Вы здесь

Руководство к практическим занятиям по цитологии. Занятие № 1 (Т. В. Архипова, 2016)

Занятие № 1

Тема занятия: «Световая микроскопия как обязательный цитологический метод. Морфологическое разнообразие эукариотических клеток».


Цель занятия:

1. Ознакомить студентов с основными принципами световой микроскопии; рассмотреть понятие «разрешающая способность светового микроскопа».

2. Изучить общий план строения эукариотических клеток на уровне световой микроскопии, оценить размеры клеток животных. Студенты должны усвоить морфологические понятия: ядро, цитоплазма, мембрана, оболочка, зернистость цитоплазмы, кариоплазма, ядрышко, глыбки хроматина, многоядерные клетки.

3. Показать морфологическое разнообразие эукариотических клеток животных в зависимости от их функций.

Объяснение преподавателя
Основы световой микроскопии

Любой современный световой микроскоп имеет в своем составе три оптические системы, работающие совместно: конденсор, объектив и окуляр. Конденсор представляет собой систему линз, которые позволяют сфокусировать источник освещения и осветить объект снизу так, чтобы лучи света проходили через тонкий срез. Конденсор имеет диафрагму, которая позволяет регулировать интенсивность освещения, делая его ярче или слабее.

Лучи света, пройдя через срез, фокусируются объективом. Именно объектив создает первичное увеличение объекта, дает его разрешение, позволяет увидеть мельчайшие структуры клетки. Окуляр увеличивает изображение, построенное объективом, и направляет его в глаз исследователя. Разрешение объекта остается таким, каким его сформировал объектив. Общее увеличение объекта будет равно произведению увеличения объектива на увеличение окуляра. На занятиях по цитологии чаще всего используется объектив с увеличением ×40 и окуляр, дающий увеличение в 15 раз, тогда общее увеличение будет записываться: 40×15. Нетрудно посчитать, что это увеличение в 600 раз. Принято записывать увеличение препарата 40×15, такая запись показывает разрешение объекта, какие детали должны быть выявлены на препарате, объектив с каким увеличением использовался для анализа препарата.

Световой микроскоп, как любой оптический прибор, имеет важную характеристику – разрешающую способность. Это минимальное расстояние между двумя точками, которые видны раздельно. Для современных световых микроскопов разрешающая способность для биологических объектов равна 0,2 мкм, что соответствует средним размерам митохондрий. То есть под световым микроскопом при максимальном его разрешении митохондрии будут видны в виде точек с минимальными размерами. Примерно также будут выглядеть и многие другие органеллы цитоплазмы животной клетки. В растительной клетке есть более крупные структуры – хлоропласты и другие пластиды, которые имеют размер несколько микрометров.

Причиной того, что мелкие структуры клетки видны в световой микроскоп нечетко, является эффект оптической дифракции. В микроскопе яркая точка будет увеличена и выглядит как яркое пятно. Два близлежащих точечных объекта дают перекрывающиеся изображения пятен, которые сливаются и воспринимаются как одно пятно. Разрешающая способность светового микроскопа ограничена, прежде всего, длиной волны света, используемого для освещения объекта, а также способностью оптической системы воспринимать то или иное количество света.

Студенческий микроскоп имеет два объектива с увеличением ×10 и ×40. Объективы, дающие увеличение не более чем в 40 раз, являются воздушными, и показатель преломления воздуха равен единице. Большее увеличение достигается объективами, где преломляющей средой являются вода или иммерсионное масло.

При работе с микроскопами следует учитывать, что объективы рассчитаны на определенную длину тубуса, поэтому не следует переносить объективы с одного типа микроскопа на другой.

Каждый объектив характеризуется определенной величиной рабочего расстояния. Это расстояние от объектива до препарата, оно выражается в миллиметрах. Объектив с увеличением ×10 имеет рабочее расстояние около 1 см, а объектив ×40 – 0,41 мм. Поэтому в процессе работы следует очень осторожно пользоваться винтом фокусировки объектива, особенно при работе с объективом, дающим большое увеличение.

Механический узел микроскопа состоит из станины, на которой крепится предметный столик с препаратоводителем, револьвер с объективами и тубус с окуляром. Микроскоп имеет винтовые механизмы для фокусировки микроскопа и перемещения конденсора. Грубая и точная фокусировки осуществляются разными винтами.

Основные правила работы с микроскопом

1. Микроскоп ставят на стол так, чтобы окуляр приходился против левого глаза наблюдателя, направо на столе располагают альбом для рисунков и карандаши.

2. Переносить микроскоп можно только двумя руками. Одной рукой поддерживают основание штатива микроскопа, а другой – берутся за изгиб тубусодержателя.

3. Каждый раз, когда наблюдатель прерывает работу с микроскопом, осветитель выключают. Это позволяет сохранить лампочку накаливания от быстрого перегорания.

4. Прежде всего следует убедиться, что препарат лежит покровным стеклом вверх. Начинать микроскопию необходимо с малого увеличения (объектив ×10). При переходе к большому увеличению (объектив ×40) следует слегка приподнять объективы с помощью макровинта и перевести револьвер с объективами на нужное увеличение. После этого опустить объектив с помощью макровинта до соприкосновения со стеклом, глядя на объектив сбоку, и только затем начинать фокусировку микровинтом, осторожно поднимая объектив, постоянно глядя в окуляр. Рабочее расстояние от объектива до препарата составляет примерно 0,4 мм. При необходимости препарат передвигают с помощью винтов препаратоводителя.

5. Для изучения препаратов огромное значение имеет освещение объекта. При хорошем освещении видны границы клеток. Добиваются наиболее равномерного освещения поля зрения под микроскопом, устанавливая или убирая откидную линзу конденсора. При малом увеличении пользуются матовым стеклом. Для повышения контрастности изображения слегка прикрывают диафрагму конденсора.

6. После окончания работы препарат снимают со столика, объективы ставят в нерабочее положение.

Вопросы

1. Перечислите компоненты микроскопа, задействованные в построении изображения. Какую функцию они выполняют?

2. Что такое разрешающая способность светового микроскопа? От чего она зависит?

Лабораторная работа
Общий план строения эукариотической клетки животных на уровне световой микроскопии

Постоянный препарат «Клетки печени аксолотля». Окраска: гематоксилин – эозин, размер клеток – около 60 мкм, увеличение 40×15 (рис. 1).


Рис. 1. Общий план строения эукариотической клетки под световым микроскопом. Клетка печени аксолотля. В ядре выявляются три ядрышка и небольшие глыбки хроматина, цитоплазма зернистая


В результате анализа препарата с помощью микроскопа студенты графически изображают две-три клетки, соприкасающиеся друг с другом. Для передачи цвета используются цветные карандаши. Рисунок должен быть детальным.

На рисунке отметить: границы клетки, цитоплазму, зернистость цитоплазмы, которая отражает наличие органоидов, ядро, ядрышки, глыбки хроматина, ядерный сок.

Задание выполняется под руководством преподавателя.

Самостоятельная лабораторная работа студентов
Морфологическое разнообразие эукариотических клеток

Изучить особенности строения дифференцированных эукариотических клеток человека и животных на примере следующих препаратов: 1. Нейрон спинного мозга собаки, размер клетки 50–60 мкм. Окраска – серебрение. Отметить: отростки нейрона, зернистость цитоплазмы, ядро, ядрышко. 2. Эритроцит лягушки, размер клетки 18–20 мкм. Окраска – гематоксилин – эозин. Отметить: гомогенную цитоплазму, ядро, крупные глыбки хроматина. 3. Эритроцит человека, размер клетки 7 мкм. Окраска гематоксилин – эозин. Отметить: гомогенную цитоплазму, отсутствие ядра. 4. Многоядерная клетка поперечно-полосатой мышечной ткани языка кролика, продольное сечение. Диаметр клетки более 20 мкм. Окраска – гематоксилин железный. Отметить: множественные ядра, сократительный аппарат в виде поперечной исчерченности, границы мышечного волокна.

С каждого препарата при увеличении 40×15 делается рисунок одной клетки. Отметить размеры, красители, особенности морфологии, а также функцию. Клетки с разных препаратов изображаются в масштабе друг относительно друга в соответствии с их размерами. На листе с рисунками необходимо кратко в письменной форме сделать вывод, в котором отмечается, что общего в строении всех указанных клеток и с чем связаны отличия в их строении.

Например, эукариотические клетки животных имеют размеры от 7 до 60 мкм; форма клеток разнообразна и зависит от выполняемой функции; обязательные структуры эукариотических клеток, выявляемые с помощью световой микроскопии при увеличении 40×15: ядро, цитоплазма, границы клеток, зернистость цитоплазмы, соответствующая клеточным органеллам; структуры ядра: ядерная оболочка, кариоплазма, ядрышко, глыбки хроматина. Форма клетки определяется функцией, которую она выполняет. Эритроциты человека, как и других млекопитающих, высокоспециализированные клетки, утрачивают ядро в процессе дифференцировки.

Задание на дом: история цитологии, клеточная теория, клетки прокариот и эукариот, стволовые клетки, тотипотентные и полипотентные клетки, клеточный цикл.

Задание на дом для самостоятельной работы. Выполняется письменно в тетради в виде конспекта учебника. Тема: «Основы микроскопической техники».

Вопросы для самостоятельной работы

1. Что такое микроскопическая техника?

2. Что такое фиксация и для чего она используется? Примеры фиксаторов.

3. Перечислить основные этапы приготовления постоянных препаратов

4. Что такое артефакт?

Литература

1. Верещагина В. А. Основы общей цитологии. – М.: Академия, 2007.

2. Стволинская Н. С. Цитология. – М.: Прометей, 2012.

3. Ченцов Ю. С. Цитология с элементами целлюлярной патологии. – М.: Медицинское информационное агентство, 2010.