Теория сварки
Основные понятия
Прежде чем говорить о сварочных работах, необходимо ввести ряд наиболее важных понятий, которые непосредственно связаны с ними и без которых невозможно понимание тех или иных процессов. Причем они намеренно расположены не в алфавитном порядке, а в соответствии с логикой повествования.
Сварка представляет собой соединение металлических частей (деталей, конструкций и проч.) посредством локального нагревания и доведения их до пластичного или расплавленного состояния.
Сварным называется неразъемное соединение металлических частей (деталей, конструкций и др.), которое достигнуто в результате сварки.
Сварной шов – это часть сварного соединения, образованная в процессе сварки расплавленным, а затем кристаллизовавшимся металлом.
Основной металл – металл, из которого выполнены части, детали, изделия и конструкции, подвергающиеся сварке.
Сварочный флюс – неметаллический материал, защищающий зону сварки, пайки, наплавки от атмосферного воздуха, создающий условия для восстановления окислов, разжижения шлаков и понижения их температуры, способствующий получению сварного шва необходимого химического состава.
Сварочный электрод – это стержень, изготовленный из электропроводящего материала, с помощью которого электрический ток подводится к свариваемым деталям, частям и т. п.
Металл шва – материал, который получается в процессе смешивания расплавленного основного и присадочного или электродного металла.
Сварочная ванна – углубление, образованное сварочной дугой или пламенем горелки и заполненное расплавленным металлом.
Околошовная зона – это участок основного металла, структура которого подвергается изменению в результате воздействия высокой температуры, необходимой для выполнения сварки.
Легирующие компоненты – это вещества, которые вводят в состав металлов и сплавов и благодаря которым полученный материал приобретает определенные свойства.
Строение и свойства металлов
В твердых телах, к которым относятся и металлы, атомы по-разному располагаются в пространстве:
✓ беспорядочно, т. е. для каждого атома нет строго определенного места относительно других атомов. Такое строение типично для аморфных веществ, которые формально принадлежат к твердым телам, поскольку могут сохранять объем и форму, но у них отсутствует определенная температура плавления и кристаллизации;
✓ упорядоченно, когда атомы находятся на конкретных местах. Такой принцип размещения атомов встречается у твердых веществ. Если центры атомов соединить гипотетическими прямыми линиями, можно образовать пространственную решетку, которая называется кристаллической. Несмотря на то что отдельные атомы в результате диффузии могут менять свое месторасположение, покидая узлы решетки, в целом упорядоченность кристаллического строения остается неизменной.
Для разных металлов характерен определенный тип кристаллической решетки, образуемой малоподвижными ионами с положительным зарядом, между которыми перемещаются отрицательно заряженные частицы – свободные электроны. Последние образуют явление, называемое электронным газом. Именно он обеспечивает пластичность, тепло– и электропроводность металлов.
Твердые кристаллические тела, в частности металлы, имеют структуру, состоящую из кристаллических зерен, которые называются кристаллитами. В расположенных рядом зернах кристаллические решетки находятся под некоторым углом друг к другу.
Для соединения двух металлов важно, чтобы между их кристаллическим строением и размером атомов наблюдалось определенное соответствие. Это означает, что для сварки наилучшими являются условия, при которых металлы будут иметь одинаковые или однотипные кристаллические решетки с примерно схожими параметрами и близкими по размеру атомами.
Металл, находясь в твердом состоянии, обладает энергетически стабильным кристаллическим строением, при этом атомы или их группировки обладают минимальным количеством свободной энергии. Перемена температурных условий (нагрев или охлаждение) влечет за собой энергетические изменения в состоянии атомов, что, в свою очередь, приводит к перестройке их расположения относительно друг друга и изменению свободной энергии. Такое положение возможно до определенных температур, при которых металл сохраняет свою кристаллическую структуру. Дальнейший подъем температуры доводит энергетическое состояние атомов до состояния, характерного для жидкости. Продолжающееся ее повышение заканчивается тем, что кристаллическая решетка начинает разрушаться, хотя при этом могут оставаться отдельные комбинации атомов относительно тех атомов, которые расположены в соответствии с прежними закономерностями. Но они не отличаются стабильностью, поскольку одновременно идет процесс разрушения одних группировок и образование других. Именно они при охлаждении металла превращаются в центры кристаллизации. От их количества зависит, насколько крупными будут кристаллы, возникающие при изменении состояния металла, т. е. при переходе его из жидкого состояния в твердое (этот процесс называется перекристаллизацией).
Нагревание или охлаждение металла, находящегося в твердом состоянии, может приводить к смене одного вида кристаллической решетки другим. Это явление называется аллотропическим превращением и осуществляется по законам кристаллизации.
Такие металлы, как железо, олово и др., при нагревании до определенной температуры, которая называется критической точкой, после охлаждения и затвердевания способны образовывать кристаллические решетки разной формы.
Например, критической температурой для чистого железа (так называемое ά-железо) является 910 °C (температура плавления – 1500 °C), по достижении которой атомы в пределах кристаллической решетки перестраиваются.
В результате образуется другая модификация – γ-железо, которое по своим свойствам отличается от первого, в частности оно лишено магнитных свойств и может растворять углерод.
При перекристаллизации строение металла тоже изменяется. Данный процесс относится к тем факторам, от которых зависят кристаллическая структура, зернистость и свойства металлов. Кроме того, он может исправить неблагоприятное строение, сформировав более мелкозернистую структуру.
Таким образом, условия плавления металла имеют большое значение для процесса кристаллизации и определяют свойства металла сварного шва.
Металлы обладают рядом свойств, которые отличают их от других материалов и веществ. На основании этого они подразделяются на четыре основные группы:
✓ физические (цвет, плотность, плавкость, а также тепло– и электропроводность, теплоемкость, способность намагничиваться);
✓ химические (жаропрочность, окалиностойкость, жароупорность, коррозионная устойчивость);
✓ механические (упругость, прочность, твердость, пластичность, ударная вязкость);
✓ технологические (свариваемость, ковкость, текучесть, обрабатываемость резанием, прокаливаемость).
Для сварочной практики наиболее важными являются механические и технологические характеристики металлов, поэтому на них следует остановиться более подробно.
Прочность представляет собой способность металла сопротивляться внешнему воздействию и при этом не разрушаться.
Для определения прочности металла имеются специальные средства, в частности разрывные машины, обладающие различной мощностью. При испытании того или иного образца на разрыв наступает момент, когда металл продолжает удлиняться, хотя нагрузка на него не возрастает. Отношение такой нагрузки к поперечному сечению образца – предел текучести. При дальнейшем увеличении нагрузки образец разрывается. Напряжение, при котором это происходит, называется пределом прочности, или временным сопротивлением материала.
Свойство металла под воздействием нагрузки изменять свою форму, а после прекращения воздействия восстанавливать ее называется упругостью. А если он изменяет форму под влиянием на него той или иной нагрузки, но при этом не разрушается, а после ее устранения сохраняет приданную форму, то такая его способность называется пластичностью. Этот параметр важен для металла сварного шва, который проходит испытание на загиб. По величине угла загиба судят о пластичности шва: чем он больше, тем выше пластичность.
Способность металла сопротивляться проникновению в него более твердого тела называется твердостью. Она проверяется в процессе различных испытаний, каждое из которых имеет определенное название, в частности:
✓ твердость по Бринеллю;
✓ твердость по Виккерсу;
✓ твердость по Роквеллу.
В ходе проверки металл испытывается вдавливанием шарика (диаметром 2,5, 5 или 10 мм), изготовленного из твердой стали, вершины алмазной пирамиды и вершины алмазного конуса (угол – 120°) соответственно.
По тому, насколько металл способен сопротивляться ударным нагрузкам, судят о его ударной вязкости. В сварочном производстве это основной параметр наплавленного металла и сварного соединения. Чем выше ударная вязкость металла сварного шва, тем он работоспособнее, тем большую нагрузку он состоянии выдержать.
Помимо названных параметров, металл тестируют на усталость и истирание. Первый показатель важен для установления выносливости материала в условиях многократно сменяющихся нагрузок, а второй – для металлов тех деталей и изделий (например, подшипников и др.), которые в процессе эксплуатации подвергаются трению.
Технологические свойства металла важны в тех случаях, когда стоит задача – решить, является ли данный металл пригодным для изготовления из него той или иной детали, конструкции и проч. Для этого берут технологические пробы, некоторые из которых имеют определенные стандарты, например пробы на осадку в холодном состоянии, на загиб и т. д.
По своему составу металлы бывают черными (в эту группу входят железо и сплавы, полученные на его основе, т. е. чугун и сталь) и цветными (остальные металлы и сплавы).
В промышленности находят применение не только металлы в чистом виде (они называются простыми, если не имеют в своем составе легирующих компонентов), но и сложные вещества, полученные в процессе сплавления. Они называются сплавами и классифицируются на основе разных признаков:
✓ по составу (содержанию легирующих веществ). Сплавы бывают низко-, средне– и высоколегированными, если содержат менее 2 %, от 2,5 до 10 % или более 10 % легирующих веществ соответственно;
✓ по количеству компонентов (химических элементов в составе сплава). На основании этого параметра различаются двух-, трех-и более компонентные сплавы;
✓ по степени чистоты (это относится и к металлам). Различаются сплавы от пониженной, средней, повышенной и высокой чистоты до особо чистых.
Качественное выполнение сварочных работ невозможно без учета свойств металлов и сплавов.
Свариваемость металлов
Свариваемость – это свойство или сочетание свойств металлов образовывать при установленной технологии сварки соединение, которое отвечает всем требованиям, обусловленным конструкцией и эксплуатацией изделия, т. е. она представляет собой способность одно– и разнородных металлов и сплавов давать такое сварное соединение, которое при определенных условиях (нагрузки, температура, воздействие внешней среды и проч.) не будет разрушаться.
Если металлы и сплавы содержат в своем составе элементы, которые отличаются неограниченной взаимной растворимостью, то они хорошо свариваются и не дают соединений, которые негативно влияют на свойства сварного шва. Это можно сказать, например, о таких парах, как железо и хром, железо и ванадий, молибден и тантал, никель и медь, хром и титан и др. Прекрасно свариваются однородные металлы и сплавы, например медь с медью, чугун с чугуном, сталь со сталью и др.
Если металлы (например, свинец и медь) и сплавы в жидком состоянии дают несмешивающиеся слои, т. е. о них нельзя сказать, что им свойственна высокая взаимная растворимость, то их сварка неосуществима. Это означает, что они настолько разнородны, что взаимная кристаллизация невозможна. С трудом свариваются железо и магний, алюминий и висмут и др.
Для облегчения этого процесса в смесь вводятся такие металлы, которые способны взаимно растворяться и с тем, и с другим соединяемым компонентом.
Таким образом, свариваемость металлов и сплавов во многом определяется их химическим составом. В качестве примера рассмотрим железоуглеродистые сплавы, которые в этом плане очень показательны. Свариваемость углеродистой стали определяется содержанием присутствующих в ней примесей. Углерод – один из главных элементов в стали, от которого во многом зависят свойства данного материала в процессе обработки. Это относится и к свариваемости: с повышением содержания углерода свариваемость стали ухудшается. Например, хорошо свариваются низкоуглеродистые стали, в которых количество углерода не превышает 0,25 %; среднеуглеродистые стали с содержанием углерода не более 0,35 % тоже свариваются неплохо. При дальнейшем повышении данного параметра свариваемость сталей заметно ухудшается. Это проявляется в том, что в околошовной зоне образуются закалочные структуры, трещины, а сам шов приобретает пористость.
Чтобы сварное соединение получилось качественным, необходимо прибегать к различным технологическим приемам, об одном из которых уже упоминалось ранее (о введении легирующих компонентов).
Помимо свойств основного металла, для свариваемости имеют значение и другие факторы, а именно:
✓ вид и режим сварки;
✓ состав присадок и флюса;
✓ вид защитного газа (например, для углеродистой стали азот в качестве газовой среды не подходит, поскольку он растворится в металле и вызовет его старение; для меди и цинка такая среда, напротив, благоприятна, так как азот практически не растворяется в легкоплавких металлах).
Для определения свариваемости металлов и сплавов разработано более 150 способов.
Металлургия сварки
Процессы расплавления и затвердевания металла, в ходе которых его химический состав претерпевает изменения, а кристаллическая решетка – трансформацию, называются металлургическими. Сварка также относится к ним, но по сравнению с другими подобными процессами имеет ряд особенностей, поскольку:
✓ осуществляется при значительной температуре нагрева. Благодаря этому повышается скорость плавления всех составляющих процесса – основного и электродного металла, электродного покрытия и флюса. Это сопровождается испарением, окислением и разбрызгиванием веществ, которые принимают участие в протекающих в сварочной ванне химических реакциях. Кроме того, при высокой температуре дуги молекулы азота, водорода и кислорода частично диссоциируются (так называется процесс, при котором молекулы расщепляются на более простые составные частицы – молекулы, атомы и др.). Данные элементы (газы), будучи в атомарном состоянии, становятся химически более активными, поэтому интенсифицируются процессы их окисления, насыщения металла азотом и поглощения водорода, что выделяет сварку среди других металлургических процессов. При высокой температуре имеющиеся примеси выгорают, что в конечном итоге отражается на химическом составе свариваемого металла (он изменяется);
✓ течет с высокой скоростью. Это относится как к нагреванию, так и к охлаждению, что, естественно, сказывается на процессе крис таллизации и может приводить к появлению каких-либо дефектов (на при мер, к формированию закалочных структур, трещинообразованию и др.);
✓ отличается минимальными объемами нагретого и расплавленного металла. Объем сварочной ванны при ручной сварке составляет 0,5–1,5 см3 (при автоматической он больше – 24–300 см3);
✓ характеризуется быстрым отводом тепла от расплавленного металла сварочной ванны в близлежащие участки основного металла, находящегося в твердом состоянии, что наряду с малыми объемами расплавленного металла приводит к кратковременности химических реакций, которые протекают при высокой температуре процесса, следствием чего может быть их незавершенность, что, в свою очередь, отражается на структуре металла шва, который образуется по окончании сварки, и основного металла околошовной зоны (зоны термического влияния). Результатом этого может быть ослабление сварного шва.
К другим особенностям сварки относится то, что в зоне соединения происходит активное воздействие газов и шлаков на расплавленный металл. Кроме того, может применяться присадочный материал, необходимый для формирования металла шва, причем не исключаются значительные различия между химическим составом присадок и основного металла.
Таким образом, при сварке за небольшой промежуток времени наблюдаются сложные процессы, во время которых разные химические элементы взаимодействуют друг с другом. Рассмотрим эти явления, чтобы лучше представлять себе, что стоит за сварочными процессами.
Наиболее важен процесс кристаллизации металла шва. Во время сварки вместе с перемещением дуги передвигается и сварочная ванна, а расплавленный металл, оставшийся в ее тылу, постепенно охлаждается и затвердевает. Так образуется сварной шов. Величина и протяженность сварочной ванны определяются различными факторами, в частности типом источника тепла, его мощностью, режимом сварки, характеристиками металла, подвергающегося сварке, и др. Первыми кристаллизуются частично сплавленные зерна основного металла, находящегося на границе расплавления, к решетке которых прикрепляются атомы кристаллизующейся фазы. По окончании затвердения в зоне расплавления формируются зерна, которые состоят из основного металла и металла сварного шва, благодаря чему и обеспечивается соединение, т. е. непрерывная металлическая связь «основной металл – шов – основной металл».
Для процесса кристаллизации характерна высокая скорость, поскольку интенсивный нагрев сварочной дугой сменяется таким же энергичным отводом тепла в свариваемое изделие. Металл сварного шва может за секунду остывать на десятки или даже сотни градусов.
Изучение кристаллизации сварного шва методами металлографии показывает, что в различных его частях формируются кристаллы разного размера: в верхних – более крупные, а в нижних – более мелкие.
Кристаллы в зависимости от своего месторасположения различаются и формой: в средней зоне они имеют транскристаллитное строение, т. е. удлиненную форму, а в верхней – дендритное строение, т. е. ветвистую форму.
Кристаллизация как процесс протекает неравномерно, поскольку периодически изменяется теплообмен и т. д. В результате этого сварной шов неоднороден, в нем четко выделяется слоистая структура. Кристаллизационные слои, в свою очередь, состоят из трех участков:
✓ нижнего, содержащего незначительное количество серы, фосфора и углерода. Этот участок, отличающийся наиболее выраженным почернением при травлении, образуется в процессе кристаллизации тонкого слоя жидкого металла, прилегающего к оплавленной поверхности, в который названные элементы проникли из соседних участков основного металла;
✓ среднего, в котором содержится примерно такое же количество серы, фосфора и углерода, как и в металле шва. Он кристаллизуется из расплавленного металла исходного состава, бывает самым широким и характеризуется достаточно однородным почернением при травлении;
✓ верхнего, содержащего наименьшее количество серы, углерода и фосфора и дающего ослабленное почернение при травлении.
Последующие кристаллизационные слои формируются таким же образом.
Не менее важное явление, которое сопровождает процесс сварки, – это диссоциация газов, при которой молекулы газа переходят в атомарное состояние (H2 → 2H, O2 → 2O, N2 → 2N). При этом активность атомов кислорода, водорода и азота значительно возрастает, они легче растворяются в расплавленном металле, увеличивая его хрупкость, уменьшая пластичность и т. д.
Разложению подвергаются молекулы и других веществ, например плавиковый шпат, имеющийся в составе электродных покрытий, под воздействием высокой температуры распадается на фтористый кальций и свободный фтор (CaF2 → CaF + F), причем последний при достижении температуры 6000 °C активно диссоциируется. Наряду с минусами, которые несет свободный фтор (в его присутствии условия горения сварочной дуги изменяются в худшую сторону), есть и положительный момент: он образует с водородом устойчивое соединение, т. е. риск образования газовых пор снижается, что улучшает свойства металла шва.
Для понимания особенностей сваривания металлов необходимо иметь представление об основных химических реакциях, которые протекают в зоне сварки.
Сам процесс в упрощенной форме выглядит так: под воздействием высокой температуры электрической дуги кромки сваривающихся металлов, электродного металла и флюса расплавляются. В ходе этого формируется сварочная ванна, вокруг которой находится относительно холодный металл, причем его толщина может быть значительной, и которая покрыта расплавленным шлаком. В результате при сварке наблюдается взаимодействие между расплавленным металлом с одной стороны и шлаком, атмосферным воздухом и выделяющимися в процессе плавления газами – с другой. Начало этого процесса отмечается с того момента, как только появляются первые капли металла электрода, а его завершение знаменуется полным охлаждением металла шва.
Основными составляющими газовой среды, в которой протекает процесс сварки, являются CO2, CO, H2O, H2, O2, N2 и продукты их диссоциации – OH, H, N, O.
Кроме того, здесь присутствуют пары металла и шлака.
Источники кислорода – окружающий воздух и электродное покрытие. При взаимодействии кислорода с расплавленным металлом железо окисляется, образуя оксиды – закись железа FeO (II), окись железа Fe2O3 (III), закись-окись железа Fe3O4 (с содержанием O2 22,27, 30,06 и 27,64 % соответственно), что иллюстрируется следующими реакциями:
2Fe + O2 ↔ 2FeO;
Fe + O ↔ FeO;
4Fe + 3 O2 ↔ 2Fe2O3;
3Fe + 2 О2 ↔ Fe2O4.
Из оксидов в железе растворяется лишь закись. Окись и закись-окись практически не растворимы, вследствие чего их влияние на свойства железа не отмечается, но при определенных условиях они, присутствуя на неподготовленных кромках свариваемых металлов (в ржавчине, окалине), превращаются в закись согласно реакциям:
Fe2O3 + Fe = 3FeO;
Fe3O4 + Fe = 4FeO.
В этом случае закись железа растворяется в расплавленном металле и шлаке, что в сводных швах проявляется в виде пор (при охлаждении металла закись железа выпадает из раствора, но если скорость этого процесса высока, то закись сохраняется в растворе и формирует прослойки шлака между зернами металла), которые снижают качество сварки. Для уменьшения растворимости закиси (она зависит от содержания углерода в стали и температуры: при повышении первого снижается, при возрастании второй – увеличивается) в металле важно, чтобы ее концентрация в шлаке была низкой. Тогда закись будет переходить в шлак.
В зоне так называемой дуги имеются углекислый газ CO2 и пары воды H2O, которые тоже принимают участие в окислении железа, поскольку при их диссоциации выделяется активный кислород:
Fe + CO2 ↔ FeO + CO;
Fe + H2O ↔ FeO + H2.
Кроме того, металл окисляется под воздействием окислов кремния (SiO2) и марганца (MnO).
Чтобы снизить концентрацию кислорода в расплавленном металле сварочной ванны, прибегают к введению раскислителей, степень сродства которых к кислороду (степень активности окисления элемента кислородом) больше, чем у металла сварочной ванны.
Из воздуха в зону сварки поступает азот, который в зоне сварочной дуги присутствует и в атомарном, и в молекулярном, и в ионизированном состояниях. Его растворимость в железе определяется температурой. В процессе охлаждения шва азот выделяется из раствора, вступает в реакцию с металлом шва, в результате чего образуются такие химические соединения, как нитриды железа, марганца и кремния (Fe2 N, Fe4 N, MnN, SiN). Если охлаждение проходит с большой скоростью, то азот, не успевая полностью выделиться, вместе с металлом входит в перенасыщенный твердый раствор, что, с одной стороны, резко повышает прочность шва, а с другой – становится причиной постепенного старения металла шва и негативно сказывается на его механических свойствах (он утрачивает пластичность). Поэтому необходимо принимать меры по недопущению проникновения азота в зону сварочной ванны, что возможно, например, при осуществлении сварки в среде защитного газа.
При диссоциации водяных паров (они проникают в зону дуги из воздуха, флюса и др.), которая развивается в зоне сварки под воздействием высокой температуры, образуется еще один газ – водород. Он может быть и молекулярным, и атомарным, причем последний хорошо растворяется в расплавленном металле, особенно при повышении температуры. Когда она поднимается до 2400 °C, количество водорода составляет 43 см3 на 100 г металла (это максимальное значение).
По способности растворять водород металлы делятся на две группы:
✓ металлы, не вступающие в соединения с водородом (железо, никель, медь и др.);
✓ металлы, образующие при взаимодействии с водородом гидриды (ванадий, титан, редкоземельные элементы и др.).
Присутствующие в металле легирующие элементы по-разному воздействуют на растворимость водорода – могут либо повышать ее, либо понижать. К первым относятся титан и ниобий, а ко вторым – хром, алюминий, а также кремний и углерод.
При охлаждении металла атомарный кислород переходит в молекулярное состояние. Но, если кристаллизация протекает с высокой скоростью, водород не может полностью выделиться из металла, что негативно отражается на качестве шва, металл которого приобретает пористость, становится менее пластичным, усиливается трещинообразование и т. п.
Чтобы минимизировать концентрацию водорода в сварочной ванне, вводят элементы, которые вступают в реакцию с ним и образуют нерастворимые соединения (например, фтористый водород), либо применяют окисление сварочной ванны.
Из всего сказанного следует вывод: физико-химические процессы, которые наблюдаются в зоне дуги, существенно влияют на качество металла сварного шва и, следовательно, всего соединения. Поэтому требуется принимать меры, защищающие расплавленный металл сварочной ванны от нежелательного воздействия на него перечисленных газов. Названный способ, предполагающий осуществление сварки в среде защитных газов, а также создание шлаковой оболочки над ванной расплавленного металла, оказывает положительное влияние, но полностью защитить металл от проникновения кислорода и образования в нем соединений с ним это не может. Более эффективным оказывается раскисление металла и извлечение из сварочной ванны оксидов.
В качестве раскислителей металла сварочной ванны используют алюминий, углерод, титан, кремний и марганец, поскольку они имеют значительное сродство к кислороду. Данные элементы вводят в расплавленный металл одним из трех способов – в виде:
✓ электродной проволоки или присадки;
✓ флюса;
✓ электродного покрытия.
Они взаимодействуют с окислами металла. Раскислители вводят в сварочную ванну в виде ферросплавов (ферротитана, ферромарганца и др.), входящих в состав электродного покрытия или флюса. Расплавляясь, они практически целиком переходят в шлак.
Перечисленные выше раскислители ведут себя совершенно по-разному, поэтому одним из них отдают предпочтение чаще, а другие применяют реже. К последним относится алюминий, поскольку он образует тугоплавкие соединения с кислородом, которые придают стали нежелательные качества, в частности склонность к трещинообразованию. Тем не менее при его использовании взаимодействие протекает в соответствии с реакцией:
3FeO + 2Al = 3Fe + Al2O3.
Очень активным раскислителем является титан, поэтому его применяют довольно часто. Он вводится в жидкий металл в составе электродных покрытий и взаимодействует с кислородом согласно реакции:
2FeO + Ti = 2Fe + TiO2.
Кроме того, титан уменьшает содержание азота в расплавленном металле, так как образует нитриды.
Хорошим раскислителем является кремний, который присутствует в электродных покрытиях и флюсах и взаимодействует с кислородом по следующей реакции:
2FeO + Si = 2Fe + SiO2.
Одновременно с этим в жидком металле идет реакция образования силикатов (SiO2 + FeO = FeO SiO2), которые вместе с оксидом двухвалентного железа не растворяются в железе и переходят в шлак.
Раскисление углеродом протекает по реакции:
FeO + C = Fe + CO.
Оксид углерода – это газообразное соединение, в стали оно не растворяется, выделяясь из нее в виде пузырьков. До начала кристаллизации это выглядит как кипение вещества, сопровождающееся разбрызгиванием металла, который при этом очищается от различных металлических включений. Кипение металла во время охлаждения – явление негативное, так как при высокой скорости кристаллизации часть оксида остается в металле шва, образуя поры. Чтобы предотвратить возникновение газовых пор, в сварочную ванну вводят кремний, причем его количество должно быть достаточным для подавления раскисляющего действия углерода.
Самый широко применяемый раскислитель – марганец, входящий в качестве компонента во флюсы и электродные покрытия и действующий по реакции:
FeO + Mn = Fe + MnO.
Как и оксид железа (FeO), оксид марганца вступает во взаимодействие с оксидом кремния, образуя не растворяющийся в стали силикат (MnO + SiO2 = MnO SiO2). Помимо этого, результатом реакции с сульфидом железа (FeS + Mn = MnS + Fe) является сернистый марганец, который, будучи не растворимым в стали, переходит в шлак и освобождает металл от примесей серы (она попадает в сварочную ванну из разных источников – основного металла, сварочной проволоки, флюса и др.).
Виды сварки
Напомним, что получение неразъемного соединения твердых материалов в процессе их местного плавления или пластического деформирования называется сваркой. Металлы и сплавы, как уже было сказано, являются твердыми кристаллическими телами, состоящими из кристаллитов, между которыми существуют межатомные и межмолекулярные силы взаимодействия. При обычных условиях между силами отталкивания и притяжения наблюдается равновесие. Под воздействием энергии, направленной извне (это энергия активации), оно нарушается. В зависимости от того, как именно активируются межатомные связи для формирования неразъемного соединения, сварка подразделяется на:
✓ сварку плавлением. В соответствии со способом нагрева электросварка плавлением представлена таким видами, как электродуговая, электрошлаковая, электроконтактная, электронно-лучевая. При этом жидкий металл расплавленных кромок перемешивается с образованием общего объема (сварочной ванны), из которого образуется металл шва. Это происходит и в результате использования присадочного металла. Источники локального нагрева бывают различными. Например, это могут быть электрическая дуга, плазма, горелка, энергия электронного или плазменного излучения, печь и др.;
✓ сварку давлением, при которой сварное соединение образуется благодаря исключительно деформированию свариваемых частей (в некоторых случаях нагрузка может сочетаться с местным нагреванием). Это возможно за счет применения статической или ударной нагрузки, например при сварке взрывом, ультразвуком или в процессе холодной сварки. В ходе пластической деформации на участке свариваемых кромок (он называется зоной соединения) возникает трение, которое способствует формированию межатомных связей между частями.
Для соединения двух металлов в единое целое необходимо, чтобы расстояние между их атомами сократилось настолько, чтобы силы взаимного притяжения начали активизироваться. Это достижимо при условии, что промежуток между атомами составляет 4 × 10–8 см, что возможно, если:
✓ не нагревая детали, сжать их с приложением больших усилий, что характерно исключительно для пластичных металлов, например для алюминия;
✓ одновременно нагреть и сжать детали, прикладывая умеренное усилие;
✓ в зоне соединения нагреть детали до расплавления, не прибегая к сжатию, что и происходит при сварке металлов и сплавов.
В соответствии с этим сварка металлов классифицируется на основе различных признаков:
✓ физических;
✓ технических;
✓ технологических. В основе классификации по физическим признакам лежит форма энергии, которая применяется для создания сварного соединения.
Согласно ГОСТу 19521–74 можно выделить 3 класса сварочных процессов:
1. Термический, при котором в зоне сварки под воздействием тепловой энергии рабочие части металла соединяются посредством плавления. Сюда входят следующие разновидности сварки: а) дуговая. Этот вид сварки классифицируется по различным признакам (Ручная дуговая сварка. М.: Высшая школа, 1981), представленным на рис. 1.
С применением электродуговой сварки осуществляется примерно 65 % сварочных работ, при которых могут использоваться как плавящиеся (металлические), так и неплавящиеся (угольные) электроды (рис. 2).
Первый способ был разработан Н. Г. Славяновым, а второй – Н. Н. Бенардосом.
Участок на границе расплавленной кромки называется зоной плавления. Ее ширина измеряется микрометрами, но несмотря на такие размеры прочность сварного соединения во многом зависит от нее.
По Славянову, кромки и электрод под воздействием сварочной дуги расплавляются одновременно. Образующаяся при этом сварочная ванна заполняет зазор между соединяемыми деталями, а после кристаллизации превращается в сварной шов.
Рис. 1. Классификация дуговой сварки
Чтобы улучшить качество наплавляемого металла, на электрод наносится особое покрытие, которое, расплавившись, превращается в слой шлака, покрывающий жидкий металл. В результате этого, во-первых, в шлак переходят вредные примеси, присутствующие в расплавленном металле, а во-вторых, шлак защищает сварочную ванну от проникновения в нее кислорода и азота из атмосферного воздуха.
К электроду, зафиксированному в электродержателе, ток (при этом способе дуговой сварки он может быть как постоянным, так и переменным) поступает по электрическому проводу, а к деталям – через второй провод, закрепленный зажимом.
Рис. 2. Электродуговая сварка: а – плавящимся электродом: 1 – деталь; 2 – сварочная дуга; 3 – зажим; 4 – электрод; 5 – электродержатель; 6 – провод; 7 – кромка; б – неплавящимся электродом: 1 – деталь; 2 – присадочный материал; 3 – электрод; 4 – электродержатель; 5, 6 – провод; 7 – сварочная дуга
В методе, разработанном Бенардосом, используется неплавящийся электрод, сварочная ванная создается за счет металлического прутка, расплавляющегося под воздействием сварочной дуги. В отличие от первого способа здесь используется постоянный ток. При сварке стали он не всегда дает результат нужного качества, поэтому в основном находит применение при сварке алюминия, меди, тонколистовой стали и наплавке твердых сплавов;
б) электронно-лучевая. Для ее осуществления необходима особая камера, в которой создается вакуум. Кромки свариваемых деталей расплавляются сфокусированным пучком электронов, которые ударяются в так называемое пятно нагрева, в результате чего кинетическая энергия их торможения переходит в теплоту. При этом температура в фокусе достигает 10 000 °C;
в) электрошлаковая, при которой основной и присадочный материалы расплавляются теплом, которое выделяется при пропускании электрического тока через расплавленный шлак на протяжении всего процесса. Этот вид сварки различается по виду и количеству электродов, наличию его колебаний и т. д. Данный способ используется для сварки крупногабаритных заготовок;
г) плазменная. При сварке в столб дуги постоянно поступает неионизированный газ. Под ее воздействием он последовательно нагревается, ионизируется и трансформируется в плазменную струю, которая уплотняется вихревым потоком газа. Образуется источник тепловой энергии, концентрация которого такова, что достаточна для сваривания металла;
д) световая, при которой сваривание деталей (металлов и отдельных неметаллических материалов) обеспечивает концентрированный луч – монохроматический (при лазерной сварке), солнечный (при гелиосварке) или искусственный полихроматический;
е) индукционная, при которой металл, нагретый токами высокой частоты, сдавливается. Данный способ практикуется при сварке труб;
ж) термитная. Для ее осуществления свариваемые части кладут в огнеупорную форму, на них ставят тигель, в который помещают термит (порошок из смеси алюминия с железной окалиной). В процессе реакции восстановления выделяется большое количество тепла (реакция относится к экзотермическим), а температура металла достигает 2000 °C. В результате этого жидкий металл оплавляет кромки частей и затекает в промежуток между ними. Кристаллизовавшись, он дает сварочный шов;
з) газовая, основанная на том, что основной и присадочный металлы свариваются с помощью высокотемпературного газокислородного пламени. Для этой цели используются различные газы – ацетилен, природный газ, водород и др. Чаще всего применяется ацетиленокислородная сварка, в которой используется пламя инжекционной горелки. Роль присадочного материала играют прутки или проволока из металла, схожего по составу с основным. По качеству этот вид сварки уступает электродуговой;
и) литейная. Этим способом сваривают изделия из благородных металлов и проч. В современном производстве к такому виду сварки прибегают редко – только для исправления чугунных отливок. Суть сварки состоит в следующем: зону сварки заливают расплавленным в тигле металлом, после чего формуют шов.
2. Термомеханический, который включает сварку и с использованием тепловой энергии, и с применением давления. Это такие виды сварки, как: а) контактная, осуществляемая тремя способами, например встык, что практикуется для соединения частей с малыми сечениями. Сначала гидравлический пресс сжимает кромки, потом с помощью электрического тока металл на кромках нагревается до пластического состояния и сваривается;
б) индукционно-прессовая, при которой под воздействием токов высокой частоты соединяемые части или детали, расположенные под определенным углом друг к другу и контактирующие на участке сварки, нагреваются, расплавляются, стягиваются обжимными роликами и осаживаются. Результат – прочное соединение;
в) диффузионная, основанная на способности атомов контактирующий деталей к диффузии. Их устанавливают встык, нагревают с помощью индуктора и сжимают. Процесс проходит либо в вакууме, либо в газовой среде (для этого используются инертные газы). При этом способе достаточно довести температуру до 750–800 °C;
г) газопрессовая, при которой кромки свариваемых частей нагревают с помощью ацетиленокислородной горелки и сжимают, применяя специальный осадочный механизм;
д) термокомпрессионная, для осуществления которой необходимость расплавления материалов отсутствует. Компонент, например проволочные выводы, и подложку покрывают ковким материалом (золотом), нагревают до 300 °C и сжимают примерно на полсекунды. В результате образуется соединение по типу диффузной сварки;
е) дугопрессовая, которая находит применение при необходимости присоединить к пластине детали вроде болтов или шпилек. Когда шпилька или болт отводится от пластины, между ними возникает дуговой разряд, из-за которого температура их торцов и металла пластины повышается, они нагреваются и расплавляются. В тот момент, когда при отключенном токе шпилька или болт ударяются о пластину, они свариваются;
ж) печная, практикующаяся, например, для приваривания фланцев к трубам. Для этого стыки покрывают специальным составом (вставка между ними латунного или бронзового кольца – еще один вариант). В таком виде все помещают в электропечь, в которой при температуре 1100–1500 °C происходит сваривание;
и) термитно-прессовая, при которой соединяемые части или детали нагревают газовым пламенем и сжимают.
3. Механический, в него входят виды сварки, для осуществления которых используется комбинация механической энергии и давления. Эту группу составляют следующие виды сварки: а) холодная, в основе которой лежит способность кристаллитов металла срастаться под воздействием высокого давления. Таким способом соединяют исключительно пластичные материалы, такие как алюминий, свинец и др.;
б) ультразвуковая, при которой свариваемые части сближают и стягивают вибрирующим зажимом, через который поступают высокочастотные колебания от магнитострикционного генератора. Благодаря колебаниям состыкованные части нагреваются, после чего свариваются в процессе диффузии атомов контактирующих материалов;
в) магнитно-импульсная, для проведения которой под воздействием импульсного тока индуктора и наведенных им вихревыми токами в соединяемых частях, деталях и ином свариваемые поверхности соударяются;
г) сварка взрывом, которая используется для соединения тонких листов с более массивными (процесс называется «плакирование»), например стали с латунью. Детали укладывают друг на друга, на поверхность помещают взрывчатое вещество, которое при детонировании взрывается и соединяет их в результате соударения;
д) сварка трением, практикуемая для соединения мелких деталей, одна из которых неподвижна, а другая вращается вокруг нее (или они вращаются в разные стороны). При трении выделяется тепло, которое нагревает и сваривает детали.
Техническими признаками, на которые опирается классификация сварки металлов, являются:
✓ способы защиты металла на участке сварки. Среди используемых представлена сварка в вакууме, защитных газах (в углекислом газе, водяных парах, инертных газах и др.), воздухе, пене, по флюсу и под ним. Кроме того, возможно комбинирование способов;
✓ степень непрерывности сварочных работ. По этому признаку различаются как прерывистые, так и непрерывные способы сварки;
✓ наличие механизации процесса сварки. Сюда входят ручные, автоматизированные, механизированные и автоматические способы сварки.
О технологических признаках следует сказать, что для каждого вида сварки они разрабатываются отдельно.
Деформации и напряжения при сварке
Процесс, при котором в результате воздействия силы форма и размер твердого тела изменяют свою форму, называется деформацией.
Различаются следующие ее виды:
✓ упругая, при которой тело восстанавливает исходную форму, как только действие силы прекращается. Такая деформация, как правило, бывает незначительной, например для низкоуглеродистых сталей она составляет не более 0,2 %.
✓ остаточная (пластическая), возникающая в том случае, если тело после устранения воздействия не возвращается в первоначальное состояние. Этот вид деформации характерен для пластичных тел, а также отмечается при приложении к телу очень значительной силы. Для пластической деформации нагретого металла, в отличие от холодного, требуется меньше нагрузки.
Степень деформации зависит от величины приложенной силы, т. е. между ними прослеживается прямо пропорциональная зависимость: чем больше сила, тем сильнее деформация.
Силы, которые действуют на изделие, делятся на:
✓ внешние, к которым относятся собственно вес изделия, давление
газа на стенки сосуда и проч. Такие нагрузки могут быть статическими (не изменяющимися по величине и направлению), динамическими (переменными) или ударными;
✓ внутренние, возникающие в результате изменения структуры металла, которое возможно под воздействием внешней нагрузки или, например, сварки и др. Рассчитывая прочность изделия, внутреннюю силу обычно называют усилием.
Величину усилия характеризует и напряжение, которое возникает в теле в результате этого усилия. Таким образом, между напряжением и деформацией имеется тесная связь.
Относительно сечения металла действующие на него силы могут иметь разное направление. В соответствии с этим возникает напряжение растяжения, сжатия, кручения, среза или изгиба (рис. 3).
Появление деформации в сварных конструкциях объясняется возникновением внутренних напряжений, причины которых могут быть разными и подразделяются на две группы.
Рис. 3. Виды напряжения, изменяющие форму металла и сплава (стрелки указывают направление уравновешивающих сил): а – растяжение; б – сжатие; в – кручение; г – срез; д – изгиб
К первой относятся неизбежные причины, которые обязательно возникают в ходе обработки изделия. При сварке это:
1. Кристаллизационная усадка наплавленного металла. Когда он переходит из жидкого состояния в твердое, его плотность возрастает, поэтому изменяется и его объем (это и называется усадкой), например уменьшение объема олова в таком случае может достигать 26 %. Данный процесс сопровождается растягивающими напряжениями, которые развиваются в соседних участках и влекут за собой соответствующие им напряжения и деформации. Усадка измеряется в процентах от первоначального линейного размера, а каждый металл или сплав имеет собственные показатели (табл. 1).
Таблица 1
Линейная усадка некоторых металлов и сплавов
Напряжения, причиной которых является усадка, увеличиваются до тех пор, пока не наступает момент перехода упругих деформаций в пластические. При низкой пластичности металла на наиболее слабом участке может образоваться трещина. Чаще всего таким местом бывает околошовная зона.
При сварке наблюдаются два вида усадки, которые вызывают соответствующие деформации:
а) продольная (рис. 4), которая приводит к уменьшению длины листов при выполнении продольных швов. При несовпадении центров тяжести поперечного сечения шва и сечения свариваемой детали усадка вызывает ее коробление;
б) поперечная (рис. 5), следствием которой всегда является коробление листов в сторону более значительного объема наплавленного металла, т. е. листы коробятся вверх, в направлении утолщения шва. Фиксация детали воспрепятствует деформации от усадки, но станет причиной возникновения напряжений в закрепленных участках.
Рис. 4. Продольная усадка и деформации при различном расположении шва по отношению к центру тяжести сечения элемента: а – при симметричном; б, в – при несимметричном; 1 – график напряжений; 2 – шов; ΔL – деформация; b – ширина зоны нагрева; – напряжение сжатия; + – напряжение растяжения; г – при несимметричном; 2 – шов
Величина деформаций при сварке зависит, во-первых, от размера зоны нагрева: чем больший объем металла подвергается нагреванию, тем значительнее деформации. Следует отметить, что для различных видов сварки характерны разные по размеру зоны нагрева и деформации, в частности при газовой сварке кислородно-ацетиленовым пламенем она больше, чем при дуговой сварке.
Рис. 5. Поперечная усадка и деформации: а – деформации до и после сварки; б – график распределения напряжения (О – центр тяжести поперечного сечения шва; – напряжение сжатия; + – напряжение растяжения)
Во-вторых, имеют значение размер и положение сварного шва. Величина деформации тем существеннее, чем длиннее шов и больше его сечение, определенную роль играют также несимметричность шва и главной оси сечения свариваемого изделия.
В-третьих, если деталь сложна по своей форме, то швов на ней бывает больше, поэтому можно предположить, что напряжения и деформация обязательно проявятся.
2. Неравномерный нагрев свариваемых частей или деталей. Как известно, при нагревании тела расширяются, а при охлаждении – сужаются. При сварке используется сосредоточенный источник тепла, например сварочная дуга или сварочное пламя, который с определенной скоростью перемещается вдоль шва и поэтому неравномерно нагревает его. Если свободному расширению или сокращению мешают какие-либо препятствия, то в изделии развиваются внутренние напряжения. Более холодные соседние участки и становятся такой помехой, поскольку их расширение выражено в меньшей степени, чем у нагретых участков. Поскольку термические напряжения, ставшие следствием неравномерного нагревания, развиваются без внешнего воздействия, то они называются внутренними, или собственными. Наиболее важными являются те из них, которые возникают при охлаждении изделия, причем напряжения, действующие вдоль шва, менее опасны, поскольку не меняют прочности сварного соединения, в отличие от напряжений, перпендикулярных шву, которые приводят к образованию трещин в околошовной зоне;
3. Структурные трансформации, которые развиваются в околошовной зоне или металле шва. В процессе нагревания и охлаждения металла размер и расположение зерен относительно друг друга изменяются, что отражается на объеме металла и становится причиной возникновения внутренних напряжений со всеми вытекающими последствиями, представленными в первом пункте. В наибольшей степени этому подвержены легированные и высокоуглеродистые стали, предрасположенные к закалке; низкоуглеродистые – в меньшей. В последнем случае при изготовлении сварных конструкций это явление может не приниматься в расчет.
Вторую группу составляют сопутствующие причины, которые можно предупредить или устранить. К ним относятся:
✓ ошибочные конструктивные решения сварных швов, например небольшое расстояние между соседними швами, слишком частое пересечение сварных швов, ошибки в выборе типа соединения и др.;
✓ несоблюдение техники и технологии сварки, в частности плохая подготовка кромок металла, нарушение режима сварки, использование несоответствующего электрода и др.;
✓ низкая квалификация исполнителя.
Величина деформаций при сварке во многом определяется теплопроводностью металла. Между ними существует прямо пропорциональная зависимость: чем выше теплопроводность, тем более равномерно распространяется поток тепла по сечению металла, тем менее значительными будут деформации. Например, при сварке нержавеющей стали как менее теплопроводной возникают большие деформации, чем при сварке низкоуглеродистых сталей.
Напряжения и деформации, которые имеют место исключительно в ходе сварки, а по ее окончании исчезают, называются временными; а если они сохраняются после охлаждения шва – остаточными. Практическое значение последних особенно велико, поскольку они могут сказываться на работе детали, изделия, всей конструкции. Если деформации носят локальный характер (например, на отдельных участках появляются выпучины, волнистость и др.), то они называются местными; если в результате деформации терпят изменения геометрические оси и размеры изделия или конструкции в целом – общими.
Кроме того, деформации могут возникать как в плоскости изделия, так и вне ее (рис. 6).
Рис. 6. Некоторые виды деформации: а – в плоскости сварного соединения; б – вне плоскости сварного соединения; 1 – форма изделия до сварки; 2 – форма изделия после сварки
Для уменьшения деформаций и напряжений при сварке придерживаются следующих конструктивных и технологических рекомендаций:
1. При подборе материала для сварных конструкций руководствуются правилом: использовать такие марки основного металла и электродов, которые либо не имеют склонности к закалке, либо подвержены ей в наименьшей степени и способны давать пластичный металл шва.
2. Избегают закладывать в конструкциях (особенно в ответственных), тем более рассчитанных на работу при ударах или вибрации, многочисленные сварные швы и их пересечения, а также использовать короткие швы замкнутого контура, поскольку в этих зонах, как правило, концентрируются собственные напряжения. Чтобы снизить тепловложения в изделие или конструкцию, оптимальная длина катетов швов должна быть не более 16 мм.
3. Стараются симметрично располагать ребра жесткости в конструкциях и сводят их количество к минимуму. Симметричность необходима и при расположении сварных швов, так как это уравновешивает возникающие деформации (рис. 7), т. е. последующий слой должен вызывать деформации, противоположные тем, которые развились в предыдущем слое.
Рис. 7. Последовательность наложения сварных швов для уравновешивания деформаций
Эффективен и способ обратных деформаций (рис. 8). Перед сваркой в конструкции (как правило, швы в ней должны располагаться с одной стороны относительно оси либо на различных расстояниях от нее) вызывают деформацию, обратную той, что возникнет в ней при сварке.
4. Ограничивают применение таких способов соединения, как косынки, накладки и др.
5. По возможности отдают предпочтение стыковым швам, для которых концентрация напряжений не столь характерна.
6. Предполагают минимальные зазоры на разных участках сварки.
Рис. 8. Сваривание гнутых профилей как пример применения обратной деформации
7. В сопряжениях деталей предусматривают возможность свободной усадки металла шва при охлаждении в отсутствие жестких заделок.
8. Практикуют изготовление конструкций по секциям, чтобы потом сваривать готовые узлы. Если последние имеют сложную конфигурацию, то заготавливают литые и штампованные детали, чтобы снизить неблагоприятное воздействие жестких связей, которые дают сварные швы.
9. Выбирают технологически обоснованную последовательность (рис. 9) выполнения сварных швов, при которой допускается свободная деформация свариваемых деталей. Если, например, требуется соединить листы, то в первую очередь выполняют поперечные швы, в результате чего получают полосы, которые потом сваривают продольными швами. Такая очередность исключает жесткую фиксацию соединяемых частей листов и позволяет им свободно деформироваться при сварке.
Рис. 9. Оптимальная последовательность выполнения сварных швов при сварке листов: а – настила; б – двутавровой балки
Направление ведения сварного шва также имеет значение. Если вести его на проход либо от центра к концам, то в середине шва разовьются поперечные напряжения сжатия; если двигаться от краев к центру, то в середине шва не избежать появления поперечных напряжений растяжения, следствием которых будут трещины в околошовной зоне или самом шве (рис. 10).
10. При соединении частей из металла значительной толщины (более 20–25 мм) применяют многослойную дуговую сварку, выполняя швы горкой или каскадом (рис. 11). Шов горкой накладывается следующим образом: первый слой имеет длину примерно 200–300 мм, второй длиннее первого в 2 раза, третий длиннее второго на 200–300 мм и т. д. Достигнув «горки», сварку продолжают в обе стороны от нее короткими валиками. Такой способ способствует поддержанию участка сварки в нагретом состоянии. В результате тепло распространяется по металлу более равномерно, что снижает напряжения.
Рис. 10. Напряжение в продольном сечении шва при сварке (– напряжение сжатия; + – напряжение растяжения): а – на проход; б – от концов к центру
11. Помогает снизить коробление швов соединяемых конструкций и деталей выполнение швов в обратно-ступенчатом порядке (рис. 12). Для этого протяженные швы делят на части длиной 150–200 мм и сваривают их, ведя каждый последующий слой в направлении, обратном предыдущему слою, причем стыки следует размещать вразбежку. Причина таких действий заключается в том, что деформации в соседних участках будут противоположно направленными по отношению друг к другу и равномерными, поскольку металл будет прогреваться равномерно.
Рис. 11. Очередность наложения швов при многослойной дуговой сварке (размеры указаны в миллиметрах): а – горкой; 1 – ось «горки»; 2 – толщина металла; б – каскадом
Рис. 12. Последовательность наложения обратнопоступательного шва
12. Рассчитывают адекватный тепловой режим сварки. Если при работе есть возможность перемещать изделие (деталь) или если основной металл предрасположен к закалке, тогда используют более сильный тепловой режим, благодаря чему объем разогреваемого материала возрастает, а сам он остывает медленнее. В определенных ситуациях (если сварка проводится при пониженной температуре воздуха, металл имеет большую толщину или является сталью, склонной к закалке, и др.) помогают предварительный или сопровождающий подогрев либо околошовной зоны, либо всего изделия. Температура, до которой следует довести металл, зависит от его свойств и составляет 300–400 °C для бронзы, 250–270 °C для алюминия, 500–600 °C для стали, 700–800 °C для чугуна и т. д.
Если сваривают жестко зафиксированные детали или конструкции, тогда применяют менее интенсивный тепловой режим и варят электродами, способными давать пластичный металл шва.
13. Осуществляют отжиг и нормализацию изделия или конструкции после окончания сварки (последнее полностью ликвидирует напряжения). При отжиге температуру стального изделия доводят до 820–930 °C, выдерживают (общее время составляет примерно 30 минут, длительная выдержка нежелательна, поскольку приводит к росту зерен) и постепенно охлаждают (на 50–75 °C в час), доводя температуру до 300 °C. Это дает ряд преимуществ: во-первых, шов приобретает мелкозернистую структуру с улучшенным сцеплением зерен, благодаря которой металл шва и околошовной зоны становится более пластичным, во-вторых, металл шва получается менее твердым, что имеет большое значение для последующей обработки резанием или давлением; в-третьих, это полностью снимает внутренние напряжения в изделии.
Основные отличия нормализации от полного отжига – более высокая скорость охлаждения, для чего температура, до которой нагревают изделие, на 20–30 °C превышает критическую, и то, что выдержка и охлаждение проводятся на воздухе.
14. Избегают планировать в изделиях и конструкциях сварные швы, неудобные для выполнения, например вертикальные, потолочные.
15. Обеспечивают минимальную погонную энергию, достижимую при высокой скорости сварки в сочетании с наименьшими поперечными сечениями швов.
16. Уменьшают число прихваток и их сечения.
17. Проковывают швы в холодном или горячем состоянии, что уменьшает внутренние напряжения и увеличивает прочность конструкции.