правильное направление инструмента.

В насечке напильника не будут застревать частицы обрабатываемого металла, если напильник предварительно натереть мелом или древесным углем.

Неумелый работник обычно давит на напильник левой рукой сильнее, чем надо, отчего инструмент совершает качающие движения. Это приводит к скруглению обрабатываемой поверхности.

Научиться правильно владеть напильником и уверенно опиливать плоские поверхности можно только в результате систематической тренировки. Есть, однако, некоторые правила, выполнение которых поможет любителю сократить срок учебы.

В начале движения вперед нажим производят левой рукой, а правая рука просто направляет напильник. По мере продвижения напильника вперед нажим левой рукой постепенно уменьшают, одновременно увеличивая нажим правой рукой, так что в конце движения основное давление сообщает правая рука.

Детали из твердых металлов лучше обрабатывать напильниками с перекрестной насечкой, из мягких металлов – с простой (одинарной) насечкой.

При работе всегда используйте полную длину напильника.

При опиливании углов деталь в тисках нужно зажимать так, чтобы обрабатываемая грань располагалась горизонтально.

При продольном опиливании криволинейных поверхностей напильнику придают качательное движение в вертикальной плоскости.

Короткие заготовки зажимают в тиски вертикально и обрабатывают колебательными движениями напильника в горизонтальной плоскости.

Вогнутые криволинейные поверхности, а также круглые и криволинейные отверстия в деталях опиливают полукруглыми или круглыми напильниками или надфилями. Напильник движется горизонтально и одновременно поворачивается вокруг своей оси, причем радиус кривизны напильника или надфиля должен быть всегда меньше радиуса кривизны поверхности.

Правка листового металла

На изготовленных из металла заготовках и деталях после отжига, сварки, вырезки и других операций появляются изгибы, местные неровности, выпучины и вмятины различной формы, волнистость и прочие дефекты. Операция по устранению этих дефектов называется .

производят на плите или наковальне при помощи деревянных киянок или молотков, сделанных из меди, свинца, алюминия или резины.

Заготовки из прутковой и профильной стали правят стальными молотками с круглым выпуклым бойком. Крупные заготовки правят ударами кувалды или на механических молотах и прессах. Так как при ударах стальным молотком на металле неизбежно остаются следы, при правке изделий с уже обработанной поверхностью применяют подкладки из мягких материалов (дерево, латунь и др.).

Наиболее трудоемкой является операция правки листового металла. Различают три случая: правка волнистости полосы или на краях, правка изогнутых (серповидных) заготовок под линейку и правка выпучин.

, что чаще всего получается при вырезании ее из листа, наносят удары молотком, начиная от наиболее выпуклых мест к краям. Наиболее сильные удары наносят в середине выпуклости и уменьшают силу удара по мере приближения к краям. Таким образом, выпуклые участки полосы осаживаются и волнистость выравнивается. Чем тоньше листовая заготовка, тем аккуратнее и внимательнее надо ее править, так как при неправильном ударе молотком его боковые грани легко могут испортить заготовку или даже пробить ее.

производят на плите под линейку с помощью деревянной киянки или молотка со стальным выпуклым бойком. Заготовку кладут плашмя на плиту, прижимают одной рукой и наносят удары, начиная с более короткой вогнутой кромки изогнутой заготовки, т. е. той, где металл сжат и его необходимо растянуть. В начале правки удары по вогнутой кромке должны быть более сильные и по мере приближения к противоположной кромке – всё слабее и слабее. Этим достигают того, что вогнутая, более короткая, кромка постепенно вытягивается и заготовка выпрямляется. Процесс выпрямления периодически контролируют линейкой.

производят на плите, которая по своим размерам должна быть больше заготовки настолько, чтобы края последней не свешивались с плиты. Перед началом правки выпучины обводят мелом или простым карандашом, затем заготовку кладут на плиту выпуклым местом вверх и начинают наносить удары молотком рядами, от края заготовки в направлении выпучины. Под ударами молотка металл вокруг выпуклого места вытягивается, постепенно выравнивается, и выпучина исчезает. Нельзя сразу наносить удары по выпуклому месту – от этого оно еще больше увеличивается. Удары наносят частые, но не сильные. По мере приближения к центру выпуклости удары должны становиться слабее.

Полосы из мягких алюминиевых и медных сплавов лучше править через прокладку из гетинакса или текстолита толщиной 1,5–3 мм. В этом случае ровная неповрежденная поверхность получается даже при работе обычным стальным молотком.

Тонкий (до 0,5 мм) листовой металл правят на стальной плите, притирая металлическим или деревянным бруском с закругленными кромками.

Гибка

Путем гибки из прямолинейной заготовки получают криволинейное изделие. Сгибают заготовки вокруг какой-либо оправки, форму которой она принимает, в тисках или на плите на нужный угол. На рис. 13 изображены оправка и последовательные операции гибки квадратного прутка для изготовления фигурного элемента решетки.


. Последовательные операции гибки элемента решетки из квадратного прутка на специальной оправке


При толстых заготовках гибку осуществляют ударами молотка, лучше всего деревянного, не оставляющего на металле следов от удара. Проволоку гнут плоскогубцами или круглогубцами.

В процессе гибки наружные слои металла растягиваются и удлиняются, а внутренние, сжимаясь, укорачиваются. Неизменным по длине остается так называемый нейтральный слой, который у симметричных по сечению заготовок (квадратных, прямоугольных, круглых, овальных, шестигранных и др.) лежит на равном расстоянии от сторон, посередине, а у несимметричных профилей (треугольного, полукруглого) нейтральный слой проходит через центр тяжести сечения. Если радиус гибки очень мал, в металле могут образоваться трещины. Чтобы этого избежать, не следует гнуть по радиусам меньшим, чем двойная толщина заготовки.

Листовой металл после прокатки имеет волокнистую структуру. Чтобы не получалось трещин, его следует гнуть поперек волокон или так, чтобы линия сгиба составляла с направлением прокатки угол, равный 45°.

При гибке деталей из листового металла, проволоки круглого и квадратного сечения, полос и т. п. часто возникает распружинение, т. е. угол изгиба несколько увеличивается, а деталь выпрямляется после снятия напряжения. Величина угла, на который распрямляется деталь, вследствие упругой отдачи зависит от степени упругости металла, его толщины и радиуса изгиба. Заранее точно определить угол пружинения очень трудно, поэтому приходится заготовки загибать сильнее, т. е. с заведомо меньшими радиусами и углами изгиба, а оснастку (оправки) для получения точных изгибов деталей необходимо подбирать и доводить опытным путем.

Гибку деталей из тонких заготовок производят не ударами, а сглаживанием. Гибку заготовок из листового и полосового металла толщиной более 0,5 мм и из круглого материала диаметром более 4 мм производят на оправках ударами молотка. Форма оправки должна соответствовать форме изгибаемого профиля с учетом деформации металла. Наименьшие радиусы гибки листового материала в холодном виде приведены в Приложения. При меньших радиусах гибку следует производить в нагретом состоянии.

При гибке деталей под углом 90° заготовку детали зажимают в тиски так, чтобы линия гибки находилась на уровне верхней кромки губок или нагубников тисков. Гибку производят обычно за два приема: сначала ударом по верхней части заготовки, а затем внизу у губок под углом 90°. Первый прием лучше выполнять деревянным молотком, так как он не портит поверхности детали. Угол в месте перегиба обычно формируют металлическим молотком. Ударять им нужно равномерно всей поверхностью бойка.

Гибка деталей, имеющих несколько прямых углов, производится вышеописанным способом на оправках, зажимаемых в тисках.

При гибке полос под острым углом на заготовке чертилкой размечается место изгиба, затем заготовку закрепляют вместе с оправкой так, чтобы риска была обращена в сторону загиба и выступала над ребром оправки на 0,5 мм. Ударами молотка полосу изгибают до полного прилегания ее к грани оправки.

Кроме тисков и молотков, для гибки металла используют различные оправки и приспособления, чаще всего – простейшие (рис. 14).

Детали с несколькими изгибами подвергают гибке на специальных оправках, размеры и форма которых соответствуют размерам и форме детали. С помощью такой оснастки из полосовой стали и прутков получают самые замысловатые формы гнутых элементов, которые сваркой объединяют в прочное и изящное изделие.


Простейшие приспособления для гнутья полосовой стали:

– выгибание дуги с помощью клиновых подкладок; – выгибание дуги по шаблону; – гибка под прямым углом с помощью струбцины; – гибка завитка в тисках; – гибка завитка по шаблону


Гибка декоративных элементов

Линейная гибка хотя и позволяет получить замечательные узоры, но возможности металла гораздо шире. В былые годы (хотя и сегодня этот элемент не забывают) очень популярным украшением решеток был – четырехгранный стальной прут, скрученный спиралью (рис. 15, ). Четырехгранные стержни толщиной до 20 мм скручивают, как правило, в холодном состоянии. Очень толстые стержни в холодном состоянии скрутить невозможно, поэтому приходится применять нагрев, но это не так просто. Неравномерно нагретый стержень приводит к неравномерному скручиванию, т. е. браку. Равномерно нагреть толстые стержни можно только в печи. В кузнечном горне, тем более газовой горелкой такой нагрев практически невозможен.

Чтобы скрутить стержень толщиной до 20 мм, нужно точно отметить участок, который должен быть скручен, и зажать стержень по нижней риске в тисках. Затем нужна трубка, которая свободно надевается на этот стержень. Ее обрезают на длину участка скручивания, надевают на стержень, а сверху надевают ворот с четырехгранным отверстием. Скручивание выполняют двухплечим воротом, а если стержень большой толщины – то и четырехплечим. Ворот крутят до тех пор, пока не получат требуемую закрутку.

Очень красиво выглядят торсированные стержни, у которых перед скручиванием вдоль всех четырех граней выдавлены глубокие бороздки. И даже плоские стержни и полосы можно скручивать таким же методом – правильно закрученные, они будут выглядеть очень эффектно.

На рубеже XIX и XX столетий был разработан так называемый торсировочный станок, на котором можно было скручивать без особых усилий и помощи трубки стержни толщиной до 50 мм. В наши дни этих станков уже почти нет, ими иногда пользуются только в некоторых старых деревенских кузницах.

Распространенным кованым элементом украшения с незапамятных времен являются различной формы . Их делают свертыванием проволоки в спираль из одной нитки либо из двух – шести ниток, связанных в пучок. Шишки первого типа используют в качестве концевых элементов выступов у решеток, а второго – в качестве украшения срединных участков стержней решеток или как рукоятки.

Шишки из одной нитки делают довольно просто. От проволоки 5–8 мм отрезают кусок нужной длины. Конец проволоки (примерно 3 см) отгибают под прямым углом, а оставшуюся ее часть нагревают. Отогнутый конец проволоки зажимают в тисках так, чтобы над губками тисков выступал участок длиной не более толщины проволоки, а длинная часть проволоки размещалась параллельно губкам. После этого проволоку туго закручивают вокруг образовавшегося таким образом центра на половину ее длины (рис. 15, ). То же самое делают с другой половиной проволоки. Когда проволока скручена в одной плоскости, ей нужно придать форму шишки. Центры спиралей вытягивают клещами. Далее спираль опускают в обрезок трубы соответствующего ее основанию диаметра и наставкой с одного удара молотка получают конус шишки (рис. 15, ). Такую же операцию производят со второй спиралью и совмещают половинки шишки основаниями в одно целое.

Чем больше проволок берется для скручивания, тем изделие больше походит на настоящую шишку. Несколько проволок с одного конца сваривают, проковывают в квадрат и фиксируют в тисках в горячем состоянии, а с другого – закручивают воротком (рис. 15, ). В зависимости от того, насколько сложную хотят получить шишку, связку скручивают на 1,5–3 оборота. Чтобы проволоки образовали перед закруткой цилиндр, их располагают вокруг осевого прутка, загнув концы длиной 2 см на 180° вовнутрь проволочного пучка, сваривают их внахлест, образуя цилиндр, и так же проковывают в квадрат.

После скручивания заготовку оставляют в тисках для остывания. Остывшую поковку раскручивают в обратном направлении. В результате связка начинает распускаться до тех пор, пока не получится требуемая форма шишки. Если шишку надо сделать шире, то в процессе раскручивания связку осаживают в продольном направлении.

Шишки такого типа кузнецы в далеком прошлом делали не из связки прутков, а из цельного прутка квадратного сечения, рассекая его в продольном направлении на несколько ветвей также четырехгранного сечения, после чего его скручивали. Полученная таким способом шишка выглядит привлекательнее.

Наиболее распространенными декоративными коваными элементами являются – украшения в форме спиралевидного завитка (рис. 15, ). Конечно, кованый металл обладает особой привлекательностью, но и слесарная техника позволяет изготовить очень красивые детали.

По количеству завитков волюта бывает односторонняя и двусторонняя (симметричная и асимметричная), по типу скручивания – с обратной закруткой и с разветвлением от металлического прута.

Вначале следует определить необходимую длину заготовки. Проще всего это сделать с помощью тонкой проволоки, которую сначала скручивают по форме волюты, потом распрямляют и измеряют. Затем отрубают заготовку этой длины и выгибают основной наиболее крутой завиток. После этого молотком на оправке выгибают спираль (рис. 15, ).


. Гнутые кузнечные изделия:

– торсированный стержень; – скручивание шишки из одного прутка; – шишка из связки прутков; – формование завитка волюты; – виды волют


Заготовки, предназначенные для изготовления волют, можно украсить продольными желобками или орнаментами, выполненными с помощью чеканов или рельефных пуансонов. Чтобы упростить работу, украсить желобками или другим орнаментом можно только концы волют.

При изготовлении однотипных мелких спиралей, требующихся в решетках и других изделиях в больших количествах, пользуются шаблонами, которые облегчают работу, ускоряют процесс изготовления и повышают точность размеров полученных деталей.

Сварные соединения и швы

могут быть стыковыми, угловыми, тавровыми и нахлесточными (рис. 16).


. Сварные соединения:

– стыковое; – угловое; – нахлесточное; – тавровое; – торцовое


называется сварное соединение двух элементов, расположенных в одной плоскости или на одной поверхности.

называется соединение двух элементов, расположенных под прямым углом и сваренных в месте примыкания их краев.

называется сварное соединение, в котором свариваемые элементы расположены параллельно и перекрывают друг друга.

Разновидностью нахлесточного соединения является , в котором боковые поверхности свариваемых элементов примыкают друг к другу.

называется сварное соединение, в котором к боковой поверхности одного элемента примыкает под углом и приварен торцом другой элемент.

Часть конструкции, в которой сварены примыкающие друг к другу элементы, называется .

могут быть стыковыми и угловыми (рис. 17, ). – сварной шов стыкового соединения. – сварной шов углового, таврового и нахлесточного соединений. Разновидностью этих типов являются швы пробочные и прорезные, выполняемые в нахлесточных соединениях.

сварные швы могут быть , , и , и (рис. 17, ). С помощью стыковых швов образуют в основном стыковые соединения, с помощью угловых швов – тавровые, крестовые, угловые и нахлесточные соединения, с помощью пробочных и прорезных швов могут быть образованы нахлесточные и иногда тавровые соединения.

В зависимости от формы и размеров изделия швы могут отличаться . Швы разделяют на , , и (рис. 17, ).

Горизонтальные швы выполняют на вертикальной плоскости в горизонтальном направлении. Согласно ГОСТ 11969-79, швы по положению в пространстве подразделяются на: нижние – Н и нижние в лодочку – Л; полугоризонтальные – Пг; горизонтальные – Г; полувертикальные – Пв; вертикальные – В; полупотолочные – Пп; потолочные – П.


. Сварные швы:

– стыковые; – угловые; – пробочные; – прорезные; – непрерывные; – прерывистые цепные; – прерывистые шахматные; – односторонние; – двусторонние; – многослойные (показано 2 слоя); – основные и промежуточные пространственные положения сварочных швов (I – нижнее; II – вертикальное или горизонтальное; III – потолочное); — – прихватки


Сварные швы, применяемые для фиксации взаимного расположения, размеров и формы собираемых под сварку элементов, называются . Длина каждой прихватки составляет от 3 до 6 толщин свариваемого металла, расстояние между ними выдерживается от 20 до 40 толщин. Ставят прихватки с лицевой стороны соединения, очищают от шлака, а при сварке полностью удаляют или полностью переплавляют. На коротких и средних швах прихватки расставляют от центра к краям, поочередно в каждую сторону (рис. 17, ). На длинных швах поступают наоборот: прихватывают вначале края, затем центр и поочередно с каждой стороны двигаются от краев к центру (рис. 17, ). При кольцевых швах (рис. 17, ) прихватки ставят попеременно по главным координатным осям (под 90°), а при необходимости – и по дополнительным диагоналям (под 45°).

Стыковые швы, как правило, выполняют непрерывными; отличительным признаком для них обычно служит форма разделки кромок[15] соединяемых деталей в поперечном сечении (рис. 18, ).

По этому признаку различают следующие основные типы стыковых швов (применяются при газовой сварке тонкого металла); – односторонние (при толщине свариваемых деталей 1–6 мм) и двусторонние (при толщине деталей 3–8 мм); – односторонней, двусторонней (до 60 мм); ; ; ; ; (с толщиной деталей до 120 мм). Разделка может быть образована прямыми линиями (скос кромок) либо иметь криволинейную форму (U-образная разделка).

Угловые швы различают по форме подготовки свариваемых кромок в поперечном сечении и сплошности шва по длине (рис. 18, ).

швы могут быть (при толщине свариваемых деталей от 2 до 30 мм), (3—60 мм), (до 100 мм).


. Подготовка кромок стыковых () и угловых () швов:

– с отбортовкой кромок; – без разделки кромок; – с разделкой одной кромки; – с односторонней разделкой двух кромок; – с Х-образной разделкой двух кромок: – с U-образной разделкой; – без разделки; – с односторонней разделкой; – с двусторонней разделкой; – конструктивные элементы разделки


угловые швы могут быть и , и (рис. 17, ). Тавровые, нахлесточные и угловые соединения могут быть выполнены отрезками швов небольшой протяженности – точечными швами.

Пробочные швы по своей форме в плане (вид сверху) обычно имеют круглую форму и получаются в результате полного проплавления верхнего и частичного проплавления нижнего листов (их часто называют электрозаклепками) либо путем проплавления верхнего листа через предварительно проделанное отверстие.

Прорезные швы, обычно удлиненной формы, получают путем приварки верхнего (накрывающего) листа к нижнему угловым швом по периметру прорези. В отдельных случаях прорезь может заполняться полностью.

Подготовку кромок при ручной сварке регламентирует ГОСТ 5264-80. Чаще всего приходится разделывать кромки при сварке металла большой толщины. Форму разделки кромок и их сборку под сварку характеризуют четыре основных конструктивных элемента: зазор , притупление , угол скоса кромки β и угол разделки кромок α, равный β или 2β (рис. 18, ). Стандартный угол разделки кромок в зависимости от способа сварки и типа соединения изменяется в пределах от 45±2° до 12±2°. Тип разделки и величина угла разделки кромок определяют количество необходимого дополнительного металла для заполнения разделки, а значит, производительность сварки. Так, например, Х-образная разделка кромок по сравнению с V-образной позволяет уменьшить объем наплавленного металла в 1,6–1,7 раза. Уменьшается время на обработку кромок. Правда, в этом случае возникает необходимость вести сварку с одной стороны шва в неудобном потолочном положении или кантовать свариваемые изделия.

Притупление кромки, т. е. нескошенная часть торца кромки, обычно составляет 2±1 мм и выбирается в зависимости от толщины свариваемого металла. Его назначение – обеспечить правильное формирование шва и предотвратить прожоги в корне шва. Зазор обычно равен 1–2 мм (допускается до 5 мм), так как при принятых углах разделки кромок наличие зазора необходимо для провара корня шва. Чем больше зазор, тем глубже проплавление металла.


Виды сварных швов:

– плоский; – выпуклый; – вогнутый; – стыковой; – угловой; – ширина шва; – глубина проплавления; – выпуклость (усиление) шва; – толщина шва; – катет шва


Основными геометрическими параметрами сварных швов являются: при стыковых соединениях – ширина, выпуклость и глубина проплавления шва; при угловых, тавровых и нахлесточных соединениях – ширина, толщина и катет шва (рис. 19, ).

() – наибольшая глубина расплавления основного металла в сечении шва.

() – наибольшее расстояние от поверхности углового шва до точки максимального проплавления основного металла.

() – кратчайшее расстояние от поверхности одной из свариваемых частей до границы углового шва на поверхности второй свариваемой части. При симметричном угловом шве за расчетный катет принимается любой из равных катетов, при несимметричном шве – меньший.

() – выпуклость шва, определяемая расстоянием между плоскостью, проходящей через видимые линии границы сварного шва с основным металлом, и поверхностью сварного шва, измеренного в месте наибольшей выпуклости.

Основным показателем формы швов является (ψ). Для стыкового шва этот коэффициент равен отношению ширины шва к глубине проплавления ; для углового шва – отношению ширины к толщине шва . Форма и размеры сварного шва существенно влияют на качество сварного соединения. При ручной сварке покрытыми электродами коэффициент формы провара колеблется в пределах ψ = 1,0–2,5.

Таким образом, стыковые швы могут быть или (рис. 19, ). Причем вогнутость стыковых швов недопустима, это является серьезным браком сварки.

Угловые швы выполняют , , . Вогнутость угловых швов при сварке во всех пространственных положениях допускается не более 3 мм. Выпуклость (усиление) сварных швов допускается не более 2 мм при сварке в нижнем положении и не более 3 мм при сварке в остальных положениях. Допускается увеличение усиления сварных швов, выполненных в вертикальном, горизонтальном и потолочном положениях, на 1 мм при толщине основного металла до 26 мм и на 2 мм при толщине основного металла свыше 26 мм.

Сварные соединения с выпуклыми (стыковыми и угловыми) швами лучше работают на статическую нагрузку. Но швы с чрезмерным усилением нежелательны по двум причинам: из-за повышенного расхода электродов и электрической энергии, а также вследствие концентрации напряжений в точках пересечения поверхности шва с основным металлом.

Сварные соединения с плоскими (стыковыми и угловыми) и вогнутыми (угловыми) швами лучше работают на переменную и динамическую нагрузку, так как нет резкого перехода от основного металла к сварному шву. В противном случае создается концентрация напряжений, от которых может начаться разрушение сварного соединения.

Для всех типов швов важны полный провар кромок соединяемых элементов и внешняя форма шва как с лицевой, так и с обратной стороны. В стыковых, особенно односторонних, швах трудно проваривать кромки притупления на всю их толщину без специальных приемов, предупреждающих прожог и обеспечивающих хорошее формирование обратного валика.

Важное значение также имеет образование плавного перехода металла лицевого и обратного валиков к основному металлу, так как это обеспечивает высокую прочность соединения при динамических нагрузках. В угловых швах бывает трудно проварить корень шва на всю его толщину, и тогда рекомендуется вогнутая форма поперечного сечения шва с плавным переходом к основному металлу. Это снижает концентрацию напряжений в месте перехода и повышает прочность соединения при динамических нагрузках.

Ручная электродуговая сварка

Дуговая сварка металлическими электродами с покрытием благодаря простоте и мобильности применяемого оборудования остается одним из самых распространенных методов, используемых при изготовлении сварных конструкций.

Оборудование и одежда для ручной электросварки

Выбор сварочного аппарата

В зависимости от рабочей силы тока делят на (до 200 А), (200–300 А) и (от 300 А). При выборе аппарата обязательно нужно учитывать и такие показатели, как его производительность, вес, время работы без перерыва и то, какой материал вы будете сваривать. Для бытовых нужд выбирают компактные переносные модели: ими можно пользоваться и в квартире, и на даче, и в гараже.

Сварочное оборудование бывает нескольких видов: генераторы (агрегаты), трансформаторы, полуавтоматы, сварочные выпрямители, инверторы. Каждый из этих аппаратов обладает плюсами и минусами.

называют сложные электромеханические устройства, которые сами вырабатывают электричество, поэтому их можно использовать на неэлектрифицированных объектах: в строящемся доме, гараже, на только что купленном дачном участке. Главный их недостаток – большие размеры, огромный вес и трудоемкость обслуживания. К тому же они весьма недешевы.

, пожалуй, наиболее простые, недорогие и распространенные из всех видов сварочных аппаратов. Как и большинство остальных бытовых сварочных аппаратов, они используют плавящиеся электроды. Применяются, как правило, для сварки низколегированных сталей. Качественно изготовленный трансформатор исключительно надежен и не требует специального обслуживания. Но сварка на переменном токе отличается невысоким качеством и требует определенных навыков от сварщика. Кроме того, сварочные трансформаторы обладают немалыми габаритами и весом.

представляют собой те же трансформаторы переменного тока, оснащенные выпрямительным блоком и иногда регулирующим устройством. Более сложное устройство потребляет больше электроэнергии и намного тяжелее. Зато постоянный ток обеспечивает более качественную и комфортную работу. Достоинствами сварочных выпрямителей является также возможность сваривать не только черные, но и цветные металлы и сплавы, а также меньшая стоимость по сравнению с более сложными аппаратами.

тоже выполнены на базе трансформаторов. Их особенностью является то, что сварка осуществляется не электродами, а специальной проволокой в газовой среде (обычно применяется аргон или углекислый газ). Есть модели, которые позволяют работать даже без газа (в этом случае необходимо использовать специальную флюсовую проволоку). Такие аппараты позволяют варить сталь, в том числе нержавейку, а также алюминий. Свариваемый металл определяет материал проволоки и используемый газ: для железа лучше всего подойдет углекислый газ, для алюминия – аргон.

Сварочная проволока по шлангу автоматически подается в сварочную горелку, обеспечивая ровный хорошо защищенный от коррозии шов. Такая сварка получила широкое распространение в ремонте автомобилей. Недостатком по сравнению со сварочными выпрямителями можно считать большой вес и габариты, высокую цену и сложную конструкцию, включающую роликовый механизм подачи проволоки. Кроме того, требуется наличие газового баллона. Номинальный срок службы сварочных полуавтоматов – 5 лет со сменой сварочной горелки через каждые полгода.

, пожалуй, наиболее популярная сегодня категория сварочных аппаратов. Принцип их работы таков: переменный ток от потребительской сети частотой 50 Гц выпрямляется и сглаживается фильтром, затем полученный постоянный ток преобразуется инвертором снова в переменный, но уже высокой частоты (20–50 кГц). Затем высокое переменное напряжение высокой частоты понижается до 70–90 В, а сила тока соответственно повышается до необходимых для сварки 100–200 А. Высокая частота сварочного тока позволяет добиться значительных преимуществ сварочного инвертора перед другими источниками питания сварочной дуги – малых габаритов и веса, высокого КПД источника питания (порядка 90 %). Дуга в данном случае получается очень устойчивой, сварной шов выходит гораздо ровнее, чем у моделей трансформаторного типа.

Но у инверторов есть и недостатки: прежде всего высокая стоимость по сравнению с другими типами сварочных аппаратов, а также требовательность к качеству питания – при скачках или просадках напряжения, что в нашей действительности является распространенным явлением, инвертор может быстро выйти из строя. Инверторы боятся пыли, поэтому производители рекомендуют хотя бы дважды в год чистить аппарат изнутри. Инверторы не любят мороза, и при температуре ниже –15 °C их эксплуатация не всегда возможна. Ремонтопригодность этого оборудования весьма низкая – сложная электронная схема не поддастся неспециалисту, настройка ее требует специального измерительного оборудования, а стоимость ремонта в мастерской составит минимум треть цены всего аппарата. Особенно страдают подобным поведением недорогие инверторы родом из азиатских стран. Более надежные аппараты солидных торговых марок стоят существенно дороже. И еще одна особенность: длина каждого из сварочных кабелей инвертора не должна превышать 2,5 м.

В частном секторе соседи, у которых подвод электричества чаще всего осуществляется разными фазами, могут скооперироваться и приобрести трехфазный сварочный источник. Плата за электроэнергию и нагрузка на сеть в этом случае будут распределяться поровну, качество сварки возрастет, а специально подключать трехфазное электроснабжение, что весьма хлопотно и недешево, при этом не нужно.

При выборе того или иного аппарата следует учитывать также следующие соображения.

Все сварочные аппараты обладают такой характеристикой, как продолжительность включения (ПВ), или процент времени непрерывной работы при определенном токе (ПН). Это показатель времени непрерывного горения дуги, которое может обеспечить конкретная модель сварочного оборудования в течение условного 10-минутного цикла. Например, в паспорте указано, что для тока 160 А ПВ = 30 %. Это значит, что аппарат будет работать 3 мин (10 мин × 30 %), а на 7 мин придется сделать перерыв. Поэтому не следует покупать аппарат с номинальным током 120 А и ПВ, равной 20 %, который перегреется через один-два электрода. К тому же многие производители занижают условия измерений, например понижают температуру окружающей среды или берут 5-минутный интервал. В результате аппарат либо не обеспечивает нужный ток, либо работает с перегрузкой, перегревается и выходит из строя. Всегда необходимо иметь запас по току (мощности), поэтому оптимальные параметры аппарата для большинства бытовых работ – 160 А и ПВ не менее 40 %. Если необходимо работать длительное время, нужно приобретать сварочный аппарат с еще более высоким ПВ.

Большинство моделей сварочных аппаратов работают при напряжении в пределах 220 В ±10 %, т. е. до 198 В. Некоторые модели устойчиво работают при падении напряжения до 20 % (176 В). Это имеет большое значение для районов с пониженным напряжением в сети. Кроме того, следует уточнить электропитание на территории, где предстоит работать: однофазное (220 В) или трехфазное (380 В).

В зависимости от вида и толщины металла, с которым придется работать, определяется вид и мощность сварочного аппарата (и, соответственно, его стоимость).

Если работать предстоит на высоте, постоянно перемещать сварочный аппарат, лучше всего приобретать легкие и небольшие аппараты.

Если всё это не важно, лучше выбрать аппарат с большим количеством возможностей.


Сварочные электроды

– это металлический или неметаллический стержень, предназначенный для подвода тока к свариваемому изделию. Электроды бывают двух типов:

– , выполненные обычно из того же или сходного со свариваемым изделием металла;

– , которые, в свою очередь, могут быть металлическими (обычно вольфрам) или неметаллическими (уголь или графит).

Ввиду широкого распространения сварки по технологии ММА, наибольшее распространение получили плавящиеся металлические электроды. Электроды для ручной дуговой сварки представляют собой металлический стержень, на поверхность которого методом окунания или опрессовкой под давлением наносится покрытие (обмазка) определенного состава и толщины (рис. 20).


. Сварочный плавящийся электрод с покрытием:

– стержень; – участок перехода; – покрытие; – контактный торец без покрытия; – номинальный диаметр сварочной проволоки; – внешний диаметр покрытия; – длина зачищенного от покрытия конца; – номинальная длина электрода


Металлический стержень электрода выполняется из проволоки 1,6—12 мм. Электродная проволока по химическому составу делится на три группы:

1 – с содержанием углерода не более 0,12 %, предназначена для сварки низкоуглеродистых, среднеуглеродистых, а также некоторых низколегированных сталей. Малое содержание углерода в сварочной проволоке снижает склонность металла шва к пористости и образованию твердых закалочных структур;

2 – легированная, предназначенная для сварки низколегированных, конструкционных и теплостойких сталей;

3 – высоколегированная, предназначенная для сварки хромистых, хромоникелевых, нержавеющих и других легированных сталей.

В зависимости от отношения диаметров покрытия и электродной проволоки (/) электроды по толщине покрытия подразделяются на 4 типа:

М – электроды с тонким покрытием ≤ 1,2;

С – электроды со средним покрытием 1,2 ≤ < 1,45;

Д – электроды с толстым покрытием 1,45 ≤ < 1,8;

Г – электроды с особо толстым покрытием > 1,8.

Наиболее простое тонкое покрытие изготавливают из мелко просеянного мела, разведенного на жидком стекле. На 100 весовых частей мела берется 25–30 весовых частей жидкого стекла. Полученная смесь размешивается в воде до получения сметанообразного состояния. Покрытие наносится на электродную проволоку окунанием, с последующей сушкой при температуре 30–40 °C.

Тонкое покрытие предназначено только для стабилизации горения дуги и не создает защиты для расплавленного металла шва, что приводит к окислению и азотированию наплавленного металла. Такие электроды не используют при выполнении ответственных работ, так как сварочный шов получается хрупким, пористым, с различными неметаллическими включениями.

Сварные соединения высокого качества выполняют электродами со средним, толстым и особо толстым покрытием. Кроме стабилизации горения дуги эти покрытия способны выполнять еще ряд функций: защищать расплавленный металл шва от воздействия кислорода и азота воздуха; раскислять окислы, образующиеся в процессе сварки; изменять состав наплавляемого металла, вводя в него легирующие примеси; удалять серу и фосфор из расплавленного металла шва. Такие покрытия образовывают шлаковую корку поверх металла шва.

Для выполнения перечисленных функций покрытие электрода содержит следующие компоненты:

– ионизирующие вещества, облегчающие возбуждение сварочной дуги и поддерживающие ее стабильное горение (мел, мрамор, поташ, полевой шпат и т. п.);

– вещества, защищающие сварочную ванну от воздействия кислорода и азота воздуха (крахмал, древесная мука, целлюлоза и т. п.). При сварке они разлагаются и сгорают, выделяя большое количество защитных газов;

– раскислители, которые обладают большим сродством к кислороду и поэтому восстанавливают металл шва, улучшая его качество (ферросплавы, алюминий, графит и т. п.);

– легирующие вещества (ферромарганец, ферросилиций, феррохром, ферротитан), позволяющие улучшить свойства сварочного шва;

– шлакообразующие вещества образуют шлак, который, затвердевая на поверхности шва, препятствует его быстрому охлаждению, а также защищает от воздействия атмосферы (полевой шпат, кварц, мрамор, рутил, марганцевая руда и т. п.);

– связующие вещества, предназначенные для замешивания всех компонентов покрытия, а также для удержания покрытия на электроде и придания ему достаточной механической прочности после сушки. Обычно в качестве связующего вещества используют жидкое стекло, реже применяют декстрин.

Для увеличения количества наплавляемого металла в единицу времени в электродные покрытия иногда вводят железный порошок. Это улучшает технологические свойства электродов: облегчает повторное зажигание дуги, уменьшает скорость охлаждения наплавленного металла, что благоприятно сказывается при сварке в условиях низких температур.

Более качественные сварные швы дают электроды с покрытием, основой которого является титановый концентрат.

разделяют на четыре основные группы:

А – , содержащие руды в виде окиси железа, марганца, кремния, иногда титана;

Б – , имеющие в качестве основы фтористый кальций и карбонад кальция. Сварку электродами с основным покрытием осуществляют на постоянном токе и обратной полярности. Вследствие малой склонности металла к образованию кристаллизационных и холодных трещин электроды с этим покрытием используют для сварки больших сечений;

Ц – , имеющие в качестве основы целлюлозу, муку или другие органические составы, создающие газовую защиту дуги и образующие при плавлении тонкий шлак. Электроды с целлюлозным покрытием применяют, как правило, для сварки стали малой толщины;

Р – , основным компонентом которых является рутил. Для шлаковой и газовой защиты в покрытия этого типа вводят соответствующие минеральные и органические компоненты. При сварке на постоянном и переменном токе разбрызгивание металла незначительно. Устойчивость горения дуги, формирование швов во всех пространственных положениях хорошее.

В обозначениях электродов встречаются также:

П – прочие виды покрытия;

Ж – с содержанием в покрытии > 20 % железного порошка.

Смешанные покрытия обозначают двумя буквами.

Согласно ГОСТ 9466-75, для дуговой сварки и наплавки сталей представляет собой длинную дробь, например:




В числителе записан тип электрода Э46А, его марка УОНИ-13/45, диаметр 3,0 мм и группа из двух букв и цифры УД3. Типы электродов для ручной дуговой сварки углеродистых, низколегированных, конструкционных и других сталей обозначают буквой Э, затем следуют цифры, указывающие прочностную характеристику наплавленного металла. Так, обозначение Э46 означает, что электроды этого типа обеспечивают минимальное временное сопротивление 460 МПа.

Если в обозначении после цифр стоит буква А, значит, этот тип электрода обеспечивает более высокие пластические свойства наплавленного металла.

Для сварки вышеуказанных сталей предусмотрены 14 типов электродов (), в которых определены основные механические свойства и содержание вредных примесей (серы и фосфора).

Первая буква последней группы числителя (У) указывает назначение электрода, вторая (Д) – толщину покрытия (см. выше), цифра (3) – группу электродов по качеству изготовления.

Шифр буквы назначения электродов:

У – для конструкционных сталей с временным сопротивлением разрыву σ < 600 МПа (60 кгс/мм);

Л – для легированных конструкционных сталей с σ > 600 МПа (60 кгс/мм);

Т – для теплоустойчивых легированных сталей;

В – для высоколегированных сталей;

Н – для наплавки.

По качеству электроды делят на три группы 1, 2 и 3, где требования возрастают от группы 1 к группе 3.

В знаменателе приведены буква Е (электрод), группа индексов 412(5), указывающих характеристики наплавленного металла и металла шва (по ГОСТ 9467-75, ГОСТ 10051-75 или ГОСТ 10052-75), и группа из одной буквы и двух цифр Б20. Буква Б обозначает вид покрытия, первая цифра 2 – допустимые пространственные положения при сварке, вторая цифра 0 – требование к электропитанию дуги.

Допустимые пространственные положения при сварке или наплавке обозначают следующим образом:

1 – для всех положений;

2 – для всех положений, кроме вертикального сверху вниз;

3 – для нижнего, горизонтального на вертикальной плоскости и вертикального снизу вверх;

4 – только нижнее и нижнее «в лодочку».

По роду и полярности применяемого при сварке или наплавке тока, а также по номинальному напряжению холостого хода источника переменного тока частотой 50 Гц электроды подразделяются в соответствии с .

Одному и тому же типу электродов могут соответствовать несколько марок, например: электродам типа Э46 соответствуют марки АНО-4, МР-3 и др.; электродам типа Э42А соответствуют марки УОНИ-13/45 и СМ-11 ().


Электрододержатели и сварочные кабели

– приспособление для закрепления электрода и подвода к нему тока – является главным орудием сварщика. Существует немалое количество держателей разных конструкций: пружинные, вилочные, цанговые, винтовые, пластинчатые, их автоматизированные модификации и другие разновидности. Среди всего многообразия применяемых электрододержателей наиболее безопасным является пружинный («прищепка»), известный у нас как электрододержатель серии ЭП (рис. 21). К его основным преимуществам можно отнести удобство эксплуатации, крепкое удержание электрода, полное отсутствие неизолированных зон токосъемника. Держатель-«прищепка» очень популярен, поэтому его используют многие профессиональные сварщики по всему миру. Эти электрододержатели выдерживают без ремонта 8000—10 000 зажимов. Время замены электрода не превышает 3–4 с. «Прищепки» изготавливают в соответствии с существующими стандартами: I типа – для тока до 125 А; II типа – для тока 125–315 A; III типа – для тока 315–500 А.


Электрододержатель серии ЭП


Если вы купили новый сварочный аппарат, то в комплекте с ним обязательно должен быть заводской электрододержатель. Пользоваться, безусловно, нужно им. Широко известные у нас «вилки-трезубцы» использовать не стоит – они давно запрещены во всем мире[16].

Электрододержатели присоединяют к гибкому (многожильному) медному проводу – сварочному кабелю марки ПРГД или ПРГДО. Кабель сплетен из большого числа отожженных медных проволочек 0,18—0,20 мм. Применять провод длиной более 30 м не рекомендуется, так как это вызывает значительное падение напряжения в сварочной цепи. Сечения сварочных проводов для подвода тока от источника питания к электрододержателю и свариваемому изделию выбирают из расчета плотности тока до 5 А/мм при токах до 300 А. При силе тока 125 А рекомендуется провод сечением 25 мм, при силе тока 315 А – одинарный провод сечением 50 мм или двойной сечением по 16 мм.

Токоподводящий «земляной» провод соединяется с изделием специальными зажимами, чаще всего винтовыми струбцинками или зажимами типа «крокодил». Допустимо укладывать свариваемую деталь на металлический стол, надежно подсоединенный к сварочному источнику. Самодельные удлинители токоподводящего провода в виде кусков или обрезков металла не допускаются.


Экипировка сварщика

При работе со сваркой пораженными могут оказаться все части тела рабочего, органы дыхания, зрения. Поэтому средствами индивидуальной защиты пренебрегать никак нельзя. Полный комплект экипировки сварщика включает в себя маску, специальный костюм, обувь и перчатки.

Спецодежда для сварщика должна удовлетворять двум основным требованиям: ее наружная поверхность должна быть огнестойкой и термостойкой, а внутренняя (изнаночная) – влагопоглощающей. Исходя из этих требований, куртку и брюки шьют из брезента, парусины, замши и их комбинаций. Их обрабатывают специальной пропиткой, которая придает им жаростойкость. Для одежды и обуви, защищающей от искр и расплавленного металла и выдерживающей прожигание не менее 50 с, ГОСТ предусматривает специальную пометку «Тр».

обязательно включает в себя рукавицы или перчатки для защиты рук от контакта с нагретыми поверхностями и брызгами расплавленного металла.

– сапоги с укороченными голенищами или кожаные ботинки. Категорически запрещается работать в обуви с открытой шнуровкой или металлическими гвоздями в подошве.

Современные маски для сварки предохраняют своих владельцев от искр, брызг металла, механического давления, ожогов, удара электрическим током, ультрафиолетовых и инфракрасных лучей. Для защиты от последних в смотровое отверстие маски кроме обычного стекла вставляется светофильтр.

Существуют несколько разновидностей масок: традиционного типа с фиксированным светофильтром, с подъемным светофильтром, а также маски типа «хамелеон». В первых двух случаях речь идет о так называемых «пассивных» шлемах. В качестве смотрового окна в них используют затемненное стекло, которое либо неподвижно (но тогда сложно разглядеть объект сварки до начала работ), либо его откидывают наверх после окончания процесса сварки (материал при этом еще догорает, и смотреть на него без защиты тоже опасно).

«Активные» шлемы типа «хамелеон» автоматически реагируют на импульс света от сварки и изменяют степень своего затемнения, блокируя части светового спектра. Это позволяет нормально контролировать начало сварочного процесса. Источником питания световых фильтров в масках для сварки типа «хамелеон» служат солнечные батареи, а также заменяемые или встроенные литиевые элементы. Некоторые маски-«хамелеоны» оборудованы также респиратором. Это немаловажно, так как дым и газы, возникающие при сварочных работах, содержат вещества, представляющие большую опасность для легких. Правда, стоит такая защита довольно дорого, а в работе не очень удобна из-за солидного веса и приличных габаритов. Кроме того, время срабатывания светофильтра в шлеме должно составлять менее 1 мс. Однако при температуре окружающего воздуха ниже –5 °C светофильтр может начать реагировать медленнее. По этим причинам «хамелеоны» у нас пока не слишком популярны.

Для разных типов сварки нужны отдельные светофильтры. Но если фильтр предназначен для аргонно-дуговой сварки, то он подойдет и для работы со штучными электродами, и для полуавтоматической или автоматической сварки.

Дорогие шлемы оснащены регуляторами, изменяющими отношение степени затемнения к величине сварочного тока. Чаще всего встречаются параметры 4–9 DIN, предназначенные для тока до 40 А. 5—11 DIN выдерживают от 80 до 175 А, 6—12 DIN – от 175 до 300 А, а 7—13 DIN – от 300 до 500 А.

При выборе маски многие обращают внимание на размер видимой через светофильтр области. Понятно, что, чем он больше, тем удобнее работать. Однако надо помнить о том, что, чем больше «окно», тем оно уязвимее.

Для чистки и сушки светофильтра необходимо снять внутреннюю и внешнюю защитные пластины, затем протереть его чистой мягкой тканью, смоченной метиловым спиртом.

Покупая маску, обратите внимание и на крепления на корпусе маски. Они должны быть регулируемыми как по горизонтали, так и по вертикали. Сам корпус должен быть эргономичным и прочным. Его вес должен составлять от 350 до 450 г. Более легкие модели не защитят сварщика должным образом, а тяжелые будут чересчур давить на голову.

Технология ручной дуговой сварки

Выбор режимов сварки

Под режимом сварки понимают совокупность контролируемых параметров, определяющих условия сваривания металла. Такими параметрами являются сила сварочного тока, напряжение дуги, скорость сварки, род и полярность тока. Дополнительные параметры: положение шва в пространстве; число проходов; температура окружающей среды.

Силу сварочного тока устанавливают в зависимости от диаметра электрода, который, в свою очередь, выбирают в зависимости от толщины свариваемого изделия. На диаметр электрода влияют также тип сварного соединения, положение шва в пространстве, размеры детали, состав свариваемого металла. При сварке встык металла толщиной до 4 мм применяют электроды диаметром, равным толщине свариваемого металла. При сварке металла большой толщины применяют электроды 4–8 мм при условии обеспечения провара основного металла. В многослойных стыковых швах первый слой выполняют электродом 3–4 мм, последующие слои выполняют электродами большего диаметра.

Сварку в вертикальном положении проводят с применением электродов диаметром не более 5 мм. Потолочные швы выполняют электродами диаметром до 4 мм.

Ориентировочный расчет силы сварочного тока делают по следующим формулам:

– для электрода 3–6 мм сварочный ток I = (20 + 6) ;

– для электрода < 3 мм сварочный ток I = 30.

Коэффициент при выполнении швов в нижнем положении принимают равным 1, вертикальных швов – 0,9, потолочных швов – 0,8. Сварку швов в вертикальном и потолочном положениях выполняют, как правило, электродами диаметром не более 4 мм. Ориентировочные данные режимов ручной дуговой сварки приведены в и .

При увеличении диаметра электрода и неизменном сварочном токе плотность тока уменьшается, что приводит к блужданию дуги, увеличению ширины шва и уменьшению глубины провара. Чем больше диаметр электрода, тем меньше допустимая плотность тока, так как ухудшаются условия охлаждения.

Напряжение дуги изменяется в сравнительно узких пределах (30–60 В) и зависит от ее длины. Оптимальная длина дуги выбирается между минимальной и максимальной. Длинную дугу применять не рекомендуется. Минимальная длина дуги составляет = 0,5, максимальная = 0,5 + 1.

Скорость сварки подбирают так, чтобы сварочная ванна заполнялась электродным металлом и возвышалась над поверхностью кромок с плавным переходом к основному металлу без подрезов и наплывов.

Род и полярность тока выбирают в зависимости от способа сварки и свариваемых материалов. Прямую полярность («—» на электроде) используют при сварке с глубоким проплавлением основного металла; низко– и среднеуглеродистых и низколегированных сталей толщиной 5 мм и более электродами с фтористо-кальциевым покрытием (марок УОНИ-13/45, УОНИ-13/55 и др.); чугуна.

Обратную полярность («+» на электроде) используют при сварке с повышенной скоростью плавления электродов; низколегированных низкоуглеродистых сталей (типа 16Г2АФ); средне– и высоколегированных сталей и сплавов; тонкостенных листовых конструкций.

Переменный ток используют при сварке низкоуглеродистых и низколегированных сталей (типа 09ГС) в строительно-монтажных условиях электродами с рутиловым покрытием; в случаях возникновения магнитного дутья; толстолистовых конструкций из низкоуглеродистых сталей.

При этом следует учитывать влияние силы сварочного тока, напряжения дуги и скорости сварки на форму и размеры шва. С увеличением сварочного тока глубина провара увеличивается, а ширина шва почти не изменяется.

С повышением напряжения ширина шва резко увеличивается, а глубина провара уменьшается. Это важно учитывать при сварке тонкого металла. Несколько уменьшается и выпуклость шва.

При одном и том же напряжении ширина шва при сварке на постоянном токе (особенно обратной полярности) значительно больше, чем ширина шва при сварке на переменном токе.

С увеличением скорости сварки сначала глубина провара возрастает (до 40–60 м/ч), а затем уменьшается. При этом ширина шва уменьшается постоянно. При скорости более 70–80 м/ч основной металл не успевает прогреваться, и по обеим сторонам шва возможны подрезы.

Техника выполнения сварных швов

Зажигать дугу можно двумя способами. Применение того или иного способа зажигания дуги (как, впрочем, и качество сварного шва) зависит от условий сварки и практических навыков сварщика.

При одном способе электрод приближают перпендикулярно к поверхности изделия до касания металла и быстро отводят вверх на необходимую длину дуги. Прикосновение электрода к изделию должно быть кратковременным, иначе он приварится к изделию («прилипнет»). Отрывать «прилипший» электрод следует резким поворачиванием его вправо и влево.

При другом способе электродом вскользь «чиркают», как спичкой, по поверхности металла. Чиркать надо в направлении сварки, чтобы не оставлять лишних следов. Если электрод «прилип», скорее всего, его обмазка повреждена. В этом случае надо сжечь выступающий из-под обмазки край электрода.

После возбуждения дуги электрод должен выдерживаться некоторое время в точке начала наплавки, пока не сформируется сварной шов и не произойдет расплавление основного металла. Сварочная ванна сначала будет маленькой, потом становится больше. В таком состоянии ее и надо удерживать. При этом не надо прямо смотреть на слепящую дугу. Сфокусируйтесь на зоне дальше дымящихся искр, на расплавленной ванне за электродом.

Очень важно научиться удерживать постоянную длину дуги, т. е. зазор между концом электрода и основным металлом во время продвижения по шву. Длина дуги значительно влияет на качество сварки и зависит от марки и диаметра электрода, пространственного положения сварки, разделки свариваемых кромок и т. п. Нормальной длина дуги считается в пределах 0,5–1,1 диаметра электрода. Показателями оптимальной длины дуги является резкий потрескивающий звук, ровный перенос капель металла через дуговой промежуток, малое разбрызгивание.

горит устойчиво и спокойно. Она обеспечивает получение высококачественного шва, так как расплавленный металл электрода быстро проходит дуговой промежуток и меньше подвергается окислению и азотированию. При использовании тонкообмазанных электродов короткая дуга обеспечивает наилучшее качество сварки. Но слишком короткая дуга может вызывать «прилипание» электрода, дуга прерывается, нарушается процесс сварки.

горит неустойчиво с характерным шипением. Глубина проплавления недостаточная, расплавленный металл электрода разбрызгивается и больше окисляется и азотируется. Шов получается бесформенным, а металл шва содержит большое количество оксидов.

Чем лучше вы управляете длиной дуги, тем лучше будете варить. Помните, что интенсивная дуга отталкивает ванну и глубоко прогревает металл. При сварке надо следить, чтобы шов был на уровне свариваемой поверхности.

Выбор длины дуги зависит от типа электрода и положения в пространстве изделия при сварке. При использовании тонкообмазанных электродов длина дуги должна быть минимально короткой, не более диаметра электрода. При шлакообразующих или газообразующих электродах длина дуги может быть от 3 до 5 мм.

В зависимости от длины дуги меняется и напряжение в дуге. При длине дуги до 1,5 мм оно составляет 15–18 В, при длине дуги от 3 до 5 мм – до 22 В и даже 40 В.

Выбирая ту или иную длину дуги, приходится учитывать положение свариваемого изделия. Вертикальная и потолочная сварки требуют более короткой дуги, чем при положении изделия, требующем нижней сварки.

В процессе сварки электрод постоянно находится в движении. Сварщик сообщает ему следующие движения (рис. 22, ):

1 – поступательное по оси электрода в сторону сварочной ванны (вследствие расплавления электрода), при этом для сохранения постоянства длины дуги скорость движения должна соответствовать скорости плавления электрода;


Перемещения электрода при сварке:


2 – перемещение вдоль линии свариваемого шва, которое называют скоростью сварки; скорость этого движения устанавливается в зависимости от тока, диаметра электрода, скорости его плавления, вида шва и других факторов;

3 – перемещение электрода поперек шва для получения так называемого уширенного валика – шва шире, чем ниточный сварной валик, получаемый при прямолинейном движении. Этими движениями за один проход получают шов шириной до четырех диаметров электрода.

Сварной шов, образованный в результате двух движений торца электрода – поступательного и вдоль линии шва, называют «ниточным». Его ширина при оптимальной скорости сварки составляет (0,8–1,5). Ниточным швом заполняют корень шва при многослойной сварке, сваривают тонкие заготовки, выполняют наплавочные работы и производят подварку подрезов.

Задача сварочного процесса – прогреть основной металл до расплавления, формируя сварочную ванну. Если ток мал, то металл не прогреется должным образом и сварочная ванна будет «бегать» за электродом. Если тока много, то основной металл будет слишком горячим, дуга будет прожигать металл, отталкивая его назад. Когда ток нормальный, ванна растекается по поверхности, ее внешние края тонкие. Движением электрода можно расширять и передвигать ванну.

В зависимости от ситуации установки тока могут меняться. Толстый металл рассеивает тепло, поэтому нужен больший ток. Тонкий металл расплавится быстро, поэтому тока надо меньше. Точные установки тока зависят от поведения ванны, а начинать надо с рекомендованных установок.

Но не бойтесь увеличивать или уменьшать ток. Огромное значение для качества шва имеет скорость перемещения дуги. Сварка зависит от температуры основного металла, поэтому нельзя говорить о токе без учета скорости сварки. Двигаем электрод быстрее – меньше тепла поступает в основной металл. Если двигать электрод слишком быстро, металл не будет прогрет, шов будет непроплавленным, узким, с малой выпуклостью, с крупными чешуйками наверху. Если двигаемся слишком медленно, тепла поступает больше, металл слишком сильно прогревается, ванна расплывается и становится трудно управляемой. Сварной валик становится слишком выпуклым, шов – неровным по форме, с наплывами по краям. Вследствие чрезмерно большого ввода теплоты дуги в основной металл часто образуется прожог, и расплавленный металл вытекает из сварочной ванны. В некоторых случаях, например при сварке на спуск, образование под дугой жидкой прослойки из расплавленного электродного металла повышенной толщины, наоборот, может привести к образованию непроваров.

На тонком металле глубокий провар тем более не нужен. Чем тоньше металл, тем быстрее надо двигаться. Можно применить такую технику: расплавить основной металл, затем длинной дугой охладить его и плавить снова. Этот метод можно использовать и для заполнения зазоров в плохо подогнанных соединениях. Двигайте электрод в глубь зазора, потом отводите, чтобы остудить ванну, и так постепенно заполняйте шов. Это же движение используется и при заполнении многослойного шва.

Когда скорость перемещения соответствует току, ванна растекается, но остается управляемой, ее края тонкие и шов одинаковой толщины. Когда вы научитесь хорошо управлять электродом, то сможете поставить чуть больший ток и увеличить скорость сварки. Больший ток обеспечит лучшее проплавление и более гладкий шов в итоге, но контролировать ванну при этом труднее.

Сварка осуществляется в направлении как слева направо, так и справа налево, от себя и на себя. При этом положение электрода может быть «углом вперед», «углом назад» и «под прямым углом» (рис. 22, ). Конечно, у каждого сварщика есть излюбленная манера держать электрод, к которой он привык и использует в большинстве случаев. Но как правило, положение «углом вперед» используется чаще всего для сварки горизонтальных, вертикальных, потолочных швов, сварки неповоротных стыков труб и т. д. При сварке таким методом уменьшается глубина провара и высота выпуклости шва, но заметно возрастает его ширина, что позволяет сваривать металл небольшой толщины. Лучше проплавляются кромки, поэтому возможна сварка на повышенных скоростях.

Под прямым углом электрод держат обычно при необходимости варить в труднодоступных местах, а также при потолочной сварке.

Сварка «углом назад» предпочтительна при работе с угловыми и стыковыми соединениями. Она позволяет увеличить глубину провара и высоту выпуклости, но при том уменьшается ширина шва. Прогрев кромок недостаточен, поэтому возможны несплавления и образование пор.

Кроме движений вдоль и в глубь шва перемещать электрод приходится чаще всего и поперек шва. Глубина проплавления основного металла и формирование шва главным образом зависят от вида этих поперечных колебаний, которые обычно совершают с постоянными частотой и амплитудой относительно оси шва (рис. 23). Траектория движения конца электрода зависит от пространственного положения сварки, разделки кромок и навыков сварщика. При сварке с поперечными колебаниями получают уширенный валик, а форма проплавления зависит от траектории поперечных колебаний конца электрода, т. е. от условий ввода теплоты дуги в основной металл.

Зигзагообразные прямые движения по ломаной линии (рис. 23, ) применяют для получения наплавочных валиков при сварке встык без скоса кромок в нижнем положении и если нет вероятности прожечь деталь. Чтобы не произошло прогара, смотрите на верхний край сварочной ванны каждый раз, когда меняете направление.

Движения полумесяцем вперед (рис. 23, ) применяют для стыковых швов со скосом кромок и для угловых швов с катетом менее 6 мм, выполняемых в любом положении электродами диаметром до 4 мм.

Такие же движения полумесяцем назад используют для сварки в нижнем положении, а также для вертикальных и потолочных швов с выпуклой наружной поверхностью. При необходимости усилить прогрев свариваемых кромок на краях зигзагов электрод слегка придерживают (рис. 23, ).

Движения треугольником (рис. 23, ) применяют для угловых швов с катетом более 6 мм и стыковых швов со скосом кромок в любом пространственном положении. Дает хороший провар корня шва. Для сварки толстостенных конструкций с гарантированным проплавлением корневого участка в корне шва электрод задерживают.

Петлеобразные и круговые движения (рис. 23, ) используют для усиленного прогревания кромок шва, особенно при сварке высоколегированных сталей. Электрод задерживают на краях, чтобы не было прожога в центре шва или вытекания металла при сварке вертикальных швов. Во время круговых движений при поперечном перемещении электрода смотрите поверх «мостика» – границы ванны и шлака, потом на другую сторону и распределяйте ванну по кругу.


Основные виды траекторий поперечных движений рабочего конца электрода при слабом (), усиленном () прогреве свариваемых кромок; усиленном прогреве одной кромки (); прогреве корня шва ()


Нужно понимать, что расплавленная ванна следует за теплом. Когда вы передвигаете электрод вдоль линии сварки, присадочный металл электрода движется позади. Если металла вокруг недостаточно, вы оставляете подрезы. Подрез – это пустое место – канавка на краю шва ниже уровня металла (см. рис. 8, ). Чтобы избежать этого, надо контролировать границы ванны, утоньшая ее на поверхности.

Манипулировать ванной позволяет сила сварочной дуги. Когда электрод стоит вертикально, дуга давит на ванну вниз. Это приводит к глубокому проплавлению основного металла и равномерно распространяет ванну вокруг кратера. Чем ближе к перпендикуляру по отношению к поверхности металла расположен электрод, тем менее выпуклым будет шов (рис. 24, ). Наклоняя электрод, мы отталкиваем ванну, а шов начнет подниматься – всплывать. Чем больше мы наклоняем электрод, тем шов выпуклее (рис. 24, ).

Но здесь следует быть осторожным: если наклон слишком велик, дуга будет давить в направлении шва, делая ванну трудно управляемой. Поэтому используются разные углы наклона электрода.


. Манипулирование сварочной ванной с помощью силы дуги:

– глубокое проплавление металла; – «всплывание» шва


Начинать сварку лучше всего при наклоне электрода от 45° до 90°. С таким углом работать удобнее, хорошо видна сварочная ванна.

Завершая шов, следует правильно заваривать кратер. Кратер является зоной с наибольшим количеством вредных примесей ввиду повышенной скорости кристаллизации металла, поэтому в нем наиболее вероятно образование трещин. Поэтому по окончании сварки не следует обрывать дугу, резко отводя электрод от изделия. Необходимо прекратить все перемещения электрода и медленно удлинять дугу до обрыва; расплавляющийся при этом электродный металл заполнит кратер. Другой метод: в конце шва прекратить перемещение электрода, задержав его на 1–2 c, чтобы заполнить кратер, затем сместиться по шву назад примерно на 5 мм и быстрым движением вверх и назад оборвать дугу.

При случайных обрывах дуги или при смене электродов применяют специальную технику повторного зажигания дуги, обеспечивающую начало сварки с хорошим сплавлением и внешним видом. В таких случаях дуга должна возбуждаться на передней кромке кратера, затем через весь кратер ее переводят на противоположную кромку, на только что наплавленный металл, и после этого снова вперед, в направлении проводившейся сварки. Если электрод при повторном зажигании дуги не будет достаточно далеко отведен назад, между участками начала и конца сварки останется углубление. Если же при повторном зажигании электрод отвести слишком далеко назад, то на поверхности сварного валика образуется высокий наплыв.

Не рекомендуется заваривать кратер, несколько раз обрывая и возбуждая дугу, ввиду образования оксидных и шлаковых загрязнений металла.

Сварка металла малой толщины

Сварка листовой стали малой толщины (0,5–2,0 мм) связана с определенными трудностями. Тонкий металл легко прожигают дугой, а прожоги трудно поддаются заплавке. Опасаясь этого, сварщик иногда недостаточно проплавляет кромки листов, накладывая валик на нерасплавленные кромки. В этом случае возникают непровары и неплотности.

При сварке тонколистовой стали рекомендуется:

– специально подготавливать кромки;

– применять временные или остающиеся подкладки;

– уменьшать величину сварочного тока;

– использовать специальные электроды;

– применять специальные источники питания.

Стыковые соединения выполняют с закладкой между кромками прутка или полоски. Сварку ведут так, чтобы дуга горела только на прутке или полоске, при этом кромки основного металла оплавляют косвенным теплом дуги.

При сварке на подкладках листы собирают встык без зазора и сварку ведут без колебательных движений электрода. Сварку стыковых соединений тонколистовой стали лучше выполнять не в нижнем, а в вертикальном положении – сверху вниз. Для очень тонких листов (0,5 мм) применяют нахлесточные соединения, сварку ведут на подкладке с проплавлением верхнего листа.

В качестве остающихся подкладок используют стальные полоски, в качестве временных – медные полосы.

Величина тока принимается в пределах 40–80 А, в зависимости от диаметра электрода. При выполнении нахлесточных соединений со сквозным проплавлением верхнего листа величина тока устанавливается на 10–15 % больше, чем при выполнении стыковых соединений.

Для сварки тонколистовой стали применяют электроды 1,6–2,5 мм с тонким или средним по толщине слоем покрытия.

Источники питания, используемые для сварки тонколистовой стали, должны иметь повышенную величину напряжения холостого хода (80–90 В) и плавную регулировку сварочного тока с малым нижним пределом порядка 40 А.

Техника сварки в нижнем положении

Это положение позволяет получать сварные швы наиболее высокого качества, так как облегчает условия выделения неметаллических включений, газов из расплавленного металла сварочной ванны. Наиболее благоприятны и условия формирования металла шва, так как расплавленный металл сварочной ванны удерживают от вытекания нерасплавившиеся кромки.

Стыковые швы сваривают без разделки кромок или с V-, Х– и U-образным скосом. Стыковые швы без разделки кромок в зависимости от толщины сваривают с одной или двух сторон. Необходимо тщательно следить за равномерным расплавлением обеих свариваемых кромок по всей их толщине, и особенно стыка между ними в нижней части (корне шва).

обычно выполняют с поперечными колебаниями электрода на всю ширину, чтобы дуга выходила со скоса кромок на необработанную поверхность металла. Однако в этом случае очень трудно обеспечить равномерный провар корня шва по всей его длине, особенно при изменении величины притупления кромок и зазора между ними.

При сварке такого шва за несколько проходов обеспечить хороший провар первого слоя в корне разделки гораздо легче. Для этого обычно применяют электроды диаметром 3–4 мм и сварку ведут без поперечных колебаний. Последующие слои выполняют в зависимости от толщины металла электродом большего диаметра с поперечными колебаниями. Для обеспечения хорошего провара между слоями предыдущие швы и кромки следует тщательно очищать от шлака и брызг металла.

Для зачистки шва от шлака удобно применять специальный инструмент – металлическую щетку, оснащенную маленьким молоточком для сбивания шлаковых наслоений.

Заполнять разделку кромок можно швами с шириной на всю разделку или отдельными валиками (рис. 25). Однослойный однопроходный шов выполняется за один проход («напроход»). При сварке металла большой толщины шов выполняют слоями, каждый из которых накладывают за один проход (многослойный) или за несколько проходов (многослойный многопроходный). В многопроходных швах последний валик (поз. 11 на рис. 25, ) для улучшения внешнего вида иногда можно выполнять на всю ширину разделки (декоративный слой).

Сварка за один проход предпочтительнее при ширине шва не более 14–16 мм, так как дает меньше остаточных деформаций. При толщине металла более 15 мм сварка каждого слоя напроход нежелательна. Первый слой успевает остыть, и в нем возникают трещины. Для равномерного прогрева металла по всей длине швы накладывают двойным слоем («горкой»), каскадом или блоками.

второй слой накладывают по неостывшему первому после удаления сварочного шлака в противоположном направлении на длине 200–400 мм.

– разновидность каскадного метода. Ее ведут два сварщика одновременно от середины к краям. Оба метода – это обратноступенчатая сварка не только по длине, но и по сечению шва, причем зона сварки всегда остается горячей.

шов заполняют отдельными ступенями по всей высоте сечения шва. Этот метод применяют при соединении деталей из сталей, закаливающихся при сварке.


. Способы выполнения швов различной длины:

– «напроход»; – от середины к краям; – обратноступенчатый; поперечные сечения многослойных () и многопроходных () стыковых швов


Нумерация соответствует порядку выполнения швов.

Швы с Х– или U-образным скосом кромок по сравнению с V-образным имеют преимущества: в 1,6–1,7 раза уменьшаются объем наплавленного металла и угловые деформации, улучшается провар корня шва. Сварку этих швов выполняют так же, как и с V-образной разделкой, но для уменьшения остаточных деформаций и напряжений желательно накладывать каждый валик или слой попеременно с каждой стороны.

наиболее трудно обеспечить провар корня шва и формирование хорошего обратного валика по всей длине стыка. В этом отношении более благоприятна сварка на плотно прижатой съемной медной или остающейся стальной подкладке. Последние увеличивают расход металла и не всегда технологичны. В медной подкладке для формирования обратного валика делают формирующую канавку, но могут возникнуть трудности точной установки кромок вдоль формирующей канавки.

Если с обратной стороны возможен подход к корню шва и допустима выпуклость обратной стороны шва, целесообразна подварка корня швом небольшого сечения с последующей укладкой основного шва. В некоторых случаях при образовании непроваров в корне шва после сварки основного шва дефект в корне разделывают газовой, воздушно-дуговой строжкой или механическими методами (рис. 26, ) с последующим выполнением подварочного шва.


. Схема сварки стыковых швов:

– на весу; – на медной съемной подкладке; – на остающейся стальной подкладке; – с предварительным подварочным швом; – удаление непровара в корне шва для последующей подварки


можно выполнять двумя приемами. Сварка вертикальным электродом «в лодочку» (рис. 27, ) обеспечивает наиболее благоприятные условия для провара корня шва и его формирования. По существу, этот прием напоминает сварку стыковых швов с V-образной разделкой кромок, так как шов формируется между свариваемыми поверхностями. Однако при этом способе требуется тщательная сборка соединения под сварку с минимальным зазором в стыке для предупреждения вытекания в него расплавленного металла.

При наложении угловых швов наклонным электродом, в том числе «в лодочку», сварку лучше вести углом назад. Во избежание непровара и подрезов кромок сварку «в лодочку» лучше выполнять методом опирания электродного покрытия на кромки.

(рис. 27, ) трудно обеспечить провар шва по нижней плоскости ввиду натекания на нее расплавленного металла и предупредить подрез на вертикальной плоскости из-за стекания расплавленного металла. Поэтому таким способом обычно сваривают швы с катетом до 6–8 мм. При сварке угловых швов наклонным электродом трудно также обеспечить глубокий провар в корне шва, поэтому в односторонних или двусторонних швах без разделки кромок может образоваться непровар, который под нагрузкой послужит началом развития трещин. Для предупреждения этого в ответственных соединениях при толщине металла 4 мм и более необходима односторонняя, а при толщине 12 мм и более – двусторонняя разделка кромок.

Конец ознакомительного фрагмента.