Вы здесь

Прошлое для будущего. Воспоминания о времени, учебе и работе в тресте «Гидромеханизация» Минэнерго 1928—2017 гг.. Розы и шипы (Н. Н. Кожевников)

Розы и шипы

Организация треста «Гидромеханизация»

Широкое использование способа гидромеханизации земляных работ в энергетическом строительстве связано со стремительным развитием энергетики и созданием крупных энергосистем в послевоенный период, когда развернулось сооружение крупных ГЭС и ТЭС во многих регионах страны.

В состав проектируемых гидроузлов на равнинных реках входили протяженные земляные плотины больших объемов, перекрывающие широкие поймы и русла рек. Материалом для их строительства во многих случаях служил песчаный грунт обводненных карьеров.

Сооружение водоемов-охладителей и каналов для крупных тепловых электростанций было связано с проведением дноуглубительных работ и могло выполняться только с помощью земснарядов. В этих условиях доминирующей технологией выполнения больших объемов земляных работ должна была стать гидромеханизация.

Приказом Министра Электростанций СССР Дмитрия Георгиевича Жимерина от 29 июня 1946 г. №112 в составе Главгидроэнергостроя был организован Всесоюзный трест «Гидромеханизация» для производства земляных работ способом гидромеханизации на строящихся и эксплуатируемых гидравлических и тепловых электростанциях, проектирования земляных сооружений, конструирования, монтажа и изготовления оборудования для гидромеханизации.

В приказе отмечалось, что в 1946—1950 гг. на строительстве ГЭС и ТЭС предстоит выполнить до 95 млн м3 земляных работ, и что такой объём трудоемких работ можно освоить только при широком применении гидромеханизации.

К этому времени положительный опыт использования гидромеханизации в стране уже имелся. При добыче золота на сибирских приисках гидромониторный способ размыва грунта использовался еще в дореволюционной России.

Инженер Р. Э. Классон в 1914 г разработал гидравлический способ добычи торфа, который широко применялся до 1950 г.

С 1930 г., начиная с Днепростроя, способом гидромеханизации до войны было выполнено 45 млн м3 земляных работ, из них около половины на строительстве канала Москва-Волга и верхневолжских гидроузлов. Незадолго до начала войны были намыты первые плотины, в том числе Иваньковская и Угличская на Волге, Шекснинские дамбы.

Основателями отечественной гидромеханизации по праву считают талантливых инженеров и инициативных руководителей профессора Николая Дмитриевича Холина, Бориса Марковича Шкундина, Михаила Андреевича Горина, Николая Ивановича Зайцева, а в гидромеханизации транспортного строительства – П. П. Дьякова.

Большой научный вклад в развитие гидротранспорта внес профессор А. П. Юфин.

Правительство поддерживало развитие гидромеханизации в стране, еще до войны Председателем Совмина СССР Вячеславом Михайловичем Молотовым было подписано постановление о развитии гидромеханизации.

Первичной организацией треста «Гидромеханизация» занимался главный инженер Владимир Александрович Платонов, руководивший до войны намывом площадки под строительство комбината «Азовсталь» в Мариуполе.

В. А. Платонов был талантливым высокообразованным инженером, сочетавшим глубокие теоретические знания с практической работой.

В числе основателей треста необходимо назвать работников довоенного Волгостроя: технолога-гидростроителя Степана Исааковича Александрова, механика Григория Борисовича Вишняка, инженеров с глубокими теоретическими и практическими познаниями, Анатолия Семеновича Каретникова, работавшего ранее в тресте «Союзэкскавация» вместе с В. А. Платоновым, и инженера сибирских гидравлических приисков Сергея Петровича Владимирцева.

Он обладал редким изобретательским даром, богатым производственным опытом и возглавил группу проектировщиков треста – контору «Гидромехпроект».

Среди организаторов треста нельзя забыть инженера-гидротехника Георгия Дмитриевича Курдюмова, энергичного заместителя управляющего хозяйственника Александра Яковлевича Лившица, экономиста Леонида Семеновича Волчек, первых руководителей строительных управлений: Ивана Алексеевича Михеева, Олега Митрофановича Веневитинова, Анатолия Леонидовича Успенского, Петра Еремеевича Черкасова, Авдея Авдеевича Звонцова.

Они, вместе с другими немногочисленными работниками, составили кадровое звено треста, связав всю свою жизнь с гидромеханизацией.

Организаторы треста видели и создавали долговременную программу развития способа.

Даже из приказа Министра виден комплексный подход к организации работ, когда под единым управлением сосредоточивались проектно-конструкторские работы, возведение сооружений и завод-изготовитель оборудования – Рыбинский завод гидромеханизации.

Впоследствии он стал самым крупным отечественным заводом, поставлявшим земснаряды для всех ведомственных организаций гидромеханизации и за рубеж.

Такой комплексный подход отвечает структуре лучших современных фирм и способствует быстрому совершенствованию техники и технологии. Следует заметить, что эта структура была впоследствии частично утрачена: проектирование конструкции земляных сооружений было передано головным институтам, а Рыбинский завод выведен из состава треста, что не способствовало обновлению продукции. Ошибочность таких решений по разрушению законченных комплексных структур под предлогом специализации или приватизации очевидна.

В октябре 1947 г. был назначен первый управляющий трестом Сергей Борисович Фогельсон (1911—1960), очень яркий человек, талантливый и жесткий администратор в сочетании с гуманным отношением с подчиненными, вместе с этим он был и выдающимся инженером, поддерживающим все новое и прогрессивное.

С первых дней войны он добровольцем ушел на фронт, был трижды ранен и потерял кисть правой руки. До перевода в трест он работал в Ленгидропроекте заместителем директора и начальником техотдела. В тресте ему удалось реализовать способности крупного руководителя.

По приходу в трест он организовал хорошую техническую библиотеку, подписались на зарубежные технические журналы, которые переводили на русский язык, стали издавать информационные сборники, освещающие передовой опыт работ гидромеханизации.

Фогельсон лично контролировал посещение библиотеки и чтение технической литературы сотрудниками треста.

Был установлен тесный контакт треста с ведущими научно-исследовательскими и учебными институтами по профилю гидромеханизации.

В эти годы гидротехники настороженно относились к сооружению высоких намывных земляных плотин.

В США еще в 30-х годах произошло ряд аварий на плотинах, сооружаемых способом гидромеханизации, в частности на плотине Форт-Пек в 1938 г. Нужно было доказать устойчивость намывных сооружений при соответствующей их конструкции, правильном подборе грунтов и необходимой плотности их укладки.

С этой целью ведущими институтами были проработаны теории расчета устойчивости намывных плотин, на каждую проектируемую плотину создавались технические условия производства работ.

В тресте была организована грунтовая лаборатория, которую возглавил инженер-гидротехник Виктор Васильевич Ерофеев, а впоследствии Семен Тимофеевич Розиноер.

На местах производства работ при намыве ответственных сооружений создавались геотехнические посты, контролирующие качество намываемых грунтов. Эти посты, вместе с авторским надзором групп рабочего проектирования от Проектной конторы «Гидромехпроект», были наделены широкими полномочиями, вплоть до остановки работ в случае нарушения ТУ.

Такой научный и инженерный подход к качеству намываемых сооружений, поставленный С. Б. Фогельсоном и В. А. Платоновым, позволил тресту возводить уникальные земляные плотины в СССР (Мингечаурская плотина на р. Куре высотой 81 м) и за рубежом (Асуанская высотная плотина на р. Нил и др.).

К каким последствиям может привести беспечное отношение к намыву высоких сооружений, свидетельствует авария в Киеве на гидроотвале «Бабий Яр» с трагическими последствиями и большими человеческими жертвами, где работы вел трест «Укргидромеханизация» Минмонтажспецстроя.

С. Б. Фогельсон бережно относился к воспитанию кадров, при направлении молодых специалистов он всегда проводил собеседования и лично следил за продвижением инициативных и грамотных молодых инженеров.

Он заботился об улучшении жилищных и бытовых условий работников. По его личной инициативе были построены собственными силами жилые дома в Москве.

С целью ускорения разработки и использования новой техники в тресте был организован отдел новой техники, который возглавил первоначально инженер Г. Д. Курдюмов, а с 1979 г. Н. Н. Кожевников.

Отдел активно сотрудничал с ведущими проектными и научными организациями. Для изготовления опытных образцов новой техники вблизи Перервинской плотины в Москве был построен завод «Промгидромеханизация» с научно-исследовательской лабораторией, которой руководил профессор Леонид Семенович Животовский.

Организационный вклад С. Б. Фогельсона в развитие новой техники и новых технологий гидромеханизации работает и сегодня, завод «Промгидромеханизация» до 2017 г. продолжает выпускать современные образцы малых земснарядов, в которых используются последние достижения техники.

Начало производственной деятельности

Производственная деятельность треста началась в 1947 г. с реконструкции систем охлаждения на Штеровской и Шатурской ГРЭС: дноуглубления водоемов-охладителей и намыва разделительных дамб в озерах; на Фархадской ГЭС в Узбекистане приступили к разработке отводящего канала.

В это же время проводилась организационная и техническая подготовка к большим работам гидромеханизации на Мингечаурской ГЭС, Горьковской ГЭС, Каховской ГЭС, Камской ГЭС, Майкопской ГЭС. В 1950—1951 гг. началась организация работ на Новосибирской ГЭС на Оби, Верхнесвирской ГЭС, Кайраккумской ГЭС на р. Сырдарье.

За период 1947—1952 гг. было выполнено 48,4 млн м3 земляных работ. В состав треста к концу 1952 г. входило 5 строительных управлений, которые вели работу на 16 объектах с помощью 47 электрических земснарядов и 6 гидромониторных установок с грунтовыми насосами 20Р-11.

Большую роль в период становления треста играла Проектная контора «Гидромехпроект». В ней было создано несколько технологических отделов по территориальному признаку расположению объектов, конструкторский отдел, отдел проектирования гравиесортировочных заводов для получения качественного гравия и песка для бетона гидротехнических сооружений, сметный отдел.

На местах производства работ при СУ гидромеханизации создавались группы рабочего проектирования (ГРП), которые работали в тесном контакте с техническим руководством строительств и ГРП головных проектных организаций: Гидроэнергопроекта, Гидропроекта, Теплоэнергопроекта.

В те годы интенсивного строительства энергетики рабочее проектирование и даже изыскательские работы велись параллельно с производством основных работ, и это оправдывалось сокращением сроков строительства электростанций.

Вот далеко не полный перечень первого поколения проектировщиков конторы «Гидромехпроект»: это начальник конторы В. А. Савельев, гл. инженер С. П. Владимирцев, начальники отделов Г. М. Ульман, Н. С. Быстров, Г. Д. Курдюмов, С. Ф. Гаврилов, В. В. Ивановский, талантливые инженеры: М. Д. Бесчетников, Е. А. Абоимов, В. И. Евдокимова, Н. В. Ивановская, Г. А. Ермакова, В. Ф. Бакаева, М. М. Зайончковская, Н. К. Несмачный, Е. А. Абоимова, Г. М. Масляков, А. И. Свинцов, Л. Н. Булаков и другие.

К наиболее инженерно интересным и ответственным объектам первых лет работы треста следует отнести земляную плотину Мингечаурской ГЭС на р. Куре.

Плотина возводилась по комбинированной технологии: гравийно-песчано-глинистый грунт из карьера, расположенного в 4 км от створа, разрабатывался экскаваторами, грузился в железнодорожные думпкары и доставлялся к приплотинному железобетонному бункеру. Разгруженный грунт размывался гидромониторами и стекал в зумпф, откуда грунтовыми насосами 20Р-11 подавался в виде гидросмеси на плотину.

Расчетная производительность комплекса – 20 тыс. м3 в сутки. Намыв велся со строгим соблюдением ТУ, боковые призмы плотины содержали 55% гравия, промежуточная зона формировалась из песка, а ядерная часть плотины из суглинка.

Высота плотины составила 81 м, в то время это была самая высокая намывная плотина в мире. Намыв плотины был осуществлен за два года. Прошедшие в этом районе сильные землетрясения подтвердили высокое качество построенной плотины.

В 1951 г. при намыве гравийных призм плотины была опробована новая технология безэстакадного намыва.

Эти опытные работы выполнялись под руководством инженера Николая Алексеевича Лопатина, который в это время руководил работами гидромеханизации на Мингечаурской ГЭС, и главного инженера Авдея Авдеевича Звонцова, большое внимание и содействие опытным работам уделял С. Б. Фогельсон.

В 1948 г начались работы гидромеханизации на строительстве Камской ГЭС близ г. Пермь и Горьковской ГЭС на Волге.

На этих гидроэнергетических стройках были созданы крупные СУ гидромеханизации с собственными производственными базами. Эти СУ сыграли большую роль в подготовке руководящих кадров. Здесь из молодых специалистов выросли будущие руководители СУ и треста: Борис Григорьевич Гурьев, ставшим с 1960 г. главным инженером треста, А. Д. Шаргородский, ставший впоследствии заместителем начальника Главгидроэнергостроя, Г. Л. Уряшев и А. А. Конев, ставшими руководителями Киевского СУ, С. М. Тарасенко, впоследствии главный инженер Братского СУ и другие.

В 1953 г., после смерти И. В. Сталина, были выведены из состава МВД СССР и переданы Министерству строительства электростанций крупнейшие подразделения строительства ГЭС на Волге – «Куйбышевгидрострой» и «Сталинградгидрострой» вместе с кадрами и техникой.

Передача этих строек произошла в развороте работ, что негативно повлияло на темпы строительства из-за массовой амнистии работавших на стройках заключенных. На работах гидромеханизации это почти не сказалось, так как на земснарядах работали в основном «вольнонаемные» работники.

В связи с этим состав треста пополнился опытными кадрами гидромеханизаторов и новым самым мощным парком земснарядов типа 1000—80 и 500—60, которые были спроектированы и построены в рекордно сжатые сроки специально для этих строек. Производственные возможности и численность работающих в тресте возросла сразу в 2—3 раза, и он превратился в самую крупную организацию гидромеханизации в Союзе.

О кадрах и технике, переданных из Куйбышевского и Сталинградского СУ гидромеханизации, следует остановиться особо, так как они во многом потом определяли деятельность треста.

Несколько слов о технике. Все земснаряды типа 300—40, 500—60 и 1000—80 были спроектированы Проектно-конструкторской конторой гидромеханизации МВД СССР.

Первый электрический земснаряд 300—40 с трюмным расположением грунтового насоса 20Р-11 (подача 3000 м3/ч, Н = 40 м) был спроектирован и построен еще в 1940 г с участием инженеров Б. М. Шкундина, Н. И. Зайцева, М. А. Горина, А. И. Огурцова, Б. В. Беренцвейга, Н. Корчагина. Земснаряд соответствовал мировому уровню того времени, до 1990 г. на разных заводах было построено около 500 земснарядов этого класса, их прототипом был земснаряд 300—40, который стал основной «рабочей лошадкой» треста.

Более мощный земснаряд 500—60 был спроектирован и построен в 1946—1947 гг. для строительства Цимлянской ГЭС на р. Дон, всего земснарядов такого типа было выпущено более 20. За разработку и освоение земснаряда 500—60 Б. М. Шкундин был удостоен в 1951 г. звания лауреата Сталинской премии.

Земснаряды 1000—80 проектировались тоже ПКК МВД (начальник конторы Н. И. Зайцев) и строились в рекордно сжатые сроки на Сталинградской судоверфи в 1950—1951 гг. специально для строительства Куйбышевской и Сталинградской ГЭС. Это была самая крупная машина, построенная в СССР водопроизводительностью 10000 м3/ч с напором 80 м, мощностью 5130 кВт с фрезерным рыхлителем для разработки глинистых грунтов. Всего было построено 8 таких машин, 7 из них работало на строительстве Куйбышевской ГЭС. После 1952 г. такие машины не строились.

При их эксплуатации выяснилось, что их высокая производительность (на песчаных грунтах до 1500 м3/ч) не соответствует возможностями приема грунта на карте при эстакадном намыве, земснаряд продолжительно простаивал во время строительства намывного пульпопровода, кроме этого он имел неразборный сварной корпус и мог транспортироваться только водным путем.

Работа Куйбышевского СУ гидромеханизации вынесена в отдельную главу этой книги, это подразделение и его кадры в дальнейшем определили развитие треста.

Куйбышевское и Сталинградское СУ располагали высококвалифицированными кадрами гидромеханизаторов. Руководящие кадры этих подразделений имели практический опыт, приобретенный на стройках верхневолжских гидроузлов и канала Москва-Волга в довоенные годы, строительстве Цимлянской ГЭС и канала Волга-Дон в 1949—1951 гг.

Главным инженером Куйбышевского СУ с начала строительства Куйбышевской ГЭС и до его полного окончания бессменно работал талантливый инженер и организатор Борис Карлович Липгарт, успешная работа гидромеханизации на этом огромном скоростном строительстве ГЭС во многом обязана этому скромному и интеллигентному человеку.

Из первого поколения гидромеханизаторов с довоенным опытом на строительстве Куйбышевской и Сталинградской ГЭС работали инженеры Б. К. Липгарт, Б. В. Беренцвейг, В. И. Ющенко, Г. Ф. Горбачев, Е. В. Меницкий, И. С. Хоперский; инженеры с опытом работы на Цимлянской ГЭС: Г.С.Гречишкин, С. Т. Розиноер, А. К. Михайлова, Ф. М. Козловский, Е. М. Замковой, Г. М. Подъяков, В. С. Мирончик и многие другие прорабы и мастера.

На строительство Цимлянской ГЭС в 1950 г. был направлен выпуск курса Ростовского мореходного училища, в основном эти выпускники училища назначались начальниками земснарядов, они принесли на земснаряды традиционный флотский дух порядка, дисциплины и взаимовыручки.

По окончании строительства Цимлянской ГЭС все они были переведены в Куйбышевское и Сталинградское СУ и составили основной костяк кадрового звена на земснарядах и впоследствии, окончив вечерние и заочные институты, стали крупными руководителями. Среди них необходимо отметить А. И. Лебедева, В. П. Хлюста, В. И. Михайлова, И. С. Кулинича, А.В.Серых, Н. А. Васильева, С. Т. Попова, Г. Д. Темникова, Г. П. Бовшу и многих других.

Известно, что успех работы земснаряда зависит от опытности багермейстера, эта квалификация приобретается многолетним опытом работы. Большинство ведущего кадрового состава земснарядов также прибыли вместе с самими земснарядами со строительства Цимлянской ГЭС.

Кроме того, при Куйбышевгидрострое был открыт учебный комбинат для подготовки рабочих кадров гидромеханизаторов.

В 1949—1950 гг. в соответствии с постановлением Совмина в Московском Торфяном Институте, Московском Строительном Институте, Куйбышевском Строительном Институте последние 5-е курсы были перепрофилированы по специализации гидромеханизация.

В Москве гидромеханизацию преподавали профессор Н. Д. Холин, профессор А. П. Юфин, П. П. Дьяков, С. Н. Махлис.

Председателем Госкомиссии при выпуске инженеров был академик, легендарный строитель Днепрогэса и Шатурской ГРЭС А. В. Винтер.

Молодые специалисты распределялись в подразделения треста «Ггидромеханизация», «Трансгидромеханизация» и МВД на строительства Цимлянской, Куйбышевской и Сталинградской ГЭС.

Молодые инженеры стали впоследствии руководителями подразделений и ведущими инженерами треста «Гидромеханизация» и других трестов, стали гидромеханизаторами «второго поколения».

Дальнейшая работа подразделений треста

Приоритетное строительство ТЭС в конце 50-х годов сказалось на снижении темпов земляных работ в гидроэнергетическом строительстве, хотя строительство каскада ГЭС на Днепре продолжалось, в Литве началось строительство Каунасской ГЭС на р. Неман, а затем Плявиньской ГЭС в Латвии на р. Даугава.

С 1960 г.г. становится характерным увеличение количества объектов энергетического строительства со сравнительно небольшими объемами земляных работ на ТЭС, повышалась мобильность подразделений. Это требовало сохранения базовых СУ с целью сохранения опытных кадров для комплектации бригад земснарядов на новых объектах.

В этот период по инициативе С. Б. Фогельсона организуются работы гидромеханизации по намыву заболоченных прибрежных территорий в Ленинграде из карьеров в устье р. Невы с помощью обычных речных земснарядов.

В условиях морского ветра и частых штормов это было довольно рискованным решением. Кроме этого грунт карьеров состоял из мелких супесей и суглинков, стабилизация которых на карте намыва происходила только в течение 2—3 лет.

Однако эти организационно и технически сложные работы земснарядов в море со временем были освоены. Работы по намыву территорий в Ленинграде подобно описаны в отдельной главе моей книги.

Впоследствии работы по планировке территорий для городской и промышленной застройки выполнялись во многих городах России, Украины и в Болгарии.

В 1957 г. в соответствии с решением Правительства были начаты крупные горно-вскрышные работы на Лебединском карьере Курской магнитной аномалии (КМА), которые продолжались потом на Южно-Лебединском, а затем на Стойленском и Михайловском карьерах в течение 30 лет с глубиной выемки до 90—110 м.

В составе треста было создано Губкинское СУ. Первым начальником СУ был назначен уже опытный гидромеханизатор Иван Алексеевич Кузнецов, главным инженером – горный инженер Серафима Ивановна Полежаева.

Вскрыша карьеров первоначально выполнялась в обводненных грунтах с помощью земснарядов 500—60, а потом гидромониторно-землесосными установками с помощью самых мощных гидромониторов с дистанционным управлением с расходом воды через один ствол до 4000 м3/ч.

Эти работы не имели более ни отечественных, ни зарубежных аналогов.

Годовая производительность комплекса гидромеханизации составляла 9 —18 млн м3 в год, до 1970 г. было выполнено свыше 100 млн м3 горно-вскрышных работ.

За разработку уникальной технологии горно-вскрышных работ группа инженеров, в том числе С. И. Полежаева, была удостоена Государственной премии. В 1971 г. она была назначена заместителем управляющего трестом, где проявила себя энергичным организатором-хозяйственником.


Земснаряд 350—50 Л Губкинского СУ гидромеханизации на строительстве КМА


В 1960 г. скончался организатор треста С. Б. Фогельсон. Его заменил Николай Алексеевич Лопатин, ранее работавший на строительстве Мингечаурской ГЭС, а затем начальником СУ гидромеханизации на Сталинградской ГЭС. Н. А. Лопатин достойно продолжил традиции треста по четкому выполнению заданий Министерства и производственных планов.

Его назначение совпало с организацией работ гидромеханизации на первом зарубежном объекте строительства, самого значительного в мире гидроэнергетического сооружения – Высотной Асуанской плотины на р. Нил в Египте.

Главным специалистом подразделения гидромеханизации на этот объект был командирован в 1959 г. Георгий Михайлович Масляков, прошедшим большую школу на Куйбышевгидрострое как проектировщик и приобретший производственный опыт на строительстве Саратовской ГЭС в должности главного инженера и начальника участка гидромеханизации.

Технический проект работ гидромеханизации выполнили инженеры ПК «Гидромехпроект» Н. К. Несмачный и Н. Н. Маслов. Плотина высотой 111 м возводилась в водохранилище ранее построенной английскими инженерами ГЭС при глубине воды в створе до 37 м.

Конструкция плотины предусматривала высокую степень надежности, исключающую возможность разрушения при взрыве, и минимальными фильтрационными потерями, поэтому к качеству работ и их контролю предъявлялись самые высокие требования.

Главным советским экспертом строительства первоначально был И. В. Комзин, которого затем сменил известный гидростроитель А. П. Александров, ставший впоследствии заместителем Министра Энергетики.

Все работы на строительстве выполнялись составом арабских и советских специалистов и рабочих под техническим руководством советских инженеров.

В пик работ на участке гидромеханизации работало до 150 человек командированных советских инженеров и рабочих гидромеханизаторов и до 1000 человек арабских рабочих. Трестом направлялись на стройку наиболее опытные кадры, что обеспечило успех работы.

На строительстве Асуанской плотины был реализован целый спектр новых технических решений в гидромеханизации, которые определялись необычными местными условиями и своеобразием проекта.

К таким нетрадиционным решениям можно отнести:

– «сбор» дюнного песка из локальных месторождений с поверхности каменистой пустыни с помощью гидромониторно-землесосных установок с укладкой в резерв у створа плотины;

– обогащение в гидроклассификаторах привозного крупного песка, который после укладки в центральную зону плотины должен был инъектироваться цементно-глинистым раствором; – подводный послойный (до 17 м) намыв плотины через плавучий пульпопровод с концевым стреловым понтоном, позволяющим опускать торец выбросной трубы на глубину до 20 м со строгим его перемещением по створу, поскольку намывались разные по фильтрационным свойствам пески;

– уплотнение намытого под воду мелкозернистого дюнного песка с помощью специально спроектированной институтом «Гидропроект» плавучей вибрационной установки с шестью глубинными вибраторами. С помощью этой установки было уплотнено 3,4 млн м3 песка;

– самотечный размыв водой по канавам резерва дюнного песка, это обеспечило интенсивность намыва в тело плотины до 80 тыс. м3 в сутки;

– намыв из щебня слоя 1 м на подводных откосах плотины;

– замыв глиной и илом каменных призм для создания противофильтрационного экрана, а также замыв песком упорных каменных призм.

Намыв проводился по уплотненному, четко совмещенному с другими смежниками графику на узком фронте работ, они были закончены в 1966 г., всего было выполнено 22,5 млн м3 земляных работ способом гидромеханизации.

За успешное выполнение работ на строительстве Высотной Асуанской плотины Г. М. Масляков был награжден правительством ОАР орденом Республики I степени. Среди советских специалистов-гидромеханизаторов самоотверженно трудились Г. Д. Фомин, Н. Н. Маслов, А. Ушаков, Ю. Бруякин, Л. Н. Булаков, А. Конев, А. В. Родионов, Алоян, Акимов, Калинкин, Б. Штохов, Е. М. Замковой и многие другие.

Успешное строительство Высотной Асуанской плотины стало мировым признанием высокой квалификации советских гидроэнергетиков.

С этой первой зарубежной стройки началось широкое привлечение советских гидростроителей и специалистов треста «Гидромеханизация» к зарубежному гидростроительству. С оказанием технической помощи специалистами треста были впоследствии сооружены крупные гидроузлы Табка и Тишрин на р. Евфрат в Сирии, ГЭС Хадита на р. Евфрат в Ираке, ГЭС Хоабинь на р. Да во Вьетнаме, ГЭС Костешты – Стынков на р. Днестр в Румынии.

К сожалению, в соответствии с действующим положением все эти зарубежные работы выполнялись через Технопромэкспорт и Загранэнерго и на финансовой деятельности треста не отражались.

Направляемые на эти зарубежные стройки специалисты получали зарплату через Загранэнерго, она была в несколько раз выше отечественной, но много ниже мирового уровня для специалистов.

Большое значение в успешной работе гидромеханизаторов за рубежом имели сплоченность коллектива и товарищеское отношение в быту и на работе. Часто, особенно на первом этапе длительных командировок специалисты находились без семьи, и вдали от родины коллектив был их «родным домом».

С начала 1960-х годов складывается территориальная структура строительных управлений треста с обслуживанием многочисленных энергетических строек по принадлежности к данному региону.

В составе треста в начале этого периода входили следующие производственные подразделения, первоначально размещаемые на площадках строительства крупных ГЭС: Братское СУ, Волгоградское СУ, Губкинское СУ, Днепродзержинское СУ, Киевское СУ, Красноярское СУ, Куйбышевское СУ, Камское СУ, Московское СУ, Среднеазиатское СУ, Уральское СУ. Эти СУ выполняли гидромеханизированные земляные работы на строительстве крупных ТЭС и АЭС.

Несколько позже из состава Московского СУ были выделены Закавказское СУ для строительства Ингурской ГЭС и Ленинградское СУ. В 80-х годах были дополнительно образованы Чебоксарское СУ для строительства Чебоксарской ГЭС и Нижненовгородское СУ на Волге, Нижневартовское СУ для обеспечения добычи нефти и газа в Западной Сибири и строительства крупных ГРЭС в этом регионе.

Этими СУ были выполнены гидромеханизированные работы (до 2000 г.) на строительстве 53 ГЭС, 60 ТЭС, 17 АЭС, 3 ГАЭС на территории всех республик Советского Союза. На объектах водоснабжения были отрыты каналы Днепр – Кривой Рог, Днепр – Донбасс, в Средней Азии – Южный и Центральный Голодностепский каналы, Большой Каршинский канал, Тахиаташский канал, каналы орошения Джизакской степи, намыта плотина Талимарджанского водохранилища.

В тридцати городах на заболоченных территориях и оврагах были намыты площади под жилищную и гражданскую застройку, на них проживают не менее 3 млн человек.

Для добычи полезных ископаемых произведена гидровскрыша на 7 крупных рудниках, а добыча и сортировка песка и гравия выполнялась на тридцати объектах энергетического и промышленного строительства.

Всего подразделениями треста до 2000 г. было выполнено около 4 млд м3 земляных работ, в середине 80-х годов выполнялось ежегодно до 170 млн кубометров земляных работ, численность работающих доходила до 9 тыс. чел.

Технический вклад в гидротехническое строительство

Безусловно, одним из наиболее важных и эффективных технических достижений треста было изобретение и внедрение безэстакадного намыва. По сути это было технической революцией в технологии намыва, позволившим полностью механизировать укладку грунта в сооружение.

Это мероприятие позволило избавиться от примитивного ручного труда на карте намыва и на порядок увеличить производительность труда во всех подразделениях гидромеханизации СССР. Изобретателями этого способа были инженеры треста А. А. Звонцов и А. С. Каретников.

На песчаных грунтах безэстакадный намыв впервые был внедрен на намыве плотины Куйбышевской ГЭС в 1953 г. по инициативе управляющего трестом С. Б. Фогельсона. Подробно о внедрении способа приведено в главе о работе Куйбышевского СУ гидромеханизации.

Конечно, в рамках одной статьи невозможно описать работу всех СУ на столь многочисленных объектах более чем за 50 лет, некоторые из них описаны выше, но на ряде инженерно интересных работ и общей организации работ следует остановиться дополнительно.

Во-первых, следует отметить большой вклад проектировщиков и производственников – гидромеханизаторов в сооружение земляных плотин, в том числе высоконапорных.

Было намыто более 200 плотин из различных грунтов различной конструкции, при их строительстве и эксплуатации не было ни одной аварии, в том числе плотина Кайраккумской ГЭС на р. Сырдарье выдержала сильное землетрясение, разрушившее рядом находящиеся городские дома. Выше приводилось примеры намыва конструктивно сложных плотин Мингечаурской ГЭС и Высотной Асуанской плотины.

Этот перечень можно продолжить примером намыва плотины Плявиньской ГЭС высотой 46 м на р. Даугава, возводимой из двух карьеров: мелкопесчаного, грунт которого за 15 км подавался гидромониторно-землесосным способом, и гравийно-галечникого грунта, завозимого в резерв сухим способом и перерабатываемого в боковые призмы плотины гидромониторным способом.

Плотина состояла из 8 зон различных грунтов, из которых 4 зоны намывались и 4 зоны параллельно с намывом отсыпались. Эта сложная по намыву грунтов работа выполнялась под руководством одного из гидромеханизаторов старшего поколения Н. П. Беловым, впоследствии он работал начальником Закавказского СУ на строительстве Ингурской ГЭС, а затем руководил учебным комбинатом гидромеханизаторов.

При сооружении плотин Головной ГЭС на р. Вахш и Капчагайской на р. Или пески были настолько мелкими с плохой водоотдачей, что гусеничные краны не могли передвигаться в процессе намыва. Для осуществления намыва пришлось предварительно поярусно отсыпать дамбы обвалования из гравийной массы и с них наращивать намывной пульпопровод. Эти работы выполнялись под руководством начальника Среднеазиатского СУ М. И. Зобнина и главного инженера А. П. Телегина.

Для защиты земель и сооружений от затопления при наполнении водохранилищ ГЭС сооружались протяженные ограждающие дамбы.

Так при сооружении Киевской ГЭС потребовалось намыть плотины и дамбы протяженностью 58,9 км. Кременчугское СУ выполнило по генподряду весь комплекс защитных сооружений г. Черкассы и еще трех больших подтопляемых массивов.

Протяженность дамб составили 40 км, дренажных устройств – свыше 20 км, были построены постоянные насосные станции, водосбросные сооружения, каменно-набросное крепление откосов.

Эти работы выполнялись под руководством инженера Б. Г. Гурьева, который впоследствии, после выхода на пенсию В. А. Платонова в 1968 г., был переведен в Москву и назначен главным инженером треста.

Аналогичные работы были осуществлены по защите от затопления г. Абакан водохранилищем Красноярской ГЭС.

Строительство инженерной защиты на водохранилищах Нижнекамской и Чебоксарской ГЭС выполнялось в полном комплексе сооружений, включая подготовку основания, намыва или сухой отсыпки дамб, крепления откосов, устройства дренажа и водоотвода.

Столь крупные гидротехнические работы, часто выходящие за профиль работ гидромеханизации, потребовало привлечения к работам четырех строительных управлений: Камского, Куйбышевского, Чебоксарского и Горьковского.

Объекты инженерной защиты были растянуты на десятки километров по заболоченным территориям в условиях бездорожья и удаленности от баз управлений. Управления столкнулись с большими организационными и техническими трудностями.

На строительстве Каневсой ГЭС было впервые осуществлено безбанкетное перекрытие русла Днепра намывом песка при расходе реки 700 м3/ч, на Астраханском вододелителе на Нижней Волге безбанкетное перекрытие было осуществлено при расходе 2150 м3/ч. Это позволило отказаться от отсыпки каменных банкетов и существенно снизить стоимость строительства.

С середины 80-х годов находят широкое распространение намывных низконапорных ограждающих плотин на водохранилищах охладителях атомных и тепловых электростанций и защитных дамб на водохранилищах с пляжными волногасящими динамическими откосами. Этот способ гашения волны на мелководье взят по природному аналогу морских песчаных пляжей.

Такая конструкция намывных дамб из песчаных или песчано-гравийных грунтов с заложением верхового откоса 1:30 – 1:40 при высоте дамб до 5 м оказывалась более экономичной, чем с традиционным заложением 1:3 – 1:5 с креплением откоса камнем или бетоном, при этом увеличение объема намыва по стоимости компенсировалось отказом от крепления при упрощении технологии намыва.

Характерным примером применения намывных дамб с пляжным волногасящим откосом было сооружение ограждающей дамбы Запорожской АЭС на Каховском водохранилище.

Первоначальным проектом была предусмотрена отсыпка в воду каменного банкета объемом 1,7 млн м3. Решение о замене каменного банкета намывом песчаных дамб с заложением надводного откоса 1:50 и подводного откоса с заложением 1:7 было принято после проведенных исследований и острых дебатов в Минэнерго при поддержке главного инженера института «Гидропроект» Т. П. Доценко и главного гидротехника Атомтеплоэлектропроекта Р. Г. Миносяна.

Реальная экономия от исполнения этого решения составила около 30 млн $ US, многолетняя эксплуатация намывной дамбы подтвердила надежность этого решения.

Возведение песчаных дамб с пляжным волноустойчивым откосом стало возможным только благодаря применению гидромеханизации, это было крупным достижением отечественной гидротехники.

Другим примером творческого подхода к устоявшимся в гидротехнике традиции повсеместной выторфовке грунтов основания при строительстве земляных низконапорных дамб может служить сооружение ограждающей дамбы Печорской ГРЭС.

Подробнее это мероприятие приведено в другой главе книги.

Как известно, энергетическое строительство связано непосредственно с природными условиями, которые отличаются большим многообразием, строительство любой ГЭС и ТЭС несет свои присущие ей особенности, поэтому и работы гидромеханизации по своему неповторимы на каждом крупном объекте и требуют всегда творческого подхода. Одним из этапов работы треста был массовый переход на строительстве тепловых электростанций.

Отличительной особенностью строительства ТЭС было сокращение сроков строительства, и, следовательно, мобильности кадров и техники. Крупные ТЭС строились преимущественно с изолированными водоемами – охладителями, хотя ряд крупных ТЭС часто возводились с непосредственным забором и сбросом теплой воды в естественные водоемы и даже реки.

«Грошовая» экономия стоимости строительства на сокращении затрат на сооружение водоемов-охладителей и погоня за повышением КПД электростанции часто оборачивалась при эксплуатации нарушением экологии озер и рек. Но все, же на многих строящихся ТЭС, особенно атомных, объем изолированных водоемов был достаточен для нормативного охлаждения.

В строительстве ТЭС участвовали все СУ треста в зависимости от их размещения. Выполнялись работы гидромеханизации на расчистке водоемов, выемки подводящих каналов к насосным станциям ТЭС, сбросных каналов, намыву площадок под сооружения ТЭС на слабых грунтах и выемки котлованов, сооружению ограждающих и струенаправляющих дамб водоемов. Характерным отличием от плотин ГЭС были сравнительно небольшие напоры дамб системы водоснабжения ТЭС.

Сокращение сроков строительства ТЭС потребовало мобильности коллектива бригад земснарядов, и самих земснарядов. Земснаряды типа 300—50 с цельносварными корпусами обычно демонтировались, корпус судна разрезался газовой резкой, детали перевозились обычно по железной дороге, на новом объекте секции корпуса соединялись с помощью электросварки. Этот процесс перебазирования земснаряда обычно продолжался около 6 месяцев, хотя опытные бригады Днепродзержинского СУ производили перебазирование земснаряда за три месяца.

В том случае, когда было возможно перебазировать земснаряд водным путем, такая возможность всегда использовалась. В Московском СУ использовалась даже возможность буксировки речных земснарядов по Балтийскому морю на строительства Каунасской ГЭС, Кайшядорской ГАЭС, по Белому и Баренцеву морю на строительство Печорской ГРЭС, хотя такая транспортировка морем всегда связана с риском потопления земснаряда при шторме, и такие случаи в практике треста были.

Институтом «Гидропроект» (конструктор Т. В. Марголин) в 80-е годы был спроектирован разборный земснаряд среднего класса 200—50 БР, блоки земснаряда были приспособлены для перевозки автотранспортом. Этот земснаряд мог быть разобран, перевезен по автодороге и собран на новом объекте в течение одной недели. Однако таких земснарядов было построено на Рыбинском заводе немного.

Быт гидромеханизаторов

Большие сложности представляло перебазирование коллектива, главные трудности были в отсутствии на новом объекте цивилизованного жилья и элементарных бытовых условий. Выплачиваемые надбавки к зарплате в виде «суточных» или «монтажных» в размере около 50% от тарифной ставки не могли компенсировать неустроенного быта и разрыва с семьей.

Переезд работника в барак или вагончик с неясной перспективой в будущем не обеспечивали ему ни «длинных рублей», ни уверенности в улучшении условий.

Во многих случаях переезд работников на новую стройку определялся привязанностью к коллективу, бригаде и своей специальности.

С бытовой стороны, существовавшая ранее система строек ГУЛАГа, для энергостроителей мало чем отличалась и от последующих «комсомольско-молодежных» строек. Обычно все эти действительно великие стройки начинались с выемки котлована, а не со строительства жилья и устройства быта для строителей, и это было правилом.

Некоторым отрадным исключением были строительства Каунасской ГЭС, Запорожской АЭС, где цивилизованные поселки строителей возводились в первую очередь, и то вопреки партийно-правительственным установкам. В этом нужно отдать должное уважение отважным начальникам строительств, которым удалось отстоять права строителя на человеческий образ жизни.

В этих «правилах» начала стройки с котлована сказывались давно устаревшие установки на энтузиазм строителей и желание руководства скорее начать «осваивать» смету и отчитаться, что заложили «первый камень». Потери от таких установок были неисчислимыми и, в конце концов, они оборачивались увеличением сроков строительства и потерями кадров.

Обеспечение работников нормальными жилищными условиями являлось одной из важнейших задач треста по закреплению кадров. В основном эта программа решалась через генподрядчика и заказчика строек. При заключении договора на выполнение работ оговаривалось количество выделяемых мест в общежитии и квартир. Но эти договорные условия часто не выдерживались.

Во многих случаях приходилось самостоятельно приобретать и монтировать вагончики для временного жилья и вести капитальное строительство жилья собственными силами или по долевому участию в финансировании. Но выделяемые для этих целей средства были крайне ограничены.

Массовое жилищное строительство на промышленной основе в стране было начато при Н. С. Хрущёве, и в этом его заслуга несомненна. Жилые дома из сборных панелей нашли широкое применение при строительстве поселков энергостроителей.

При строительстве Ингурской ГЭС в Закавказье СУ гидромеханизации удалось построить поселок Приморский на берегу Черного моря с гостиницей, в которой в 1990 г. организовали дом отдыха для гидромеханизаторов, а ранее, с 1980 г., был открыт учебный комбинат для подготовки квалифицированных кадров для работы на земснарядах. Учебным комбинатом руководил Н. П. Белов, который хорошо организовал его работу. Подготовка рабочих кадров была очень своевременна.

Гидромеханизация на освоении месторождений нефти и газа в Западной Сибири

Возрастающее потребление топлива и сокращение запасов в традиционных районах добычи к середине 1960 гг. определили задачу срочного освоения разведанных крупных месторождений нефти и газа в Западной Сибири.

Инициатором освоения этих месторождений был Председатель Совмина СССР А. Н. Косыгин, своевременность этого решения подтверждает история, когда нефть и газ с начала 1990-х годов становится основным топливом для ТЭС и почти единственным продуктом экспорта страны. Без газа и нефти Западной Сибири Россия сегодня вообще не могла бы существовать как самостоятельное государство.

Но освоение топливных запасов Западной Сибири было исключительно сложным делом ввиду того, что эти месторождения располагались в необжитых таежно-болотистых районах и тундре северной климатической зоны с обводненной поверхностью, с периодом положительной температуры не более 5 месяцев в году и зимними морозами до минус 400 С.

Для добычи топлива нужно было связать месторождения с «большой землей» железными и автомобильными дорогами; поднять из болота промплощадки для бурения скважин и насыпи под дороги, газопроводы, ЛЭП, произвести подсыпку грунта территории городов, поселков, построить мощные ТЭЦ для добычи и транспортировки топлива.

Для развития инфраструктуры этих районов потребовалась выполнить более 2 млд. м3 насыпи песчаного грунта, выполнить который в условиях обводненности поверхности можно было только с помощью земснарядов. Без гидромеханизаторов эта задача вообще не могла быть решена, и они были «пионерами» освоения этого региона.

Сооружение насыпей под железную дорогу Тюмень – Сургут – Нижневартовск, автомобильных и промысловых дорог было начато в 1966 г. объединением «Трансгидротеханизация», впоследствии в Западной Сибири от этого объединения было организовано три производственных треста гидромеханизированных работ.

Для обеспечения электроэнергией добычи и транспортировки газа в сжатые сроки строятся Сургутская ГРЭС-1, Нижневартовская ГРЭС, Сургутская ГРЭС-2 и Уренгойская ГРЭС.

В 1972 г. Уральское СУ треста «Гидромеханизация» (начальник СУ Л. Беренцвейг, главный инженер Б. А. Кашилов) организует в Нефтеюганске базовый участок гидромеханизации (начальник участка Л. А. Тарасенко) для выполнения работ по намыву основания буровых площадок и насосных станций, полотна промысловых дорог и коммуникаций.


Намыв автодороги близ г. Нефтеюганска земснарядом №328 Уральского СУ


В 1981 г. трест организует Нижневартовское СУ гидромеханизации с отдельным участком в Уренгое для намыва площадок и строительства систем водоснабжения вышеупомянутых ГРЭС.

В управление было поставлено 15 земснарядов типа 380—56. Организаторами СУ были опытные гидромеханизаторы: И. А. Кузнецов, В. В. Терещенков, С. П. Михайленко, Е. Д. Денисюк, В. М. Алыпов, Х. Х. Шарипов, командированные из других СУ треста. Рабочие кадры земснарядов также комплектовались из всех подразделений треста.

Работа была организована по вахтовой системе, на объект завозилось 2 смены, каждая из которых работала в напряженном режиме по 12 часов в сутки, включая выходные дни, смена вахт производилась через один месяц работы.

Доставка вахт в Нижневартовск и Нефтеюганск производилась из Москвы специальным рейсом самолета, на удаленные объекты смены доставлялись вертолетом.

Бытовые условия рабочих были тяжелыми, на земснарядах было организовано коллективное питание, смена отдыхала после 12 часовой работы в вагончике, через 12 часов эта же смена вновь приступала к работе.

Переработка рабочего времени компенсировалась месячным отдыхом по месту проживания семьи. Эксплуатация земснарядов ограничивалась пятью месяцами в году из-за суровых климатических условий.

Несмотря на столь трудные бытовые и организационные условия производительность земснарядов была высокой за счет опытности вахтовых рабочих и внедрения на всех земснарядах эжекторного грунтозаборного устройства.

Гидромеханизаторы обеспечивали выполнение графика ввода этих крупных электростанций, всего подразделениями треста было намыто более 350 млн м3 насыпей, выполнен этот объем самоотверженной работой коллектива.

С наступившей в стране «перестройкой» работа по дальнейшему развитию топливно-энергетического комплекса в этом регионе даже возрасла и бывшие подразделения треста «Трансгидромеханизация» успешно намывают промысловые дороги и площадки в объемах до 100 млн м3 ежегодно до сего времени, даже на полуострове Ямал.

Новый управляющий трестом «Гидромеханизация» Ю. Н. Дьячков, сменивший Г. М. Маслякова в 1987 г., при начавшейся в стране перестройке отказался от продолжения гидромеханизированных работ в этом регионе, не сумевши вести работы при «рыночной экономике» в новой стране – «Российская Федерация». Этим решением он по существу ликвидировал трест и все его подразделения. Работоспособным осталось только самостоятельное Новочебоксарское АО «Гидромеханизация», благодаря его инициативному молодому начальнику В. В. Панину.

Добыча и сортировка песка и гравия

Из общей программы треста добыча и сортировка песка и гравия для приготовления бетона, фильтров гидротехнических сооружений и изготовления силикатных изделий составляла всегда значительную долю, и особенно в последние годы, когда гидротехническое и энергетическое строительство по существу прекратилось.

Технология «мокрой» сортировки песчано-гравийной смеси позволяла получить фракционированный песок и гравий нужных фракций в соответствии с ГОСТом в совмещенных операциях добычи смеси из карьера с помощью земснаряда и разделения грунта по фракциям на гидравлических классификаторах и ситах.

В проектной конторе был создан специальный отдел гравийных заводов, которым руководили инженеры Л. Н. Булаков и Н. А. Лобов.

Добыча и сортировка нерудных материалов выполнялись почти на всех объектах энергетического строительства. Наиболее современные сортировочные заводы, позволяющие получать несколько фракций гравия и песка, были построены на строительстве Воткинской ГЭС, Нижнекамской ГЭС, Камского автозавода, Ингуской ГЭС, Братской ГЭС, Кайшадорской и Загорской АЭС.

Конец ознакомительного фрагмента.