Вы здесь

Путешествие по системному ландшафту. Глава 1. Введение в системы (Гарольд Лоусон)

Глава 1. Введение в системы

«О системе так много разговоров и так мало понимания».

Пирсиг Р. M., Дзэн и искусство ухода за мотоциклом, 1974 г.

Существует очень мало слов, которые могут иметь столько толкований, сколько имеет слово «система». Что такое система? В значительной степени это вопрос восприятия. И тем не менее, мы все используем это слово, описывая чего-либо основополагающее. Солнечная система, климатическая система, энергетическая система, политическая система, образовательная система, система технических средств, программная система, система автомобиля, финансовая система, санитарная система, система управления, градостроительная система, законодательная система, социальная система и т. д. Совершенно ясно, что системы, хотя часто и являются абстрактными по своей природе, в некотором смысле постоянно присутствуют и воздействуют на нас. Важно отметить, что некоторые системы, в частности солнечная система и климатическая система, являются природными, в то время, как все остальные системы, приведенные в качестве примера, созданы человеком.

Наше понимание систем, в частности сложных систем, в лучшем случае поверхностно, как отмечено в цитате из Пирсига [Pirsig, 1974]. Для всех систем, за исключением тривиальных, полное понимание практически невозможно. Таким образом, мы живем с тем, что наше осмысление лежит где-то между таинством и полным постижением [Flood, 1998]. Эта неопределенность часто вызывает смешанные чувства в отношении систем. Совершив путешествие, которое предлагается в этой книге, читатель сможет открыть для себя существенную часть тайны и стать более осведомленным в отношении систем а, может быть и в какой-то мере постичь их.

Системы находятся повсюду

Австрийский биолог Людвиг фон Берталанфи [von Bertalanffy, 1968], которого многие считают отцом современного системного мышления, указывает на тот факт, что системы находятся повсюду. Мы не всегда можем формализовать наше представление о системах, но мы определенно ощущаем их воздействие. Никто из нас никогда не забудет системное влияние международного финансового кризиса осенью 2008 года. Системы, тесно связанные между собой, могут оказывать сильное причинно-следственное влияние друг на друга. Давайте сначала рассмотрим историю определения и формализации систем, основополагающие системные понятия, а также вездесущность систем во всех сферах деятельности.

Системное движение

На протяжении 20-го века в области исследования систем был получен ряд ключевых результатов. В частности, во время Второй мировой войны и после нее возросло осознание важности изучения и понимания сложных сущностей, состоящих из множества элементов. Это движение становится всё более активным и привлекает всё больше внимания исследователей и практиков. Принимая во внимание сложность современного общества, можно задать вопрос: Почему для того, чтобы добиться концентрации внимания на этой жизненно важной области, понадобилось так много времени? Существует ли активное системное движение? Как оно осуществляется?

Сосредоточение внимания на целостных, холистических свойствах сущностей не является чем-то новым. В самом деле, греческие философы, в частности Аристотель, указывали на необходимость учета множества факторов для объяснения Вселенной. Так, работы Аристотеля по физике, логике, метафизике, этике, политике и биологии включали в себя наблюдения о необходимости принятия во внимание целостных свойств. Это первое представление о целостности сохранилось до 17-го века. Затем наступила научная революция. Под влиянием необходимости доказать или опровергнуть конкретную гипотезу в работах таких ученых, как Кеплер, Галилей, Бэкон и Декарт, начал развиваться научный метод.

Для научных методов, которые развивались начиная с 17-го века и в последующие годы, характерно стремление обособить один или несколько элементов изучаемого явления. Такое представление, сводящееся к элементам, которые могут быть изучены отдельно, и гипотезе, которая может быть доказана или опровергнута, фактически препятствовало развитию целостного системного мышления. Разумеется, были некоторые исключения, когда рассматривалось более широкое представление природного явления, что способствовало более широкому пониманию законов природы. Исаак Ньютон дал первое научное объяснение Вселенной с учетом движения Земли и Луны, что привело к изобретению им исчисления как математического инструмента. Ньютоновское представление превалировало вплоть до смены основной парадигмы в науке вследствие важных обобщений, представленных Альбертом Эйнштейном в его теории относительности.

В 20-х годах прошлого века Людвиг фон Берталанфи указал на аналогии между целостными свойствами биологических и других систем, и появилось современное системное движение. Л. Берталанфи применил свои научные наблюдения к большому количеству систем, в том числе к системам организационно-административного управления и к организациям [von Bertalanffy, 1968]. Чекланд [Checkland, 1993], а также Скиттнер [Skyttner, 2001] дают отличные исторические резюме системного мышления, а также научного движения, начавшегося с работ античных греков и развившихся в современные представления о системах.

Сегодня ясно, что активное системное движение существует. Это понятно, даже с учетом того, что сложно достигнуть однозначного понимания, что собой представляет системное движение, что включает в себя, и следует ли что-нибудь из него исключить. В данной книге мы рассмотрим некоторые из основных достижений системного движения с целью увидеть, как они отразились в теории и практической деятельности.

Основополагающие свойства

В данной главе мы вводим набор понятий и принципов, которые дадут вам возможность мыслить и действовать на языке систем. Понимание и использование понятий и принципов является наиболее важным аспектом данной книги, поскольку это влияет на нашу способность увидеть системные аспекты для систем любого типа и обсуждать с другими людьми проблемы и возможности, связанные с системами. Мы начнем с наиболее важной, фундаментальной концепции.

«Мы полагаем, что сущность системы – это целостность, соединение вместе различных частей и связей, которые они образуют, для получения нового целого…»

Джон Боардмэн и Брайан Сосер [Boardman and Sauser, 2008]

Первое фундаментальное понятие целостность[1] позволяет нам признать, что, как это и полагал фон Берталанфи, системы находятся повсюду. Понятие целостности приводит нас к двум следующим важным понятиям, а именно: структура и поведение.

Структура и поведение являются основными свойствами всех созданных человеком систем. Структура системы – статическое свойство, относящееся к компонентам системы и их связям между собой. Поведение – динамическое свойство, относящееся к воздействию, эффекту производимому системой в процессе функционирования.

Еще одно фундаментальное свойство, приписываемое системам, – это свойство эмерджентности, т. е. появления у системы новых качеств, которых не было у компонентов системы. Эмерджентность проявляется как в предсказуемом, так и в непредсказуемом поведении системы в процессе её функционирования и/или в особенностях взаимодействия со средой, в которой находится система. Это фундаментальное понятие отражено в следующей цитате Питера Чекланда.

«Целые сущности проявляют свойства, которые имеют смысл только применительно к целому, а не к его частям…»

Питер Чекланд [Checkland, 1999]

Независимость подхода

Вездесущность систем подразумевает, что понимание системных свойств и использование систем не зависят от того, в рамках какой дисциплины рассматриваются системы. Например, в случае сложных систем коллективное понимание динамики поведения системы наряду с различными аспектами управления её жизненным циклом часто является результатом междисциплинарных усилий. Для того чтобы нейтрализовать влияние отдельной конкретной дисциплины и сосредоточиться на системном содержании, крайне важно сформировать общую, единую основу мышления и деятельности для отдельных лиц и групп, являющихся специалистами в различных областях, имеющих различную специальную подготовку и обладающих различными знаниями, квалификацией и способностями. Важные аспекты формирования такой общей, единой, унифицированной основы показаны на рис. 1.1.


Рис. 1.1. Связь науки и инженерии со структурой и поведением


Отрасли знаний, связанные с наукой и инженерией, имеют дело с фундаментальными системными концепциями структуры и поведения. Применительно к научным дисциплинам ученый наблюдает за поведением (природных или созданных людьми систем), а затем пытается найти и описать структуры (с использованием специального «языка»), которые объясняют это поведение. Применительно к инженерным дисциплинам инженер на основании потребности в достижении определенного (специфицированного) поведения, разрабатывает и проектирует структуры, которые будучи изготовленными и введенными в строй демонстрируют способность отвечать поведенческим требованиям.

Для иллюстрации разницы в подходах к структурам и поведению рассмотрим перечисленные ниже дисциплины, некоторые из которых традиционно ассоциируются с естественными науками, другие имеют слово «наука» в названии, а третьи представляют широкое разнообразие инженерных дисциплин.




В качестве упражнения читатель может рассмотреть, как эти дисциплины отображаются в научном и техническом представлении структур и поведения, показанных на рис. 1.1. Дисциплины, приведенные в примерах, имеют научную или инженерную связь со структурами и поведением, однако это может быть не столь очевидно в других отраслях. Например, интересно поразмышлять о том, как искусство связано с наукой и инженерией. Есть по крайней мере две возможные связи:

• Структуры, доставляющие эстетическое наслаждение и являющиеся ценными в глазах наблюдающего за ними. Например, в природе радуга – привлекательная структура. А для математика привлекательной может быть структура доказательства. Для разработчика программного обеспечения привлекательным может быть понятный алгоритм, на основе которого легко обеспечить желаемое поведение.

• Еще одна связь вытекает из понятия «мастер». Им обычно характеризуют человека, искушенного в своей деятельности. В большинстве своем мастера могут создавать структуры, удовлетворяющие потребностям, и, таким образом, они профессионально становятся похожими на инженеров. Однако истинные мастера в большинстве случаев способны наблюдать, а затем на этой основе находить и описывать подходящие структуры.

Связь с искусством вводит важное понятие стиля в деятельность, связанную с системами. Читателю предлагается рассмотреть другие связи между наукой и искусством, а также инженерией и искусством. Затем рассмотрите структурные и поведенческие связи в таких дисциплинах, как медицина, психология, социология или других известных вам областях.

Системное мышление и системная инженерия

Становится ясным, что предмет всех дисциплин может быть так или иначе связан с некоторыми системными аспектами. В самом деле, у нас всех есть системное мышление и все мы системные инженеры в том смысле, что постоянно думаем и действуем в ответ на системные ситуации, которые влияют на нашу повседневную жизнь. Понимание основных концепций дисциплин «Системное мышление» и «Системная инженерия» в теории и на практике предоставляет средства для превращения систем в точку сосредоточения внимания (объект первого класса), которая может использоваться для улучшения нашей возможности разобраться со сложными системами в любой сфере деятельности.

Мышление на языке систем тесно связано с наблюдением динамического поведения систем в процессе функционирования и поэтому перекликается с научной (левой) частью рис. 1.1. Однако в противоположность научному методу, связанному с попыткой свести поведение к элементам, изучаемым изолированно друг от друга, системное мышление основано на наблюдении и описании целостного поведения множества систем и их элементов.

Совершение действий на языке систем подразумевает создание (инженерную разработку) структуры одной или нескольких систем, представляющих интерес, и поэтому тесно связано с инженерной (правой) частью рис. 1.1. Это естественным образом приводит нас к цели нашего путешествия по системному ландшафту, т. е. к объединению системного мышления и системной инженерии. Действительно, они связаны между собой. Не имеет смысла просто использовать системное мышление, не научившись оценивать альтернативные структурные улучшения и формулировать цели и составлять планы для улучшений в системах. С другой стороны, совершение действий на языке систем посредством системной инженерии без понимания причин, лежащих в основе действий и их последствий, также не имеет смысла. Итак, естественное объединение мышления и совершения действий на языке систем приводит к необходимости принятия решений и управления изменениями, что будет подробно рассмотрено в процессе нашего путешествия по системному ландшафту.

Классификация систем

Таксономия будет полезным инструментом для структурирования системного путешествия, предпринимаемого в этой книге. Поскольку полное перечисление систем в целом невозможно, постольку точка зрения на системы в значительной степени зависит от контекста. С другой стороны, в практических целях перечисление систем, представляющих интерес для достижения конкретной цели, весьма важно и может быть сделано. Вместо исчерпывающей таксономии можно использовать классификацию Чекланда [Checkland, 1993], которая обеспечивает полезную отправную точку для того, чтобы сосредоточиться на различных типах систем. Читатель должен обратить внимание, что системы могут быть отнесены к одной или нескольким из следующих четырех категорий.

Естественные (природные) системы. Эти системы имеют природное происхождение и являются таковыми в результате влияния сил и процессов, характеризующих Вселенную. Они не могут быть иными, чем есть, поскольку принципы и законы природы не являются переменчивыми.

Физические системы с установленными границами (далее – физические системы). Эти системы являются результатом сознательной разработки, направленной на удовлетворение определенной цели человека. Они состоят из физических элементов, которые имеют хорошо определенные взаимосвязи.

Абстрактные системы с установленными границами (далее – абстрактные системы). Эти системы не содержат физических артефактов, при этом они разработаны людьми, чтобы служить для некоторой разъяснительной цели. Абстрактные системы могут включать математические описания, стихи или философские системы. Подобные системы представляют собой упорядоченный продукт деятельности человеческого сознания. Определения систем, состоящих из функций и/или возможностей в качестве элементов, являются примерами абстракций, которые позднее могут быть зафиксированы в других созданных человеком системных формах, например в физической форме или в виде конкретных человеческих действий.

Системы человеческой деятельности. Эти системы наблюдаются в мире бесчисленных видов человеческих действий, которые более или менее упорядочены с учетом некоторой цели или миссии, лежащей в основе деятельности. На одном краю здесь находится система, состоящая из человека, размахивающего молотком, а на другом – международные политические системы, необходимые для того, чтобы жизнь оставалась терпимой на нашей маленькой планете. Такие системы будут включать в себя заранее определенные множества процессов, состоящих из видов деятельности (которые в явном виде не определены Чекландом), а также множества видов деятельности, рассматриваемых с конкретной точки зрения заинтересованных сторон.

Заметим, что программные системы являются гибридом абстрактных и физических систем, поскольку из абстрактных описаний, использующих какую-то форму языка, или с помощью модели программа-транслятор генерирует код программы, который, будучи объединенным с компьютером (физическая система) и будучи исполненным, порождает эмерджентное поведение. Также используется термин «программно-интенсивная система», который применяется для описания систем, состоящих главным образом из программного обеспечения, но помимо этого содержащих и другие элементы: физические элементы и часто элементы человеческой деятельности.

В этой книге основное внимание уделяется системам, созданным человеком, и системным ситуациям, которые важны как для отдельных людей, так и для групп людей, в том числе частных и государственных организаций и их предприятий, важны для развития способностей к обучению мыслить и действовать на языке систем. Таким образом, понимание физических систем, абстрактных систем, программных систем и систем человеческой деятельности одинаково важно для достижения данной цели. Естественно, не исключаются и природные системы, поскольку природные элементы могут быть включены в состав систем, создаваемых человеком, в качестве её элементов или как элементы среды, в которой функционирует рукотворная система.

Топология систем

Существует две фундаментальных системных топологии, которые закладывают основу обеспечения целостности: иерархия и сеть, показанные на рис. 1.2.


Рис. 1.2. Иерархическая и сетевая системные топологии


Иерархическая топология – это результат применения определенного принципа, который используется для удовлетворения определенной потребности. Этот принцип предполагает выполнение анализа, в процессе которого система подвергается декомпозиции на отдельные составляющие элементы на двух или более уровнях. В результате подобной декомпозиции формируется логическая основа для понимания, а также для разбиения на составляющие, разработки, компоновки и управления системой надлежащим образом. Подобная топология является типичной при плановой разработке продукции (физической и/или абстрактной), она также может быть использована при планировании развития организации, предприятия и даже проекта. В частности, использование иерархии применительно к организационной структуре человеческой деятельности вполне обычно для объяснения того, кто несет ответственность за части системы, за работу, которая должна быть выполнена в системе, а также для установления субординации (кто кому подчиняется).

Сетевая топология может быть использована для того, чтобы отразить основные свойства различных физических систем; например, коммунальных сетей, сетей автомобильных дорог, железнодорожных путей, сетей передачи электроэнергии, связи и, разумеется, Интернета. На более высоком уровне сетевые топологии могут отражать определенные абстракции, такие, как, например, возможности или функции, которые должны быть обеспечены, и, как утверждалось ранее, могут затем составить основу при выборе способов физической реализации системы. Такие физические или абстрактные системы обычно разрабатываются с учетом возможных изменений; т. е. топология меняется с течением времени по мере добавления или устранения узлов и/или связей.

Сетевая топология также связана с системами человеческой деятельности, в том числе с социальными системами, где с её помощью могут отражаться различные формы отношений между людьми (отдельными лицами и/или группами) как элементами системы. Подобные системы могут возникать как в плановом порядке, так и без плана как ответ на вновь возникшую ситуацию. Если система человеческой деятельности спланирована как сетевая, то она может использоваться для регулирования отношений. С другой стороны, сетевая топология может возникнуть при появлении новых элементов или взаимосвязей, и в таком случае с её помощью можно пытаться проиллюстрировать даже сложные, конфликтные межличностные отношения. Сети возникают как ответ на проблемные ситуации, когда множество элементов опасно взаимодействуют. Например, террорист, бомба, метро и пассажиры становятся элементами опасной сети элементов и взаимоотношений.

Эти две системные топологии сами по себе не являются исключительными. Совершенно ясно, что организация, описанная как иерархия, не всегда функционирует в соответствии со строго установленными отношениями подчиненности. Сети, даже если они не определены формально, возникают в отношениях между отдельными лицами и группами, которые обеспечивают необходимые элементы и связи для того, чтобы сделать дело. Кроме того, вполне понятно, что отдельные элементы в физической сети, такие, как, например, трансформатор в электросети, являются изделиями, оказывающими услуги, и они были задуманы и разработаны как системы для достижения конкретной цели или удовлетворения конкретной потребности. Эти элементы сами по себе являются системами, которые могут быть подвергнуты декомпозиции, построены и находиться под управлением в соответствии с некоторой иерархией.

Множество точек зрения и представлений

«Система – это способ смотреть на мир…, любая система является точкой зрения одного или нескольких наблюдателей».

Джеральд Уэйнберг [Weinberg, 2001]

В соответствии со свойством целостности, сформулированным Боардмэном и Сосером, а также с представлением Уэйнберга, любая совокупность элементов (частей), находящихся во взаимосвязи между собой, может быть определена как система. С учетом представлений, интересов и целей заинтересованных сторон (т. е. точек зрения), отдельные лица, группы, команды, организации и предприятия будут видеть системы по-разному. Пример подобного калейдоскопического, многократно и быстро меняющегося представления о системах приведен на рис. 1.3.

Физические системы, абстрактные системы, программные системы и даже некоторые системы человеческой деятельности могут рассматриваться одними лицами как активы, другими как изделия или продукция, третьими как услуги с добавленной стоимостью. В соответствии с этими представлениями и на основе понимания своих ролей и зон ответственности как отдельных лиц, групп, команд, организаций и предприятий стороны имеют точки зрения на определенную систему, отражающие их интересы (как собственника, приобретателя, разработчика, пользователя или специалиста по техническому обслуживанию). Такие системы планируются, разрабатываются и используются для достижения какой-то определенной цели.

В отличие от планируемых систем ситуационные системы возникают в результате динамических взаимодействий нескольких систем (включая природные системы) в процессе работы. В этих системах за основу может быть взята деятельность человека, подобная работе молотком, политическая ситуация, чрезвычайная ситуация или кризис (например, пожар, цунами, ураган, террористический акт и т. д.). Как показано на рисунке, могут возникнуть различные представления, отражающие различные точки зрения, которые связаны с интересами, обусловленными системной ситуацией (например, точки зрения, ответственных за возникновение ситуации, ответственных за реагирование на ситуацию, участников ситуации или находящихся под влиянием ситуации).


Рис. 1.3. Множество точек зрения и представлений


Существуют ли системы на самом деле?

Независимо от точек зрения и представлений, связанных с системами или их топологиями, кто-то может задать интересный вопрос: Существуют ли системы на самом деле?

Вопрос может показаться философским, но попробуем использовать этот ракурс для иллюстрации точки зрения на системы. В приведенной выше классификации Чекланда отмечалось, что естественные (природные) системы являются такими, как они есть. Тем не менее, все другие формы планируемых или ситуационных систем, а именно различные физические системы, абстрактные системы и системы человеческой деятельности либо являются продукцией, созданной в результате творческой деятельности людей, либо порождены возникшей ситуацией.

Более конкретно, продукция, созданная людьми, например самолет, система двигателя, фюзеляж и другие, могут воскресить в памяти представление о чем-то, что реально существует и что можно потрогать. С другой стороны, политическую систему, школьную систему, систему права, систему градостроительства, несмотря на то, что они представляют абстрактно нечто весьма важное, потрогать нельзя. Итак, что же такое система? Потенциально спорная точка зрения заключается в следующем: Системы, созданные человеком, существуют только в виде описаний.

Ваш автор часто использовал элементы, изображенные на рис. 1.4., в качестве основы для привлечения внимания к этой спорной точке зрения. А теперь вам брошен вызов. Предлагаю сейчас подумать над следующими вопросами: являются ли эти элементы системой? Почему да или почему нет?


Рис. 1.4. Болт, гайка и шайба


Поразмыслив над этим вопросом, обратитесь к следующему. Определите, имеют ли эти элементы в том порядке, в котором они разложены, какую-либо цель? Удовлетворяют ли они какую-либо потребность?

Затем подумайте об отдельной личности или группе, отвечающей за разработку и изготовление каждого из отдельных элементов, изображенных на рисунке. Видят ли они эти элементы как системы? Видят ли они их как продукцию? Или видят ли они их как услуги, которые они теоретически оказывают? Или они видят их и как первое, и как второе, и как третье?

Затем рассмотрим соединение этих элементов с двумя или более дополнительными объектами (имеющими соответствующие отверстия) для того, чтобы скрепить эти объекты. Была ли создана система? Можно подумать, что да, однако обратите внимание на тот факт, что для того, чтобы создать данную конструкцию, были определены элементы (в том числе и объекты, которые должны быть скреплены) и эти экземпляры объектов – болты, гайки и шайбы – были изготовлены в соответствии с некоторым описанием (техническими требованиями). При этом также должно иметься описание порядка сборки, проводимой для соединения физических элементов между собой. В зависимости от того, что считается элементами и связями между ними, а также от того, какова процедура сборки, могут быть реализованы различные способы сборки. Разве мы не изготовили продукты на основании описания системы? Таким образом, если мы хотим использовать термины продукт и система для обозначения двух различных концепций, мы должны принять, что система на самом деле является описанием, и поэтому система не существует. Давайте рассмотрим данную цепочку рассуждений.

Спланированные и созданные человеком иерархические или сетевые системы состоят из определенных элементов и связей. В лучшем случае аппаратные средства, программное обеспечение или человеческие элементы системы могут быть представлены как материальные объекты, которые в каком-то смысле можно потрогать. Однако наличие элементов в спланированной системе основано только на их описании, как элементов, представляющих собой аппаратные средства, программное обеспечение или людей, а также на описании взаимосвязей между элементами.

В случае продукта с добавленной стоимостью системное описание служит шаблоном, на основании которого производятся экземпляры продуктов (из одной крайности – производства в единственном экземпляре в другую – массовое производство). Аналогично, услуги с добавленной стоимостью, например банковские услуги, являются результатом типовой операции обслуживания в соответствии с системным описанием услуги в виде шаблона.

С целью дальнейшей иллюстрации данной точки зрения на системы рассмотрим конкретный пример. Компактный портативный компьютер (лэптоп), на котором была написана эта книга, является продуктом. Системным описанием этого продукта владеет изготовитель, который объединяет элементы компьютера в единое целое, он же осуществляет управление жизненным циклом данного продукта. Отдельными аппаратными средствами данной системы могут владеть другие стороны, которые осуществляют управление жизненными циклами этих элементов, как системных продуктов, которые они поставляют интеграторам компьютерных систем. Кроме того, существует большое разнообразие программных продуктов, работающих на данных аппаратных средствах, системными описаниями которых владеют организации-поставщики, также осуществляющие управление их жизненными циклами. Эти программные системы также поставляются, как продукты, системному интегратору.

Таким образом, определенное представление активов, продуктов и услуг отличается в разных точках на протяжении жизненного цикла. На ранних стадиях жизненного цикла описываемая система обычно представляется как абстрактная система, состоящая из набора функций и/или возможностей, между которыми имеются определенные взаимосвязи. По мере воплощения проекта в конечный продукт и/или услугу описание системы становится более конкретным и принимает вид или физических элементов, или определенной деятельности для людей (процедур или процессов), или является сочетанием и того и другого.

Что касается возникающих ситуаций, то свойства похожести на систему становятся очевидны только тогда, когда мы решаем обдумать элементы ситуации и их взаимосвязи или конкретно описать их. В противном случае это всего лишь ситуация. Для сложных ситуаций подобные описания, даже если предпринимаются попытки их сделать, редко бывают полными и опять-таки они основаны на представлениях о ситуации, отражающих точки зрения и интересы сторон, затронутых данной ситуацией.

В целом можно принять точку зрения, что системы существуют только в виде описаний. Однако, как было показано на рис. 1.3 и обсуждалось выше, определенная система одними людьми может рассматриваться как актив, другими – как продукция, третьими – как услуга, оказываемая системой. Таким образом, в конечном счете только интересами и точками зрения определяется, является ли какое-то изделие, какая-то продукция или какая-то услуга действительно системой или это просто продукт и услуга. Возможно, во избежание путаницы, полезно установить различия между системами как описаниями, системными продуктами и системными услугами. Мы не будем подробно обсуждать этот философский момент, а опять же отметим, что наши точки зрения и представления могут оказать воздействие на то, в каком качестве рассматривается система.

Целевые системы

Все формы систем, созданных человеком, а также природных систем потенциально содержат большое количество элементов, что отмечается в следующей цитате:

«На данном этапе мы должны прояснить, как следует определять систему. Наше первое побуждение – указать на маятник и сказать: «система – это то, что вон там». Однако этот метод имеет существенный недостаток: каждый материальный объект состоит из бесконечного множества переменных и, следовательно, возможных систем. Настоящий маятник, к примеру, имеет не только длину и местонахождение, он также имеет массу, температуру, электрическую проводимость, кристаллическую структуру, химические примеси, какую-то радиоактивность, скорость, отражающую способность, предел прочности при растяжении, влажную поверхностную пленку, бактериальное загрязнение, оптическое поглощение, эластичность, форму, удельный вес и т. д. Любое предложение нам изучать все эти факторы, нереально, и в самом деле подобные попытки никогда не предпринимались. Необходимо выбрать и изучить те факторы, которые имеют отношение к какому-то уже выявленному основному интересу».

У. Р. Эшби [Ashby, 1956]

Таким образом, важно определить следующее: где находится ваша целевая система? каковы ее основные элементы? как она связана с другими системами и со средой, в которую она помещена? Таковы вопросы первостепенной важности. Флад и Карсон (Flood and Carson [1998]) предлагают в этой связи полезную точку зрения, которая иллюстрируется на рис. 1.5.

Система может быть охарактеризована как замкнутая система в том случае, если элементы данной системы не связаны с какими бы то ни было внешними по отношению к ней объектами. Например, вечный двигатель, продолжающий работать за счет уравновешивания грузов без какого-либо влияния со стороны среды, в которой он работает. Для сравнения, открытая система характеризуется тем, что через границу открытой системы может происходить беспрепятственный обмен веществом, информацией и/или энергией между системой и внешней средой.


Рис. 1.5. Целевые системы в своем окружении (окружениях)


Таким образом, открытую систему, в отличии от целевой системы в узком смысле (Narrower System of Interest, NSOI), при рассмотрении которой сосредоточиваются на её элементах и связях, мы должны также рассматривать в контексте целевой системы в широком смысле (Wider System of Interest, WSOI), принимая во внимание окружающую среду, в которой она функционируют. Давайте рассмотрим два примера.

Торгово-промышленное предприятие, продающее игрушки, является системой, состоящей из элементов планирования, маркетинга и продаж, управления, научно-исследовательских и опытно-конструкторских работ, производства и распространения. Таким образом, это предприятие может рассматриваться как целевая система в узком смысле, на которой мы можем сосредоточиться. Однако подобная система является частью целевой системы в широком смысле, которая наряду с другими элементами охватывает также клиентов и поставщиков сырья. Предприятие работает в окружающей среде, где продаются игрушки, и изменения в этой внешней среде, вызванные отношением потребителей к игрушкам, экономическими факторами, конкурентами и т. д., повлияют на целевую систему в широком смысле и в свою очередь на целевую систему бизнеса игрушек в узком смысле. При этом имеется окружающая среда, которая может быть рассмотрена в широком смысле, т. е. как объемлющая среда, которая, в свою очередь может повлиять на окружение в узком смысле, а также на другие целевые системы. Например, могут быть предъявлены требования к безопасности игрушек, которые, в свою очередь, могут повлиять на потребление игрушек.

В качестве другого примера отношений, изображенных на рис. 1.5, рассмотрим сценарий, включающий террориста, бомбы, метро и пассажиров, элементы и связи в этой опасной ситуации. Эта целевая система в узком смысле связана с целевой системой в широком смысле, в частности с контактами с террористической организацией, материальным обеспечением, технологией изготовления бомбы, системой метро, а также составом и менталитетом пассажиров. Целевая система в узком смысле и целевая система в широком смысле существуют во внешней среде, в которой существует система, основанная, например, на политических, экономических и религиозных убеждениях, а также действиях разведки по обнаружению возможных террористических акций. Эта внешняя среда, в свою очередь, находится в окружении в широком смысле, для которого имеют значения решения, принятые в форме законодательных и нормативных актов, касающихся политических, экономических и религиозных аспектов.

Благодаря этим двум примерам, а также приведенным рассуждениям, касающимся точек зрения, интересов и представлений, читатель заметит, что границы систем весьма широки. Такое широкое представление о границах систем определенно указывает на наличие кругов, заинтересованных в том, чтобы снять значительную долю таинственности и двигаться по направлению к хотя бы частичному постижению систем, как было показано ранее в этой главе.

Системные активы

В организациях всех типов (государственных, частных и даже некоммерческих) функционирует множество систем, спроектированных и изготовленных людьми. Эти системы используются в плановом порядке, они необходимы работающим предприятиям в различных сферах деятельности для получения результата, достижения целей и решения задач. Это отображено на рис. 1.6. Так, предприятие и организация должны сосредоточиться (институционализировать), на портфеле системных активов. Наличие и состояние этих активов являются одним из важнейших аспектов управления организацией и предприятиями в составе организации. Портфельными активами, в частности, являются производимые предприятием системные продукты и/или оказываемые услуги, имеющие добавленную стоимость. Другими системными активами являются, в частности, активы, используемые для поддержки предприятия и его деятельности посредством предоставления услуг со стороны инфраструктуры организации. Стандарт ISO/IEC 15288 был разработан с целью предоставления всем типам организаций и предприятий руководства по управлению жизненным циклом систем, созданных человеком, в результате которого производятся продукция или услуги или входящие в состав инфраструктуры системы обеспечения [ISO/IEC, 2002 и 2008]. Таким образом, данный стандарт может использоваться для управления различными физическими системами, абстрактными системами и системами человеческой деятельности.


Рис. 1.6. Достижение организацией результата и целей и решение задач при помощи системных активов


В данной книге термины организация и предприятие используются как равноценные [примечание 1.1]. Ясно, что предприятие всегда связано с организацией и что организация также является предприятием. Кроме того, ясно, что по мере возникновения крупных сложных организационных конгломератов (развивающихся предприятий) в государственном и частном секторах, количество и содержание системных активов, а также объединение и институционализация этих активов вызывают многочисленные сложности, связанные с системами. Во избежание постоянного повторения этих двух терминов, термин «предприятие» чаще всего используется, когда речь идет об одном предприятии, в том числе крупном развивающемся предприятии. За исключением четко обозначенных случаев, для всех практических целей читатель может рассматривать термины «организация» и «предприятие» как синонимы.

Потребности, услуги и результат

Созданные человеком системы, которые предприятие предоставляет в виде продукции и/или услуг, обладающих добавленной стоимостью, а также системы, которые используются в качестве инфраструктурных активов, всегда разрабатываются для удовлетворения некоторой потребности, как показано на рис. 1.7. На этом рисунке и на рис. 1.5, система, которой уделяется основное внимание, является, как указывалось ранее, целевой системой. Целевая система разрабатывается для оказания услуг пользователю, и когда готовый экземпляр системной продукции или системной услуги используется по назначению, это дает результат.


Рис. 1.7. Структура системы: потребность, услуги и результат


Например, мой компьютер лэптоп (как продукт) был разработан для удовлетворения потребностей многих пользователей. Он предлагает пользователям множество разнообразных услуг, но при написании этой книги компьютер работает со мной, мы взаимодействуем как элементы целевой системы человеческой деятельности. Эта целевая система создана для того, чтобы дать желаемый результат, а именно, произвести данную книгу, как продукт.

Элементы системы (E1, E2, или E3) на рисунке объединяются для того, чтобы внести свой вклад в удовлетворение потребности, для обеспечения которой служит целевая система. Каждый из элементов системы может предоставить целевой системе одну или несколько услуг, и при взаимодействии с другими элементами экземпляра системной продукции или системной услуги достигается результат.

На рис. 1.7 неявно подразумеваются основные связанные с системой понятия структура и поведение. То есть изображенная целевая система имеет структуру, которая определяется набором системных элементов, содержащихся в ней, а также взаимосвязями, установленными между этими элементами. Услуги, которые могут быть оказаны, являются возможным эмерджентным поведением этой системы. Когда система (продукция и/или услуга) используется по назначению для удовлетворения потребности, это приводит к результату, который есть фактическое поведение системы.

Важно отметить, что применительно к системному продукту или услуге полученный результат (т. е. поведение) определяется не только поведением отдельных элементов системы. Поведение, возникающее в результате работы взаимодействующих элементов системы, называется, как указывалось ранее, эмерджентным поведением. Читателю следует сравнить эти свойства системы с рассуждением по поводу болта, гайки и шайбы и объектов, которые должны быть скреплены вместе.

Мой компьютер лэптоп состоит из элементов аппаратного и программного обеспечения, каждый из которых оказывает услуги и производит результат. Я, как еще один элемент этой целевой системы, работаю во взаимосвязи с компьютером, как элементом, и могу вызвать поведение, результатом которого является написание этой книги. Ни один из этих элементов по отдельности не смог бы обеспечить такое поведение. Таким образом, поведение, безусловно, является эмерджентным.

Люди, как правило, могут иметь множество связей с создаваемыми системами. Люди могут быть сторонами, заинтересованными в системе и поэтому могут ожидать, что целевая система окажет услугу и даст результат, который им нужен. Люди могут использовать экземпляр целевой системы и, таким образом, являться элементом этой системы. Наконец, люди могут быть частью окружающей среды, в которой они взаимодействуют с одной или несколькими системами, т. е. они могут являться потребителями услуг, предоставляемых системами, поставщиками услуг другим системам, или просто могут находиться под влиянием систем.

Целевая система, изображенная на рис. 1.7, включает статическую структуру элементов системы, являющихся частью иерархической системной топологии. Такое структурное представление является лишь одним из возможных представлений системы. Для внесения большей ясности в вопрос об элементах системы и их динамических поведенческих связях необходима сетевая топология, с помощью которой удается отобразить функциональное представление, как это показано на рис. 1.8.


Рис. 1.8. Элементы системы и поведенческие связи


В данном описании на месте связей, которые были охарактеризованы как услуги, мы указали явные связи. Мы могли бы использовать данный пример модели поведения (операционное представление) для многих отдельно взятых конкретных физических систем. Например, в системе, где Е1 является переключателем кондиционера, Е2 – охлаждающим или нагревающим элементом или и тем и другим, а Е3 является термостатом, который поддерживает температуру. Эти важнейшие связи имеются во многих изделиях, таких, как обогреватели помещений, тостеры и множество других бытовых электроприборов. Такое сетевое представление определяет возможные поведения системы в отличие от перечня элементов статической иерархической системы, изображенной на рис. 1.7.

Для демонстрации еще одной целевой системы рассмотрим систему, в которой E1 – оператор, настраивающий, а затем включающий копировально-множительную машину E2, а E3 – программно-управляемый элемент в копировально-множительной машине, который отключает машину, когда работа закончена или когда происходит какой-либо серьезный сбой. Читатель наверняка сможет связать данный тип управляющей структуры с многочисленными известными ему системными продуктами.

Как указывалось ранее, описание различно в разных точках жизненного цикла системы. На более ранних стадиях элементы могут быть определены как функции или возможности со связями. На более поздних стадиях эти определения уточняются до конкретных элементов, в состав которых для достижения определенной возможности и/или реализации заданной функции интегрированы аппаратные средства, программное обеспечение или человеческая деятельность.

Декомпозиция

Целевая система, определенная абстрактно или конкретно, обычно включает в себя элементы системы, которые сами являются системами и поэтому содержат в своем составе собственные элементы системы, как показано на рис. 1.9. Эти системы более низкого уровня также могут быть разбиты на элементы системы, которые в свою очередь также являются системами. Подобная иерархическая декомпозиция систем называется рекурсивной декомпозицией и является ключевой концепцией стандарта ISO/IEC 15288. На каждом уровне один или несколько элементов системы сами могут быть системами. Стандарт очень последовательно подходит к этой рекурсивной декомпозиции. На каждом уровне, изображенном на рис. 1.9, где элементы системы являются системами более низкого уровня, стандарт применяется повторно на данном уровне для обеспечения комплексирования элементов системы как целевой системы этого уровня. Таким образом, целевая система определяется уровнем и изменяется в том случае, когда для управления жизненным циклом рассматриваются разные уровни.

В последовательной декомпозиции, изображенной на рис. 1.9, выделено три уровня. Каждый из трех уровней содержит одну или несколько целевых систем. Стандарт ISO/IEC 15288 заново применяется на каждом из трех уровней, возможно, еще одним предприятием-поставщиком для управления жизненным циклом целевой системы, выделенной на этом уровне декомпозиции.

В некоторой точке декомпозиция систем на системные элементы заканчивается. Таким образом, существует правило остановки, связанное с практической потребностью, а также с рисками, имеющими отношение к системному элементу. Это означает, что, если дальнейшая декомпозиция не дает преимуществ и/или элемент системы хорошо определен и может быть включен в состав системы с контролируемыми рисками (например, куплен как стандартный, имеющийся в продаже элемент или его предоставление гарантировано без дальнейшей декомпозиции), последовательная декомпозиция может быть закончена.


Рис. 1.9. Структура системы: Декомпозиция по уровням


Давайте вернемся к моему лэптопу. Целевая система, которая важна для меня, как для автора, состоит из меня и компьютерной системы. В подобном контексте у меня нет практической потребности в рассмотрении дальнейшей декомпозиции этих двух элементов. С другой стороны, компьютерная система является целевой системой для поставщика, который объединяет ее элементы. Элементы аппаратных средств и элементы программного обеспечения в свою очередь являются продуктами целевой системы, жизненным циклом которой управляют другие лица. И аппаратные средства, и программное обеспечение затем разбиваются на элементы системы, которые являются системами и т. д. Таким образом, соответствующие владельцы целевых систем применяют правило остановки в соответствии со своими практическими потребностями и рисками, связанными с обеспечением элементами.

Типовые системные активы

Для государственных, частных и даже некоммерческих организаций и предприятий крайне важно понять и договориться о том, каковы их институциональные системные портфельные активы и как они связаны между собой. Для этого полезна классификация. Хотя набор конкретных активов различен в частных и государственных организациях и предприятиях, обычно можно выделить определенные категории системных активов, как это показано в табл. 1.1.


Таблица 1.1. Институциональные системные активы организации/предприятия


Все государственные и частные предприятия существуют для того, чтобы в той или иной форме предоставлять продукт(ы) и/или услугу(и), обладающие добавленной стоимостью. Эти организационные системы наряду с системами управления продукцией (услугами) обычно являются на предприятии основным местом сосредоточения усилий целевой системы в узком смысле. С другой стороны, в более пространном контексте целевой системы в широком смысле все остальные системы можно охарактеризовать как системы обеспечения, необходимые для предоставления системных продуктов и/или системных услуг.

Каждый из этих институциональных активов, несмотря на то, что он может явно и не рассматриваться сотрудниками предприятия, образует систему, состоящую из системных элементов и взаимосвязей, жизненным циклом которых необходимо тем или иным образом управлять. Формально управление жизненным циклом этих систем на основе моделей жизненного цикла позволяет лучше определить подобные системы и улучшает понимание их природы и роли на предприятии [ISO/IEC 15288: 2002 и 2008]. То есть, лица, ответственные за актив, а также лица, находящиеся под влиянием системного актива, вырабатывают представление о системе, согласованное, гармонизированное с другими сторонами, ответственными за активы предприятия. Такое четкое понимание и распределение зон ответственности за системные активы является необходимой предпосылкой для эффективного функционирования государственных, частных и даже некоммерческих предприятий.

Элементы системы

Системные элементы планируемой целевой системы, выступающей в качестве актива, могут быть различных типов, некоторые из них показаны в табл. 1.2.


Таблица 1.2. Возможные типы элементов системы


Большинство перечисленных системных элементов известны как элементы систем, созданных людьми. Тем не менее, две последние категории заслуживают дополнительного внимания.

Как указывалось ранее, природные элементы, такие, как вода, газ, воздух, живые организмы, полезные ископаемые, могут быть включены в состав созданной человеком системы в качестве элементов. Например, система автомобиля, хотя и состоит из большого числа составляющих, включая оборудование, программное обеспечение и человека, для нормального функционирования также нуждается в воде, газе и воздухе как элементах системы.

Данный перечень элементов системы включает в себя другие типы элементов, которые важны/интересны для конкретных сторон с их точки зрения. Например, политики, законы, нормативные акты, патенты, контракты и соглашения одними сторонами могут рассматриваться как факторы, присущие внешней среде и влияющие на системы; а другими – как элементы целевой системы. Они даже могут рассматриваться как системы; например соглашение может рассматриваться как целевая система теми, кто связан с приобретением системных продуктов или системных услуг.

Предназначенные для постоянного применения, ситуационные (реагирующие) и типовые системы

В зависимости от типа продукции или услуги с добавленной стоимостью, которые поставляет государственное, частное или некоммерческое предприятие, их системные активы, имеющие отношение к снабжению и обеспечению, имеют разный срок службы. Институциональные системы должны надлежащим образом поддерживаться в течение длительных периодов времени в таком состоянии, чтобы при их вводе в эксплуатацию/подключении они были пригодны для того, чтобы дать необходимый результат.

При поставке таких обладающих добавленной стоимостью продукции и услуг, как, например, летательные аппараты, телекоммуникационное оборудование, банковские услуги, здравоохранение, социальное обеспечение, необходимо обеспечить длительную поддержку жизненного цикла. Обычно результатом существования подобных, нуждающихся в длительной поддержке систем, является появление целой продуктовой линейки, или семейства услуг. Таким образом, на основании общего описания системы производятся различные продукты и услуги, при этом возникает необходимость в управлении жизненным циклом каждого их них.

Системы могут возникнуть в результате ситуации, как кратковременной, так и длительной. Ситуация может быть осмыслена и даже описана на языке сетевых элементов и связей, как было показано в приведенном ранее примере террористической акции. Для противодействия возникшей ситуации создается и вводится в действие реагирующая система. Например, рассмотрим в качестве реагирующей системы пожарную команду. Эта команда состоит из элементов, включая оборудование, расходные материалы (вода, химикаты и т. д.), а также персонал и предназначена для борьбы с огнем. Еще одним примером реагирующей системы является сосредоточение вооруженных сил для осуществления плана действий с целью противостоять возникшей ситуации. Такие системные услуги формируются из имеющихся активов (людей и оборудования) и образуют временный системный актив, который быстро определяется и вводится в действие временной оперативной группой, наделённой данной миссией. В процессе предоставления такой системной услуги обратная связь, связанная с развитием ситуации, используется для быстрой реструктуризации (пересмотра и придания нужных размеров) реагирующей системы, чтобы удовлетворить изменяющиеся потребности.

Ситуационные системы также возникают при работе любой организации, и для организации возникает проблема их использования наряду с реагирующими системами. Обычно на ситуацию реагируют посредством образования целевой рабочей группы или проекта, которые будут заниматься урегулированием ситуации, будь то проблема (например, кризисы) или благоприятная для организации возможность. В зависимости от представлений и точек зрения ситуацию и реагирующую систему можно рассматривать как объединенные в одну большую целевую систему в широком смысле, в которой взаимодействуют ситуационная и реагирующая системы.

Для установления связи между ситуационными системами, реагирующими системами и системными активами постоянного применения рассмотрим диаграмму системной связности, представленную на рис. 1.10.


Рис. 1.10. Диаграмма системной связности


Здесь мы четко видим образование реагирующей системы на базе системных активов. Одним из элементов, который должен быть в распоряжении, является элемент управления. Этот элемент заставляет реагирующую систему функционировать сообразно ситуационной системе. Ситуационная система, с одной стороны, обеспечивает вход реагирующей системы, а с другой – является получателем результатов функционирования реагирующей системы. Читателю следует запомнить эту диаграмму связности, так как мы будет возвращаться к ней несколько раз во время путешествия. Она должна стать для всех хорошо знакомым сценарием. Рассмотрим ситуацию, когда нужно куда-то добраться общественным или личным транспортом. Мы всегда мысленно создаем реагирующие системы на основе системных активов, в частности, с учетом знания маршрутов, имеющихся средств транспорта, расписаний и т. д. Действительно, как утверждал фон Берталанфи, системы находятся повсюду.

Описанные ситуации являются реальными, т. е. они возникают на самом деле. Еще одной формой ситуационных систем являются типовые системы. Они создаются с целью изучения системных аспектов возможной типовой проблемной ситуации или типовой ситуации, представляющей собой новую возможность. То есть (что, если?) возникает специфическая проблемная ситуация или специфическая ситуация, представляющая собой новую возможность. Помимо изучения такой проблемной ситуации или ситуации, представляющей собой возможность, можно создать одну или несколько реагирующих систем для изучения результата, к которому приводят конкретные планы действий, или реально попрактиковаться в смоделированной ситуационной (реагирующей) среде. Такие учебные мероприятия весьма распространены в военной сфере и в области гражданского кризисного управления. Они также могут использоваться в качестве основы для деловых игр и практических занятий по управлению в организации любого типа.

Природа реальной или типовой ситуации может быть связана с некоторыми особенностями структуры или поведения системных активов организации, или же с взаимосвязями между элементами, которые представляют собой сеть, проявляющую системные свойства. Более того, при образовании реагирующей системы отдельные экземпляры системных активов используются как элементы. Связь между наборами элементов из состава различных системных активов для нескольких ситуаций показана в табл. 1.3. Наличие подобной связи подразумевает формирование сетевой топологии.


Таблица 1.3. Элементы реальных или типовых ситуаций и/или реагирующих систем


Читателю следует обратить внимание на подход к типовым проблемам и новым возможностям, связанным с организацией. Колонка «Окружающая среда» особенно важна. Зачастую именно благодаря событиям, происходящим в окружающей среде (в узком или более широком смысле), в которой после ввода в строй функционируют системы, возникают проблемы и возможности.

Деятельность по урегулированию проблемных ситуаций и ситуаций, представляющих собой новую возможность, в контексте операций, проводимых под международной юрисдикцией, и осуществляемая с целью обеспечения мира и стабильности в странах, в которых в той или иной форме существует угроза беспорядков, образует жизненно необходимую систему. В данном контексте элементы из различных сфер обозначаются сокращением PMESII (political, military, economic, social, infrastructure, information – политические, военные, экономические, социальные, инфраструктурные и информационные) [Joint Publication 2.0, 2007]. Связывание элементов, принадлежащих различным сферам, показано на рис. 1.11. Показанная сеть может представлять собой систему взаимосвязанных элементов, вносящих вклад в возникновение проблемной ситуации или затронутых ею, а также элементов реагирующей системы, используемой для разрешения проблемы, или и тех и других.

Построение реальных или типовых ситуационных систем из элементов нескольких систем и их взаимосвязей часто является временным, и, таким образом, реагирующие системы обычно не рассматриваются как активы постоянного применения, и в их отношении управление жизненным циклом, как правило, не осуществляется. Однако некоторые реагирующие системы, имеющие дело с более долгосрочными проблемами или возможностями, могут иметь длительный срок службы, и в этом случае для них необходимо наладить управление жизненным циклом.

Типовые системы используются как объект изучения и обучения для определения потребности в изменениях применительно к институциональным системам. Системные принципы, описанные ранее применительно к системным элементам и связям, остаются одинаковыми и для систем, предназначенных для постоянного применения и для реальных ситуационных и типовых ситуационных систем, а также и для реагирующих систем. Все эти виды систем представляют интерес для государственных, частных и некоммерческих предприятий и должны рассматриваться комплексно, с использованием единого подхода на основе методологий системного мышления, описанных в главе 2.


Рис. 1.11. Сеть элементов, входящих в сферы политики, обороны, экономики, социума, инфраструктуры и информации


Системы систем

Термин «система систем» используется для описания систем, состоящих из нескольких типов системных элементов, причем каждый подобный системный элемент сам по себе работоспособная система, которая может самостоятельно использоваться по своему назначению. Естественно, результатом декомпозиции всех сложных систем является система, состоящая из систем, как было показано на рис. 1.9. Тем не менее, термин система систем возник для описания интеграции систем, которые были независимо разработаны для определенных целей, удовлетворения специфических потребностей или для решения определенных задач, и, таким образом, могут автономно оказывать эти необходимые системные услуги. Но, из-за возникновения новой потребности (ситуационная система) системы объединяются в реагирующую систему или для того, чтобы отреагировать на реальную ситуацию, или для того, чтобы провести обучение, связанное с типовой ситуацией. В некоторых случаях система систем может быть создана для оказания новой услуги, например объединения государственных учреждений или объединения предприятий с целью урегулирования новой проблемной ситуации или ситуации, связанной с новой возможностью.

Для того чтобы проиллюстрировать концепцию системы систем, рассмотрим реагирующую систему, сформированную для урегулирования реальной или типовой экстремальной ситуации, в которую могут входить пожарная команда, полиция, вооруженные силы, медицинские подразделения, бригада для оказания психологической помощи и т. д. Все эти системы были разработаны и сформированы независимо, но они объединяются в единую систему для удовлетворения потребностей, возникших в результате экстремальной ситуации, как показано на рис. 1.12.

На рисунке, предложенном бывшими слушателями курса [Jennerholm and Stern, 2006], демонстрируется, как активы постоянного применения, принадлежащие отдельным агентствам и предназначенные для того, чтобы их задействовать в ответ на возникновение конкретных типов ситуаций, объединяются в реагирующую систему систем в целях удовлетворения потребностей, возникающих в кризисной ситуации. Представление об институциональных системных активах отдельных агентств, как показано на этом рисунке, сосредоточено на общем представлении о ресурсах. Ресурсы как активы классифицируются как стороны-участники, инфраструктура, правила и методы. Такая классификация принята и при перечислении институциональных активов, показанных в табл. 1.1, и используется здесь для приведения представления о существующих активах к общему знаменателю. Как отмечалось, система систем нуждается в усилении в виде элементов управления, которые обеспечивают ее функционирование как единого целого в ответ на кризисную ситуацию. Для осуществления такого усиления необходимо сформировать руководство обычно в форме органа командования и управления.

Как указывалось ранее, система систем также может быть результатом комплексирования систем нескольких существующих предприятий в развивающееся предприятие, целью которого является устойчивое предоставление продукции и услуг в течение длительного периода времени. Это, например, может произойти в результате слияния или поглощения компаний и т. д. В государственном секторе это может произойти при объединении нескольких государственных органов для удовлетворения новой потребности. Например, Министерство национальной безопасности США функционирует как система систем при предоставлении услуг на основе объединения системных активов, предоставляемых несколькими правительственными органами.


Рис. 1.12. Система систем для управления кризисными ситуациями


Управление изменениями в системе

Вне зависимости от точки зрения, с которой предприятие, отдельное лицо, группа или команда смотрят на институциональные системы, а также от того, рассматриваются ли подобные системы как инфраструктурные активы, как продукция или услуги, определены ли они абстрактно или конкретно, или на каком уровне системной иерархии они существуют, имеются три основных аспекта, связанных с системами и относящихся к управлению их жизненным циклом. Эти аспекты отображены на модели изменений, представленной на рис. 1.13.


Рис. 1.13. Основная модель изменений


Поговорка, что нет ничего более постоянного, чем временное, безусловно, относится и к системам, которые созданы людьми и от которых зависит предприятие. Таким образом, для предприятия, которое управляет жизненным циклом системных активов, управление изменениями является одной из самых важных функций. По существу, применительно к системным активам можно выделить два типа изменений:

1. Структурные изменения, которые осуществляются посредством внесения изменений в описание системы.

Как отмечалось ранее, системы имеют описания, следовательно, решение о внесении в систему изменений (т. е. о преобразованиях) влечет за собой изменение описания. Структурные изменения могут повлечь за собой создание или изъятие из обращения целой системы, добавление или удаление элементов системы, добавление или удаление услуг, предоставляемых элементами системы и/или повторное определение связей между элементами системы.

2. Функциональные изменения, которые осуществляются посредством изменения показателей функционирования.

Функциональное изменение не меняет описания системы. Оно может повлиять на свойства предоставляемой системой услуги (услуг), связанные с необходимостью использования некоторого количества ресурсов. Например, эксплуатация и поддержка нескольких экземпляров целевой системы вместо одного или предоставление/потребление большего или меньшего количества ресурсов, таких как сырье, финансовая помощь или персонал.

Еще одной формой функционального изменения является изменение режима работы. В этом случае определенная, установленная и находящаяся в эксплуатации целевая система может быть предназначена для работы в нескольких режимах. Например, предусматривается возможность перехода от нормального режима эксплуатации к облегченному режиму или к профилактическому режиму.

Ключом к принятию правильных решений об изменениях является сбор соответствующих данных и информации об опыте эксплуатации и управления жизненным циклом систем. Такие данные и информация используются для обеспечения обратной связи в форме знаний, необходимых для обоснованного принятия решений и планирования изменений, а также для обеспечения прямой связи, необходимой для выбора методики и подходящей технологии проведения целесообразных структурных или функциональных изменений. По мере возникновения существенных проблемных ситуаций и/или ситуаций, связанных с новыми возможностями, предприятие должно создавать реагирующие системы, чтобы иметь возможность изучить реальные или типовые ситуации, которые должны быть учтены при внесении изменений в их системные активы.

Стандарт ISO/IEC 15288 описывает ряд процессов, которые могут быть использованы для удовлетворения потребностей, возникающих применительно к каждому из этих существенных аспектов управления изменениями в системе. Кроме того, этот стандарт обеспечивает основу для разработки состоящих из этапов моделей жизненного цикла, которые являются чрезвычайно важными для эффективного управления такими изменениями. Каждый аспект, отображенный на рис. 1.13, и поддержка, предоставляемая стандартом, заставляют сфокусировать внимание на том, что означает действовать на языке систем, как отмечается во время нашего путешествия. В остальных главах книги модель изменений используется как основа для разъяснения различных аспектов, относящихся к системам и к управлению их жизненным циклом. Первый набор концепций для управления изменениями, относящихся к применению международных стандартов управления жизненным циклом программного обеспечения и систем, был разработан Бендзом и Лоусоном [Bendz and Lawson, 2001].

На модели, показанной на рис. 1.13, основное внимание уделяется принятию решений организацией/предприятием. Тем не менее, эта модель также может послужить в качестве концептуальной модели для всех форм командования и управления в боевой обстановке и/или в кризисных ситуациях. Разница связана с затратами времени на решение. В критических ситуациях, несмотря на то что могли быть осуществлены изменения в системных описаниях, которые в свою очередь могли привести к изменениям в поведении образцов системы, времени на формальные процедуры чаще всего не бывает. Таким образом, основное внимание уделяется не изменениям системных активов, а изменениям показателей функционирования уже имеющихся активов системы, находящейся в эксплуатации. В любом случае усвоение знаний и их использование в качестве прямой и обратной связи крайне необходимо даже в этих стрессовых ситуациях. Тем не менее, практический опыт должен использоваться постоянно для оценки портфеля имеющихся системных активов. Эти знания затем могут конструктивно использоваться для фактического управления системными активами и изменениями в соответствии с моделью, представленной на рис. 1.13.

Сложности систем

Есть несколько подходов к рассмотрению сложностей в системах. Как отмечалось ранее, люди могут иметь различные интересы и точки зрения в отношении систем и представлять их как простые, сложные или нечто среднее. Эшби дает следующее важное пояснение применительно к подобным точкам зрения.

«…для нейрофизиолога мозг, как сплетение нервных волокон и суп из ферментов, несомненно, сложен, и точно так же передача его подробного описания потребует много времени. Для мясника мозг прост, так как ему нужно лишь отличить его от примерно тридцати других частей мясной туши».

У. Р. Эшби [Ashby, 1973]

Классификация сложностей

Согласно Питеру Сенге [Senge, 1990], системная сложность существует в двух основных формах: сложность детализации и динамическая сложность. Сложность детализации возникает в результате большого количества систем, системных элементов и установленных связей в любой из двух основных топологий (иерархия или сеть). Эта сложность связана с системами, как они есть; а именно, с их статическим существованием. Динамическая сложность, с другой стороны, связана с взаимосвязями, которые возникают между готовыми, функционирующими системами в процессе их работы, т. е. между ожидаемым и даже неожидаемым поведением, которое фактически возникает. Эти две формы сложности могут быть непосредственно связаны с системными концепциями, представленными в этой главе, и могут быть синонимично названы структурная сложность и поведенческая сложность.

Как говорилось в цитате Эшби о мозге, структурная и/или поведенческая системная сложность связана с самими системами, а также с тем, как системы воспринимаются людьми.

Степень сложности самих систем помимо количества элементов и связей определяют такие факторы, как линейность и нелинейность связей, асимметрия элементов и связей.

В отношениях людей и систем такие факторы, как ценности и убеждения, интересы, возможности, понятия и восприятия систем, являются определяющими факторами воспринимаемой сложности. Как говорилось ранее, это влияет на то, как отдельные люди и даже группы видят системы.

Уивер [Weaver, 1948] сформулировал исходную точку зрения, выделив следующие категории сложности: организованная простота, организованная сложность и беспорядочная сложность. Эти категории и более поздние размышления, в частности Флада и Карсона [Flood and Carson, 1993] и автора книги, дают основания для использования приведенной ниже классификации сложности.

Организованная простота имеет место, когда есть небольшое количество существенных факторов и большое количество менее существенных и/или несущественных факторов. Изначально ситуация может показаться сложной, но после ее изучения менее существенные и несущественные факторы могут быть исключены из картины и может быть обнаружена скрытая простота.

Нахождение этой простоты является обычным делом для научных исследований, как указывалось ранее, когда мы обсуждали необходимость доказать или опровергнуть научную гипотезу. Тем не менее, желательно искать простоту во всех кажущихся сложными ситуациях. Эту точку зрения отражает хорошо известная поговорка KISS (Keep in Simple Stupid – Не усложняй, тупица). Кроме того, Альберт Эйнштейн однажды заявил: «Сделай это так просто, как только возможно, но не проще». Это, несомненно, хороший совет, как при выполнении научных исследований, так и при осуществлении инженерной деятельности и управлении жизненным циклом применительно к физическим системам, абстрактным системам и системам человеческой деятельности.

Организованная сложность преобладает в таких физических и абстрактных системах, структура которых организована так, чтобы быть понятной, и поэтому податливой ученым при описании сложного поведения и структурировании процесса создания сложных систем и управления их жизненными циклами. Это богатство, которое не должно быть чрезмерно упрощено.

Беспорядочная сложность возникает, когда имеется много переменных, которые демонстрируют в высокой степени случайное, беспорядочное поведение. Она также может являться результатом отсутствия необходимого контроля над структурой сложных неоднородных систем по причине неадекватного управления архитектурой в течение жизненного цикла системы (ползучей сложности).

Сложность, связанная с людьми, возникает там, где восприятие любой системы вызывает чувство сложности. В этом контексте люди становятся «системами наблюдений». Мы могли бы также связать эту категорию с системами, в которых люди являются элементами и могут основательно поспособствовать организованной простоте, организованной сложности и беспорядочной сложности. Разумное или неразумное поведение отдельных лиц в конкретных ситуациях, естественно, является существенным фактором по отношению к сложности.

Катастрофический разрыв

Исторически темпы роста сложности систем увеличивались с течением времени. В то же время наша способность в каком-то смысле постичь (или даже осознать) растущую сложность не повышалась с такой же скоростью. Кристер Йадерлунд (Christer Jäderlund), шведский ученый, известный своими работами в области системного мышления назвал разницу между ростом сложности систем и нашей способностью справляться с этой сложностью катастрофическим разрывом, как показано на рис. 1.14.


Рис. 1.14. Катастрофический разрыв Йадерлунда


В качестве отправной точки мы можем взять любой произвольный момент времени, например, состояние сложности систем в 1940 г. (во время Второй мировой войны), а затем спроецировать его как некоторую форму ускоренного роста на сегодняшний день. Способность справляться со сложностью выросла незначительно. Поэтому неудивительно, что происходят такие катастрофы, как, например, финансовый кризис 2008 года. Разумеется, движущей силой повышения сложности систем стал беспрецедентный рост компьютерных и коммуникационных технологий. Кроме того, имеется и ряд других факторов, способствующих повышению сложности.

В то время как многие люди относятся к системным сложностям с безразличием и чувством безнадежности, надеюсь, что читатели этой книги поставят перед собой задачу изучить, как улучшить свои индивидуальные и коллективные возможности для того, чтобы иметь дело со сложными системами. Весьма вероятно, что от прогресса в этой области зависит наше общее будущее.

Сложности на предприятиях

Комплект институциональных системных активов, которые предприятие определяет, разрабатывает или приобретает и использует, вызывает возникновение различных сложностей. Эти сложности следует преодолевать путем создания такой архитектуры систем, которая минимизирует их, а также путем целесообразного управления системами в течение их жизненного цикла.

Предприятия должны научиться справляться со структурной и поведенческой сложностью применительно к производимым и потребляемым ими продуктам и/или услугам с добавленной стоимостью, а также сложностям и в своих инфраструктурных системах, в том числе в процессах, методах и инструментах. Эти элементы вместе и по отдельности становятся источниками сложностей из-за связей между собой, как показано на рис. 1.15. Сложности возрастают, когда имеешь дело с системными активами развивающегося предприятия.


Рис. 1.15. Источник сложности


Слишком часто отдельные лица и/или группы людей в пределах предприятия рассматривают каждый из этих элементов по отдельности и делают выводы о том, где, как они считают, или по какой-то причине хотели бы убедить в этом других, лежат проблемы, связанные со сложностью. Итак, они предполагают, что проблемы, связанные со сложностью, вызваны:

• слабой или неадекватной архитектурой продукции/услуги;

• неподходящей или неэффективной структурой предприятия;

• отсутствием четко определенных процессов или наличием ошибочных процессов;

• отсутствием надлежащих методов и/или инструментов.

В результате, отдельные люди и группы в пределах предприятия подходят к проблемам и возможностям с ограниченной позиции. Они могут прилагать скоординированные усилия для того, чтобы упростить свой продукт/услугу или сделать его/ее более практичной в обращении. Иногда они сосредоточиваются на процессах, которые следует использовать в их бизнесе, или при производстве продукции или услуг и/или на инфраструктуре основных средств, персонала, финансирования и т. д. Они могут тщательно искать методы и инструменты, которые, по их мнению, поддержат их усилия. Однако простейший аспект, который следует изменить, это структура предприятия. Когда есть сомнения – проведите реорганизацию!!! К сожалению, часто это уход от реальных проблем, которые лежат в других областях, и довольно часто вызваны отсутствием целостного представления о сложных связях между всеми важными элементами.

Различные интересы отдельных лиц и групп в пределах предприятия, т. е. владельцев и служащих, а также клиентов, вызывают различные формы напряженности, между ними, как показано на рис. 1.16. Эта напряженность между заинтересованными сторонами абсолютно необходима для предприятия в целом, но, если с нею не работать (т. е. если ею не управлять) надлежащим образом, напряженность приводит к дополнительным сложностям [Low, 1976].


Рис. 1.16. Напряжения между заинтересованными сторонами


Напряженность становится значительной, когда большие развивающиеся предприятия участвуют в производстве сложной продукции и/или услуг. В этих случаях может оставаться не ясным, кто владеет системой предприятия, что усугубляет сложности.

Как уже упоминалось, Эйнштейн однажды заявил: «Сделай это так просто, как только возможно, но не проще». Это, безусловно, хороший совет в отношении системных активов предприятия, касающийся структурных и возможных поведенческих сложностей.

В то время как возможно и желательно добиться простоты в некоторых типах систем, многочисленные требования, связанные с окружающей средой, и которые предъявляются к предприятиям, а также напряженность между заинтересованными сторонами, наиболее часто усложняют системные решения. Ограничения и напряженнность могут быть обусловлены рядом факторов, в том числе:

• законодательными и нормативными актами (связанными с трудовыми отношениями, окружающей средой, здоровьем и т. д.);

• патентными ограничениями;

• обязательствами в форме соглашений и контрактов;

• историей эволюции продукта/услуги;

• политиками, связанными с организацией;

• правилами, ценностями и нормами;

• психологическими и социологическими факторами.

Факторы, подобные этим, влияют на системные активы организации и могут привести к принятию решений об изменениях, которые отражаются в структурных аспектах системы. При этом в процессе внесения структурных изменений в одни системы в других системах возникают требования о внесении дополнительных изменений в форме возникающих проблем и/или возможностей. Эти изменения приводят к новым изменениям, тем самым усугубляя структурные и поведенческие сложности.

Когда проблемы возникают в результате структурных и поведенческих сложностей и/или напряжений, предприятие должно приступить к изучению типовой ситуационной и реагирующей системы с тем, чтобы исследовать ситуацию и использовать результаты в качестве основы для управления изменениями. Примеры ситуаций, которые могут быть разрешены с помощью типовых систем, приведены в табл. 1.3.

Определенный уровень сложности неизбежен, он необходим. При этом существует множество системных продуктов и услуг, процессов, методов и инструментов, а также предприятий, которые характеризуются излишней сложностью. Ярким примером излишней сложности являются комбинированные аппаратные и программные продукты и услуги, предоставляемые компьютерной отраслью. Такие сложные и неустойчивые продукты вызвали множество дополнительных сложностей в виде компьютерных вирусов, ошибок, злонамеренных воздействий и т. д., с которыми ежедневно приходится иметь дело и отдельным лицам и предприятиям. Для противодействия этим сложностям разрабатываются и используются сложные процессы, методы и инструменты, которые, однако, часто приводят к усугублению сложностей. Яркий пример того, как беспорядочная сложность «вползает» постепенно и может привести к катастрофе. В качестве резюме может служить следующее образное наблюдение профессора Массачусетского технологического института (МТИ) Дэниэла Джэксона:

«Вопрос не в том, можно ли ликвидировать сложность, а в том, можно ли ее приручить, так, чтобы окончательная система была бы как можно проще при данных обстоятельствах. Стоимость простоты может быть высока, но плата за открытие шлюзов для сложности существенно выше».

Дэниэл Джэксон [Jackson, 2009]

Об этих особенностях системной сложности следует помнить во время путешествия по системному ландшафту. Во время путешествия разнообразные вспомогательные средства мышления и совершения действий на языке систем предоставляют полезные подходы к тому, как справляться со сложностями системных активов, системных продуктов и системных услуг, а также ситуаций (реальных и типовых). В конце путешествия в главе 8 читатель обнаружит, что организации (как предприятия), предприятия в составе организации или развивающееся предприятие сами являются системами и поэтому обладают структурными и поведенческими свойствами. Представление их подобным образом соединит вместе знания, приобретенные во время путешествия, и приведет к пониманию того, как улучшить структуры предприятий с тем, чтобы добиться более совершенного поведения предприятия.

Набор для выживания

В последнем разделе этой вводной главы, в которой были неформально представлены концепции и принципы, мы формализуем системные концепции и принципы, предоставив конкретную системную семантику. Конкретная семантика основана на конкретно определенных концепциях, конкретно определенных принципах и на применении диаграммы системной связности (рис. 1.10) в качестве универсальной, широко используемой мысленной модели. Все вместе эти элементы образуют системный набор для выживания, полезный для создателей систем и тех, кто ими управляет. То есть, после освоения и принятия на вооружение, эти элементы будут постоянно приходить к вам на помощь по отдельности и группами как средства концентрации внимания на существенных свойствах систем любого типа. Это первый большой шаг на пути от таинства к овладению, как было указано в начале этой главы [Flood, 1998].

Определения конкретных понятий

В табл. 1.4 дается классификация понятий, которые были представлены в этой главе, и их определения. Такие категории, как фундаментальные признаки, типы, топология, центр внимания, сложность и роль, отражают важнейшие, существенные свойства систем.


Таблица 1.4. Конкретные концепции (категории и определения)


Универсальная мысленная модель

Диаграмма системной связности, представленная ранее в этой главе, повторяется здесь в виде, показанном на рис. 1.17. Посредством системных ролей, отображенных на рисунке, эта диаграмма становится универсальной мысленной моделью возникновения, построения и развертывания систем. Читатель должен всегда помнить об этой модели, поскольку мы будем постоянно возвращаться к ней во время путешествия.


Рис. 1.17. Универсальная мысленная модель систем


Системные принципы

Основываясь на приведенных определениях понятий и на использовании диаграммы системной связности в качестве универсальной мысленной модели, мы теперь можем определить конкретные принципы, которые устанавливают следующие системные правила (истины, которые следует учитывать).

• Все системы состоят из одного или нескольких элементов, которые вместе образуют единое целое.

• Системы состоят из структурных элементов или функциональных элементов.

• Определенные элементы и связи могут быть абстрактными, физическими или видами человеческой деятельности.

• Системы организуются в виде иерархии или сети.

• Границы систем по отношению к представлениям определяются целевой системой в узком смысле, связанной с ней целевой системой в широком смысле, их окружением в узком смысле и окружением в широком смысле.

• Сложность может быть уменьшена посредством определения существенных факторов (концепций и принципов).

• Сложность определяется уполномоченной организацией при описании сложного поведения.

• Сложность возрастает при дезорганизации систем, результатом чего является беспорядочное поведение.

• Люди воспринимают сложность по-разному и, кроме того, люди в принципе могут быть частью системы, что приводит к увеличению сложности.

• Ситуационные системы возникают в ответ на (проблемы или возможности) или в результате определения целей в форме конечных состояний.

• Реагирующие системы разрабатываются и используются для обращения с ситуационными системами.

• Системные активы постоянного применения вводятся в строй и используются в реагирующих системах.

• Один из элементов реагирующей системы должен осуществлять управление.

Набор для выживания задает крепкую основу для движения вперед в нашем путешествии по системному ландшафту. По мере продолжения обсуждения читатель обнаружит в этой книге, что одним из главных преимуществ от умения мыслить и действовать на языке систем является потенциал для новой изобретательности (фантазии), который возникает благодаря пониманию взаимозависимостей между множеством систем и возможностей, которые появляются при объединении систем в одну новую системную идею.

Пора отправляться в путь. Но сначала проверьте ваши знания о системных концепциях, представленных в этой вводной главе.

Верификация знаний

Каждая глава этой книги содержит раздел, посвященный верификации знаний, в котором приводятся вопросы и упражнения для проверки знаний читателя. При ответах на вопросы и при выполнении упражнений было бы полезно использовать свой собственный опыт и высказывать свою точку зрения, что будет способствовать лучшему усвоению знаний в процессе дискуссий и диалогов с коллегами.

1. Назовите структурные и поведенческие свойства применительно к дисциплинам, которые вам хорошо знакомы.

2. Назовите несколько естественных (природных) систем, а также несколько физических систем, абстрактных систем и систем человеческой деятельности, созданных людьми.

3. Назовите несколько примеров систем, организованных в виде иерархии или сети.

4. Используя примеры, приведенные при ответах на вопросы 2 и 3, назовите различные стороны (отдельные лица или группы), которые при формировании представления о системе могут использовать различные точки зрения.

5. Обсудите ваше мнение по вопросу существования систем с окружающими. Существуют ли системы на самом деле или это просто абстрактные описания? Приведите доводы в подтверждение вашей точки зрения: почему они существуют на самом деле или почему они не существуют.

6. Назовите системы, которые важны для известного вам предприятия.

7. Опишите потребность в некоторых системах, в услугах, предоставляемых системами, и в результате, возникающем при функционировании систем, на которые вы рассчитываете.

8. Назовите элементы известной вам целевой системы.

9. Что означает эмерджентное поведение системы?

10. Опишите связи между элементами системы, определенными в п. 8.

11. Что означает последовательная декомпозиция иерархической системы?

12. Выполните декомпозицию одного или нескольких элементов системы, определенных в п. 8, на отдельные целевые системы, состоящие из своих собственных системных элементов.

13. Когда прекращается (останавливается) последовательная декомпозиция иерархической целевой системы?

14. Предложите несколько примеров систем, которые состоят из элементов различной природы.

15. Назовите примеры постоянно применяемых, ситуационных, реагирующих и типовых систем.

16. Что означают термины «развивающееся предприятие» и «система систем»?

17. Как относятся к изменениям, системным описаниям и знаниям на известных вам предприятиях?

18. Опишите и приведите примеры разницы между изменением показателей функционирования и изменением в описании системы.

19. Назовите случаи, когда организованная простота, организованная сложность, беспорядочная сложность и сложность, связанная с человеческим фактором, являются очевидными.

20. Опишите ваш собственный опыт, связанный со структурными и поведенческими системными сложностями, как поставщика и/или пользователя системных продуктов (услуг). Рассмотрите, как названные сложности усугубляются, влияя на предприятие и/или его процессы, методы и инструменты.

21. Определите влияние различных форм напряжений на системы на известном вам предприятии.

22. Подтвердите, что системный набор для выживания действительно является универсальным, для чего постарайтесь найти примеры открытых, созданных людьми систем, которые не вписываются в рамки набора для выживания.

Примечание 1.1

Существуют различные определения терминов «организация» и «предприятие».

Стандарт ISO/IEC 15288:2002 дает следующие определения:

Организация – группа людей и основных средств с распределением обязанностей, полномочий и связей. Определение взято из ISO 9000:2000.

Предприятие – часть организации, в обязанности которой входит приобретение и поставка продуктов и услуг в соответствии с соглашениями.

Примечание: Организация может быть задействована в нескольких предприятиях, а предприятие может задействовать одну или несколько организаций.

Примечание, приведенное в стандарте, указывает на то, что предприятия могут не иметь дело ни с одной организацией, а могут охватывать множество организаций, являясь, таким образом, развивающимися предприятиями. Однако определение предприятия, содержащееся в стандарте, хотя и является правильным, отчасти ограничивающее, поскольку относится в основном к торговле системными продуктами и/или услугами на основании соглашений. По мере нашего путешествия в этой книге, читатель обнаружит более общую точку зрения, касающуюся предприятий. Рауз [Rouse, 2005] отражает более общее представление о предприятиях, утверждая следующее:

«Предприятие – это целенаправленная организация ресурсов – людских, информационных, финансовых и физических – и видов деятельности, обычно со значительным функциональным содержанием, осложнениями, рисками и продолжительностью. Предприятия могут варьироваться от корпораций до цепочек поставок, рынков, правительств, экономик».

Определение, принятое в данной книге, заключается в том, что предприятие – это любой вид деятельности, приводящий к получению результата, достижению целей и решению задач, в том числе приобретение и/или поставка продуктов и услуг. Очевидно, что предприятие также имеет организацию. Поскольку организация характеризуется каким-то назначением, имеет цели и работает, решая поставленные задачи, она также является предприятием. Таким образом, с чисто практической точки зрения мы можем рассматривать термины «организация» и «предприятие» как эквивалентные.