Вы здесь

Происхождение жизни. От туманности до клетки. Часть II. Происхождение жизни (Михаил Никитин, 2016)

Часть II

Происхождение жизни

Глава 5

История идей о происхождении жизни

Древние и средневековые ученые всего мира были уверены, что живые организмы постоянно самозарождаются из неживой материи: мухи – из гниющего мяса, мыши – из грязных тряпок и т. д. Первым попробовал проверить это итальянец Франческо Реди в XVII веке. Он клал мясо в кувшины и закрывал некоторые из них тонкой кисеей. Оказалось, что черви заводятся только в незакрытых кувшинах, в которые могут залетать мухи. Так было показано, что самозарождение червей в мясе невозможно – они вылупляются из яиц, отложенных мухами.

Затем были открыты микроорганизмы. Все считали, что хотя бы эти простейшие существа точно могут самозарождаться! Но и это было опровергнуто Ладзаро Спалланцани в XVIII и Луи Пастером в XIX веках. Спалланцани кипятил бульон и запаивал его в стеклянных колбах. Бульон не прокисал месяцами и годами в запаянной колбе, но быстро портился после ее вскрытия, и в нем обнаруживались микроорганизмы. Критики возражали, что для самозарождения в запаянной колбе недостаточно «упругости» (давления) воздуха. Тогда Луи Пастер повторил эксперимент Спалланцани, немного изменив его: вместо наглухо запаянной колбы он использовал открытую, вытянув ее горло в длинную и тонкую S-образно изогнутую трубочку. Этого было достаточно, чтобы бульон не портился, хотя воздух мог проходить внутрь. Так было показано, что даже микроорганизмы образуются путем размножения уже существующих микроорганизмов. (Кстати, узнав об опытах Спалланцани, повар Николя Аппер создал технологию консервирования продуктов в герметично закрытых банках, за что получил большую премию и личную благодарность от Наполеона.)

После успехов Пастера перед учеными встала задача: объяснить происхождение жизни, раз уж жизнь есть, а самозарождения в экспериментах не происходит. Первые успехи в этом направлении были достигнуты А. И. Опариным и Джоном Холдейном в 1920-х годах. Опарин работал с коллоидными растворами белков и полисахаридов и обнаружил, что в некоторых условиях растворенные белки собираются в компактные капли – коацерваты, – которые могут расти, поглощая растворенные вещества из внешней среды, и делятся подобно клеткам. Также он предположил, что атмосфера древней Земли была бескислородной и поэтому в ней мог протекать абиогенный синтез органических веществ. Холдейн развил и конкретизировал идею «первичного бульона» – древнего океана, взаимодействующего с бескислородной атмосферой, в котором под действием разрядов молний, солнечного ультрафиолета и вулканических извержений идут разнообразные химические реакции, приводящие к образованию сложных органических молекул, а те, в свою очередь, образуют коацерватные капли, из которых со временем развиваются клетки.

Идеи Опарина и Холдейна получили экспериментальное подтверждение в 1953 году в опытах Стенли Миллера и Гарольда Юри. В этих экспериментах смесь газов, имитирующая древнюю атмосферу Земли (СН4, NH3, H2), запаивалась в замкнутой стеклянной установке, в которой были подогреваемая колба с водой, холодильник и электроды (рис. 5.1). Через электроды пропускали электрические разряды, имитирующие молнии. По прошествии нескольких суток Стенли Миллер вскрыл установку и обнаружил в воде разнообразные органические молекулы, в том числе простейшие аминокислоты (глицин, аланин), сахара (глицеральдегид, гликолевый альдегид) и органические кислоты (уксусную, молочную), характерные для живых организмов. Последующие экспериментаторы, варьируя условия и совершенствуя методы анализа, расширили набор продуктов в таком синтезе. Были получены многие аминокислоты, пуриновые основания – аденин и гуанин (они появляются, если в смесь газов добавить синильную кислоту), четырех- и пятиуглеродные сахара.

В целом можно было считать, что большинство необходимых для жизни молекул синтезируются абиогенно в условиях древней Земли.


Сложности теории абиогенеза

Через несколько лет после опытов Миллера была открыта двухспиральная структура ДНК, и началось бурное развитие молекулярной биологии. За 10–15 лет был расшифрован генетический код (таблица соответствия между последовательностями ДНК и белков), изучены механизмы копирования ДНК и обмена ее участками. Стал понятен путь передачи наследственной информации в клетках (ДНК → РНК → белки), носящий название «центральная догма молекулярной биологии», и открыты многие другие детали функционирования клеток. Стало понятно, что живые клетки не так просты, как казалось во времена Опарина, и пропасть между живым и неживым стала казаться совсем непреодолимой.

Основы химической структуры жизни

Важнейшую роль в любом живом организме выполняют так называемые полимерные молекулы. Они состоят из множества звеньев, соединенных в цепочку. Полимерные молекулы в клетках относятся к трем основным классам: белки, нуклеиновые кислоты (ДНК и РНК) и полисахариды. Белки состоят из соединенных в цепочку аминокислот, ДНК и РНК – из нуклеотидов, а полисахариды – из моносахаридов. Свойства полимеров зависят от типов входящих в них звеньев, от их последовательности и от типов связей между звеньями. Например, два хорошо известных полисахарида – крахмал и целлюлоза – состоят из длинных цепочек молекул глюкозы и отличаются только типом связи между глюкозными звеньями.

В составе белков встречаются 20 основных аминокислот. Нуклеотидов же только пять, из них три (аденозин, гуанозин, цитидин) – общие для ДНК и РНК, тимидин входит только в ДНК, а уридин – только в РНК. Полисахариды чаще всего состоят из одного или двух типов моносахаридов. Молекулы ДНК обычно образуют длинные нити. У большинства белков нить компактно свернута в клубок (глобулу), но бывают и белки, нити которых сплетаются в длинные и толстые «канаты» (фибриллы). В качестве примера можно привести коллаген сухожилий или фиброин шелка.

ДНК в клетках служит хранилищем генетической информации. Белки выполняют самые разнообразные функции, но чаще всего они работают ферментами, т. е. ускоряют (катализируют) определенные химические реакции. Кроме ферментов существуют транспортные, сигнальные, защитные и многие другие функциональные группы белков. Полисахариды обычно играют в живых организмах две роли: формы хранения сахаров (крахмал, гликоген) и прочного конструкционного материала (целлюлоза, хитин).


Геном даже самых простых бактерий состоит из более чем миллиона нуклеотидов и кодирует свыше тысячи белков. Иными словами, бактериальная клетка содержит мегабайты информации. Для работы этого генома требуются специальные молекулярные машины сборки белков, копирования ДНК, энергоснабжения и средства регуляции и управления. Сложность такой системы очень высока, а более простых самостоятельно размножающихся систем биология не знает. Вирусы не в счет – для их размножения требуется сложная живая клетка. Мы знаем только один путь происхождения более сложных систем из простых – это эволюция по Дарвину, путем естественного отбора. Но чтобы началась эволюция, нужны какие-то единицы живого, способные к размножению. Если естественный отбор начинается только с появлением первой клетки, то для ее образования случайным путем требуется гигантское время – на много порядков больше возраста Вселенной. Эта проблема называется «неупрощаемая сложность» (irreducible complexity). Астрофизик Фред Хойл охарактеризовал ее при помощи аналогии: «случайное самозарождение жизни так же вероятно, как случайная сборка „Боинга-747“ при прохождении урагана через мусорную свалку».

Вторая проблема чисто химическая, и связана она с формой молекул аминокислот и сахаров в живых организмах. Поскольку связи атома углерода (а их четыре) направлены к вершинам пирамиды, возможны два способа размещения четырех разных групп вокруг такого атома, и эти два способа являются зеркальными отражениями друг друга, подобно левой и правой руке (рис. 5.2). Подобное свойство веществ называется еще хиральностью (от др.-гр. χειρ – «рука»). Молекулы с такими свойствами называются еще «оптически активными». Это название – «оптическая активность» – напоминает о свойстве подобных веществ поворачивать плоскость поляризации проходящего через них света; хиральные молекулы поворачивают плоскость поляризации по-разному, т. е. являются оптическими изомерами[4]. Оптическая активность позволила, например, Луи Пастеру разделить левовращающий и правовращающий изомеры винной кислоты, просто сортируя их кристаллы пинцетом: в поляризованном свете одни кристаллы были темными, а другие – светлыми. Он же показал, что плесень может питаться только правовращающим изомером винной кислоты.




Оптические изомеры многих веществ, например, молочной кислоты, легко отличить по вкусу и запаху, потому что наши обонятельные рецепторы – это белки, построенные из левых изомеров аминокислот. Правовращающие аминокислоты в белках не встречаются, хотя иногда бывают в клеточных стенках бактерий, пептидных антибиотиках и других экзотических местах. Кроме того, все природные ДНК и РНК содержат исключительно правый изомер сахара (рибозы или дезоксирибозы). Живое вещество, таким образом, хирально чистое, т. е. состоит из оптических изомеров определенного типа, тогда как во всех абиогенных синтезах получаются левые и правые изомеры в равных долях, а сделанные из такой смеси цепочки белков и РНК имеют беспорядочную укладку и не способны выполнять никакие биологические функции.

Оптическая активность вещества проявляется либо при взаимодействии с поляризованным светом, либо при встрече с другим оптически активным веществом. Если мы хотим объяснить переход от смеси изомеров в абиогенно синтезированной органике к хирально чистому живому веществу, то оказываемся в положении Мюнхгаузена, тащившего себя из болота за волосы: ведь для получения чистых оптических изомеров в клетках нужны ферменты из хотя бы 50–100 аминокислот одной оптической формы, которые невозможно получить из смеси двух оптических форм аминокислот.

Третью проблему обнаружили геохимики и космохимики. Межпланетные аппараты изучили Луну, Венеру, Марс и Меркурий, стал известен состав атмосфер Венеры и Марса. Применение новых аналитических методов к древнейшим земным горным породам позволило уточнить состав древней атмосферы Земли. Он оказался очень похожим на современные атмосферы Венеры и Марса – 95–98 % углекислого газа (СО2), 2–4 % азота (N2) и малые доли других газов, в основном аргона и сернистого газа. Из такой газовой смеси в аппарате Миллера не получается никакой органики. Опыт Миллера, по современным астрономическим представлениям, имитирует условия протопланетного облака, планет-гигантов и их ледяных спутников, где действительно много метана, аммиака и сероводорода, и может объяснить происхождение аминокислот в метеоритах, но имеет отдаленное отношение к древней Земле. Для получения органических веществ из CO2 необходим восстановитель, и ученые занялись его поисками.

Есть и другие проблемы. Например, водная среда «первичного бульона» плохо подходит для образования белков из аминокислот или ДНК из нуклеотидов. В этих реакциях выделяется вода, и в разбавленном водном растворе химическое равновесие будет сдвинуто в сторону распада длинных полимерных молекул на отдельные «кирпичики». Клетки обходят эту проблему, затрачивая на соединение звеньев химическую энергию в виде АТФ, но для доклеточных стадий эволюции надо искать какие-то другие, более простые способы получения белков и ДНК.

Наконец, важнейший компонент живых клеток, входящий в состав РНК, ДНК и многих других незаменимых молекул, – фосфор – в неживой природе встречается только в виде нерастворимых и химически инертных минералов, таких как апатит. Чтобы получить содержащие фосфор органические молекулы, надо найти где-то фосфор в растворимой и химически активной форме.

Панспермия

В качестве альтернативы абиогенезу (происхождению жизни из неживой материи) ряд крупнейших ученых (Берцелиус, Гельмгольц, Аррениус, Вернадский) предлагали гипотезу панспермии: распространения жизни от одних небесных тел к другим. Аррениус, например, расчетами показал, что споры микроорганизмов размерами меньше 1,5 микрон могут распространяться с планеты на планету и покинуть Солнечную систему за счет давления электромагнитного излучения (в том числе и света). Гипотеза панспермии, однако, не объясняет, как появилась самая первая жизнь, а только отодвигает это событие в более далекое прошлое и в неизвестное место Вселенной. В крайнем варианте панспермии предполагается, что жизнь представляет собой неотъемлемое свойство материи и существует с того же момента, что и Вселенная.

Гипотеза панспермии предсказывает, что жизнь должна быть широко распространена на разных планетах и даже в метеоритах. Однако мы пока не нашли следов жизни на Марсе, хотя искали весьма тщательно. В метеоритах жизни тоже нет. Углистые хондриты богаты органикой, включая аминокислоты, но она вся не обладает хиральной чистотой и, следовательно, не может происходить из живых организмов. Так что гипотеза панспермии многими обоснованно критикуется.

Мир РНК

Первое решение проблемы «неупрощаемой сложности» наметилось в конце 1970-х годов. Тогда были открыты РНК, обладающие каталитической активностью, или рибозимы. До того РНК считалась лишь скромным посредником между ДНК и белками – ведь обычно в клетке генетическая информация копируется с ДНК на РНК, и потом по «оттиску» РНК синтезируются белки. Были, правда, известны вирусы, хранящие генетическую информацию на молекулах РНК, и часть из них способна даже переписывать генетическую информацию с РНК на ДНК. Но с открытием рибозимов стало понятно, что РНК может заменять белки в качестве катализаторов химических реакций.

Катализ

В этой книге мы много раз встретимся с понятием «катализатор». Катализатором химики называют вещество, которое ускоряет химическую реакцию, но при этом не расходуется. Рассмотрим это на примере разложения перекиси водорода. Перекись может разлагаться на воду и кислород. Пока перекись хранится во флаконе, ее разложение происходит очень медленно, буквально годами. Ускорить эту реакцию можно несколькими способами. Например, раствор перекиси можно прокипятить, и она разложится, потому что все химические реакции идут быстрее при повышении температуры. А можно бросить во флакон ржавый гвоздь, и реакция пойдет при комнатной температуре, что будет заметно по появлению пузырьков кислорода. Ржавчина (смесь оксидов железа) является катализатором разложения перекиси водорода. В ходе реакции уменьшается количество исходного вещества (перекиси) и возрастает количество продуктов (воды и кислорода), катализатор же не расходуется. Один ржавый гвоздь может разложить и флакон, и ведро, и цистерну раствора перекиси.

Кроме ржавчины для этой реакции существуют и другие катализаторы. В живых клетках есть фермент, называемый каталаза, который очень эффективно разлагает перекись. Благодаря ей при обработке царапины перекисью последняя разлагается, при этом выделяемый кислород убивает опасные бактерии. Особенно много каталазы содержится в клетках печени. Попробуйте бросить маленький кусочек сырой говяжьей печенки в стакан с перекисью, и вы увидите, как бурно пойдет реакция.

Биохимические процессы в клетках происходят благодаря каталитической активности тысяч ферментов. Каждый из них ускоряет, как правило, только одну определенную реакцию. Молекулы ферментов обычно имеют впадину, или «карман», в которой реагирующие молекулы относительно закрыты от остального содержимого клетки и ориентируются нужными сторонами друг к другу. Поэтому ферменты не только ускоряют нужные реакции, но и подавляют ненужные побочные реакции тех же веществ.

Появилась теория «мира РНК», согласно которой самокопирующиеся рибозимы (катализирующие синтез РНК на матрице РНК) стали первыми, очень простыми живыми системами. Они начали дарвиновскую эволюцию задолго до появления клеток и со временем, по мере усложнения, передали каталитические функции белкам, а длительное хранение наследственной информации – ДНК. В дальнейшем были получены искусственно сотни рибозимов. Выяснилось, что рибозимом является и ключевой каталитический центр рибосомы, организующий синтез белка. Однако пока ни один рибозим не может создать копию себя из мономеров, так что теория РНК-мира в ее исходном виде не может считаться полностью доказанной.

Теория РНК-мира была создана молекулярными биологами для решения тех аспектов проблемы происхождения жизни, которые казались им наиболее важными: появления системы из ДНК, РНК и белков, связанных генетическим кодом. Ученые, изучавшие жизнь с других сторон, и прежде всего биохимики и биофизики, встретили ее скептически. Так, любой живой организм должен как-то получать энергию из внешней среды и вещества, из которых он будет строить себя и свои копии. Гетеротрофные организмы (например, животные) должны получать органические вещества в готовом виде и энергию извлекают из процессов их распада (дыхание, брожение). Автотрофные организмы, такие как растения, способны построить все необходимые органические вещества из простых неорганических предшественников (углекислого газа, воды и минеральных солей) и получают энергию обычно в виде света (фотосинтез). Есть автотрофные бактерии, которые обходятся без света и получают энергию из химических реакций между неорганическими веществами (хемосинтез).

При помощи одной только РНК, без участия белков, невозможен ни фотосинтез, ни хемосинтез. Так что организмы РНК-мира нуждались в готовых органических веществах, причем довольно сложных (строительные блоки РНК, нуклеотиды, устроены сложнее, чем аминокислоты, и в аппарате Миллера самопроизвольно не возникают). Более того, энергию для своей жизни и размножения РНК-организмы могут получать только в виде активированных нуклеотидов – например, нуклеотид-трифосфатов, к которым относится АТФ, основной переносчик энергии в современных клетках. Итак, чтобы мир РНК из изящной гипотезы стал хорошо обоснованной теорией, мы должны как-то примирить его с грубой биохимической реальностью. Либо мы должны найти для РНК-организмов «стол и дом» – место обитания, где для них будет надежный источник пищи в виде активированных нуклеотидов. Либо же нам придется дополнить РНК в первых живых системах какими-то другими веществами, при помощи которых РНК-организмы смогут вписаться в окружающую среду, в том числе освоить фото- или хемосинтез. В качестве этих дополнительных веществ мы рассмотрим витамины (мир РНК-коферментов) и некоторые минералы (железосерный мир и цинковый мир).

Термодинамика жизни

Теория РНК-мира никак не рассматривает потоки и превращения энергии в живых системах. Поэтому биофизики, изучающие эти процессы, были в ней особенно разочарованы и стали создавать свои теории для объяснения энергетической стороны возникновения жизни (дальнейшее изложение во многом основано на книге К. Еськова «История Земли и жизни на ней», это лучшее известное автору изложение термодинамических основ жизни на русском языке).

Нам придется начать издалека. От людей, поверхностно знакомых с физикой, можно услышать утверждения вроде «жизнь нарушает второй закон термодинамики». Что это значит и почему это неверно?

Важнейшим достижением человечества стало создание машин для превращения тепла в механическую работу. Первой такой машиной был паровой двигатель. Он производит работу при передаче тепла от горячего котла с паром к холодильнику с водой. Поэтому наука о взаимных превращениях работы и энергии стала называться термодинамикой, а паровой двигатель – ее основной моделью.

Первый закон термодинамики, или закон сохранения энергии, гласит, что из любой системы нельзя получить больше работы, чем в ней содержится энергии. Воображаемое устройство, которое нарушает этот закон, получило название «вечный двигатель первого рода». Во всех реальных ситуациях, конечно, работы будет получаться меньше, чем допускает закон сохранения энергии, из-за всевозможных потерь, например, на трение. Но эти потери можно уменьшить. Например, если мы рассматриваем электрический двигатель, то можно использовать в нем сверхпроводящие обмотки, магнитно-левитационные подшипники и поместить двигатель в вакуум, чтобы исключить трение о воздух, и тогда реально получить коэффициент полезного действия (отношение произведенной работы к затраченной энергии) выше 99 %.

С тепловым двигателем, однако, такая оптимизация невозможна. Как доказал в 1824 году Сади Карно, эффективность теплового двигателя ограничена разностью температур горячего и холодного резервуаров (котла и холодильника в случае паровой машины):

I = (T2 – T1)/T2

(T1 – температура холодильника, Т2 – температура нагревателя, по шкале Кельвина, которая начинается от абсолютного нуля, – 273,13 °С).

Иными словами, если холодильник у нас имеет комнатную температуру (27 °C = 300 К), а нагреватель – 127 °C = 400 К, как у первых паровых машин, то мы можем превратить в работу не более 25 % тепловой энергии. Если у нас есть только одно, сколь угодно горячее тело и нет холодильника, мы вообще не можем превратить его тепловую энергию в работу. Это и есть одна из формулировок второго закона термодинамики: «Ни одно устройство не способно извлечь работу из системы, находящейся на одном потенциальном уровне». Она относится и к другим видам энергии: чтобы получить работу из потенциальной энергии тела, поднятого над Землей, ему должно быть куда падать. Из камня, лежащего посреди высокогорного плато, работы не получить. Чтобы пошел электрический ток, должна быть разность электрических потенциалов между разными телами. Иначе говоря, если в системе есть разные уровни энергии, то она будет перетекать с высокого уровня на низкий: тепло будет передаваться от горячего тела к холодному, камень покатится вниз по склону, а электрический ток пойдет от высокого потенциала к низкому.

Если паровой двигатель представляет собой замкнутую систему, т. е. не обменивается ни веществом, ни энергией с внешней средой, то горячий резервуар будет постепенно остывать, а холодный – нагреваться. В соответствии с формулой Карно получается, что чем дальше, тем меньшая доля тепловой энергии в такой системе может быть превращена в работу, а доля «недоступной» тепловой энергии будет расти. В 1865 году Р. Клаузиус, рассматривая эту недоступную тепловую энергию, ввел новую физическую величину – энтропию (S). Она отражает отношение тепловой энергии к температуре и имеет размерность джоуль на градус. В любом процессе, где происходит превращение энергии, энтропия растет либо в идеальном случае не убывает. Поэтому второй закон термодинамики называют еще «законом неубывания энтропии».

Пусть у нас в системе есть отдельные холодный и горячий резервуары, между которыми затем идет передача тепла, и их температура выравнивается. Можно сказать, что система вначале была упорядочена – поделена на горячую и холодную части, а потом перешла в беспорядочное, или хаотическое состояние. Мы видим, что, когда температура в системе выравнивается, уровень беспорядка (хаоса) в системе возрастает. Поскольку энтропия при этом тоже возрастает, возникает вопрос: нет ли связи между хаосом и энтропией? Действительно, связь между ними есть. Как доказал в 1872 году Л. Больцман, энтропия является мерой неупорядоченности системы:

S = klnP,

где k – универсальная постоянная Больцмана (3,29 × 10–24 кал/град), а P – мера неупорядоченности системы.

Мера неупорядоченности P определяется как «количество микросостояний, которыми реализуется данное макросостояние». Что это значит? Попробуем объяснить на простейшем примере. Пусть у нас есть сосуд, в котором находятся четыре одинаковые молекулы газа. Каждая молекула может находиться с равной вероятностью в левой или в правой половине сосуда. Почему маловероятно, что все четыре молекулы окажутся в одной половине? Потому что движутся они независимо друг от друга, и по правилам комбинаторики в такой системе есть 16 вариантов расположения молекул. Это будут микросостояния. Макросостояния – это обезличенные описания ситуации в сосуде, когда мы не отличаем молекулы друг от друга. Макросостояний возможно пять: все молекулы слева; три слева, одна справа; две слева, две справа; одна слева, три справа; и все молекулы справа. Понятно, что макросостояние «все слева» реализуется только одним микросостоянием (каждая из четырех молекул должна быть слева). Макросостояние «два слева, два справа» можно получить шестью разными способами: слева могут быть молекулы 1 и 2; 1 и 3; 1 и 4; 2 и 3; 2 и 4; 3 и 4. Иначе говоря, для более упорядоченного состояния «все слева» Р = 1, а для неупорядоченного состояния «два слева, два справа» Р = 6. Если мы рассматриваем не четыре молекулы в сосуде, а, скажем, 1022 (10 000 миллиардов миллиардов) – примерно столько молекул воздуха находится в объеме обычного стакана, то состояние, когда молекулы поровну распределены между половинами стакана, реализуется примерно 1044 микросостояниями, а состояние, когда весь воздух собрался в одной половине стакана, – только одним. Отсюда понятно, почему заполнение воздухом половины стакана – крайне маловероятное событие, которое никто никогда не видел.

Соотношение Больцмана показывает, что в замкнутой системе все процессы в конечном итоге ведут к увеличению хаоса. Поскольку наша Вселенная по определению является замкнутой системой, то в отдаленном будущем ее неизбежно ждет «тепловая смерть» – полное исчезновение всякой структуры. Это, казалось бы, налагает запрет на возникновение более организованных (а значит, менее вероятных) структур из менее организованных, т. е. на прогрессивную эволюцию. Это очень беспокоило самого Больцмана: горячо восприняв дарвиновскую теорию эволюции, он потратил много сил, чтобы дать ей строгое физическое обоснование, но не смог. Однако живые организмы, создавая свои копии из слабо организованной неживой материи и усложняясь в ходе эволюции, очевидно, могут уменьшать свою энтропию. Как им это удается?

Вообще-то, этот трюк умеют делать не только живые организмы. Как работает обычный холодильник? Он понижает температуру внутри холодильной камеры и повышает температуру снаружи, т. е. понижает энтропию системы «холодильник – комната». Но эту систему нельзя считать замкнутой: она получает энергию извне, по электросети, в которую включен наш холодильник. Если мы рассматриваем систему «холодильник – комната-электростанция», то ее энтропия со временем только растет. Точно так же любой живой организм нуждается во внешних источниках энергии. Растения получают ее в виде солнечного света, а животные – в виде пищи. В конечном счете почти вся биосфера питается энергией Солнца. Она выделятся в ходе термоядерных реакций, связанных с огромным повышением энтропии, поэтому энтропия системы «Земля – Солнце» со временем растет, несмотря на возникновение и эволюцию земной жизни.

Здесь надо подчеркнуть, что термодинамика (связанная родством с химией) в одном отношении отличается от всех остальных разделов физики, так или иначе выросших из классической механики. В классической механике все процессы обратимы (т. е. могут точно так же происходить в обратную сторону), а картина мира – детерминистическая. Это значит, что если знать все параметры всех тел во Вселенной на какой-то момент времени, то можно точно предсказать ее будущее на любой срок, а также до мельчайших деталей восстановить ее прошлое. А если все процессы обратимы, то объективного времени вообще не существует, а есть только субъективное время, вводимое для нашего удобства, в виде нумерации порядка событий. Даже теория относительности и квантовая механика, перевернувшие физику в XX веке, в этом отношении сохраняют верность классической механике: в уравнении Шрёдингера, лежащем в основе квантовой механики, время остается однозначно обратимым.

В термодинамике все не так: ее модель Вселенной – не вечное вращение планет вокруг Солнца, а паровая машина, в топке которой безвозвратно сгорает топливо. Согласно второму закону термодинамики эта машина постепенно сбавляет обороты, приближаясь к тепловой смерти. Поэтому ни один момент времени не равен предыдущему, события невоспроизводимы, а время объективно существует и имеет однозначное направление. Термодинамика разграничивает обратимые процессы, в которых энтропия не изменяется, и необратимые, в результате которых происходит возрастание энтропии.

Как показал Илья Пригожин, необратимость появляется, только если в системе возможно случайное поведение. Случайность создает различие между прошлым и будущим системы и, следовательно, необратимость. Движение молекул в газе можно считать случайным, и первые необратимые процессы, которые изучала термодинамика, были связаны с поведением газов в тепловых двигателях. В термодинамике картина мира становится стохастической, и предсказать будущее уже невозможно, даже зная все про настоящий момент.

Классическая термодинамика XIX века имела два ограничения. Во-первых, она рассматривала в основном замкнутые системы. Во-вторых, она изучала достаточно медленные процессы, в которых в каждый момент времени система находится близко к равновесию. В XX веке ситуация изменилась. Появились новые виды тепловых двигателей, и при их разработке инженеры столкнулись с явлениями, которые в классической равновесной термодинамике принципиально невозможны. Например, при создании жидкостных ракетных двигателей инженеры столкнулись с серьезной проблемой высокочастотных пульсаций горения. Внезапно в работающем двигателе начинались быстрые – сотни раз в секунду – колебания давления, которые нарастали до тех пор, пока двигатель не взрывался. Чем мощнее двигатель и чем выше давление в нем, тем чаще возникали эти пульсации. Найти причину этих колебаний и устранить их долго не удавалось. Среди людей, которые знали об этой проблеме и не могли ее решить, был и великий математик, президент Академии наук СССР Мстислав Келдыш. И вот в декабре 1964 года в его кабинет пришел молодой биофизик Анатолий Жаботинский, поставил на стол стакан, смешал в нем несколько реактивов, и жидкость в стакане стала менять цвет с красного на синий и обратно. Это была первая признанная колебательная химическая реакция, ныне известная как «реакция Белоусова – Жаботинского» (BZ-reaction). В тонком слое раствора, например, на тарелке, в ней получаются сложные узоры из движущихся колец и спиралей (рис. 5.3). Келдыш сразу понял, что жидкость, меняющая цвет туда-обратно, имеет прямое отношение к неустойчивости горения в ракетном двигателе.

Реакция Белоусова – Жаботинского стала важной моделью новой, неравновесной термодинамики, за создание которой Илья Пригожин получил Нобелевскую премию в 1977 году. В неравновесной термодинамике доказывается, что в открытых системах, далеких от равновесия, возможна самоорганизация: местное уменьшение энтропии, которое может проявляться как появление новых структур. Это могут быть и коллективные, упорядоченные движения многих молекул. Пригожин назвал такие структуры диссипативными, чтобы подчеркнуть парадокс: процесс диссипации (безвозвратной потери энергии) играет в их возникновении ключевую конструктивную роль.




Одним из простейших случаев такой самоорганизации являются ячейки Бенара. Если равномерно нагревать снизу тонкий слой вязкой жидкости, на поверхности станут видны структуры правильной, в классическом варианте шестиугольной формы (рис. 5.4). Это и есть ячейки Бенара. Их появление связано с особенностями перераспределения тепла в слое жидкости высокой плотности. Поначалу тепло будет проходить через жидкость только за счет теплопроводности. Но если греть достаточно сильно, то в какой-то момент в жидкости начнется конвекция: молекулы начнут движение, организуясь в упорядоченные структуры. Это противоречит классической термодинамике, где тепловой поток – это источник потерь (диссипации), разупорядочивания, а не порядка. Если в классической термодинамике тепловой поток считается источником потерь, то в ячейках Бенара он становится источником порядка. Пригожин характеризует возникшую ситуацию как гигантскую флуктуацию, стабилизируемую путем обмена энергией с внешним миром. Похожим образом возникают циклоны – самоорганизующиеся структуры в атмосфере Земли.




Самоорганизация в реакции Белоусова – Жаботинского имеет другое происхождение. Для появления самоорганизации в химических системах необходимо, чтобы в них происходили автокаталитические реакции, т. е. такие, где продукт реакции ускоряет синтез самого себя. Реакция Белоусова – Жаботинского (окисление малоновой кислоты броматом калия в присутствии солей церия) оказалась очень сложна, в ней насчитывается свыше 30 промежуточных продуктов, и помимо автокаталитических шагов в ней есть также подавление отдельными веществами синтеза друг друга.

В ракетных двигателях такой сложной химии нет. Столь опасная самоорганизация в них имеет смешанное физико-химическое происхождение. Движение газов в ракетном двигателе происходит очень быстро, сравнимо со скоростью химических реакций в них, поэтому газы в камере сгорания далеки от равновесия. На съемках старта ракет на керосиновом топливе («Союз», «Зенит», «Фалькон») хорошо видно, что ярко-желтое пламя тянется на десятки метров за ракетой. Желтый свет испускают частички сажи, которые являются промежуточными продуктами горения керосина. Конечные продукты сгорания керосина – вода, угарный и углекислый газы – прозрачны. Вместо автокатализа в камере сгорания срабатывает ускорение химических реакций в газе. Поскольку горение керосина в ограниченном объеме приводит к повышению температуры и давления, возникает обратная связь: случайное ускорение горения в одном месте повышает давление, а давление ускоряет горение дальше. Повышенное давление не может оставаться в одном месте. Волна повышенного давления распространяется по газу и отражается от стенок камеры, и в какой-то ее точке отраженные волны сходятся. Там горение резко ускоряется и волна повышенного давления (фактически звуковая волна) расходится из этой точки, усилившись. Так в камере сгорания возникают устойчивые, нарастающие колебания давления. Благодаря реакции Белоусова – Жаботинского, которая гораздо безопаснее в изучении, чем ракетный двигатель, удалось разобраться в этих неустойчивостях, разработать форму камеры сгорания, в которой эффективно поглощаются звуковые волны, и создать надежные и мощные ракетные двигатели.

Любой живой организм является неравновесной системой. Равновесное состояние живого существа в обиходе называется трупом. Как и диссипативные структуры неживой природы, любая форма жизни существует благодаря какому-нибудь внешнему градиенту. Например, для человека и животных это химический окислительно-восстановительный градиент между кислородом атмосферы и органическими веществами пищи. Но этот градиент создан другими формами жизни, которые используются в пищу, т. е. в конечном итоге в подавляющем большинстве растениями.

Бывает, что живые существа используют и другие градиенты. Например, альбатрос для своего полета использует разницу в скорости ветра на разной высоте над водой. Он чередует планирование с медленной потерей высоты и короткие взлеты выше, в слой быстрого ветра, чтобы в нем набрать скорость для следующего планирования. В дальних перелетах 80 % энергии, нужной для полета, альбатрос получает из разных скоростей ветра, и только 20 % – из пищи. С точки зрения Земли альбатрос – это прежде всего мешалка для воздуха, и лишь во вторую очередь потребитель рыбы и кальмаров.

Биосфера в целом эксплуатирует энергию Солнца, т. е. градиент температуры между Солнцем и холодным космосом; этот градиент используется путем поглощения солнечного света в ходе фотосинтеза и излучения тепла в космос с поверхности планеты. На космических снимках хорошо видно, что богатые жизнью области планеты – леса и прибрежные воды – темнее, чем остальная суша или океан. Отдельные организмы могут так же использовать химический окислительно-восстановительный градиент между атмосферой и мантией Земли. Мантия содержит много железа в восстановленной (двухвалентной) форме, которое может окисляться при контакте с веществами поверхности Земли – кислородом, водой, углекислым газом. Этот градиент используют микробы, получающие энергию (читай – питающиеся) путем хемосинтеза.

Хотя жизнь имеет общие черты с неживыми диссипативными структурами, живые организмы обладают важным отличием от циклонов и ячеек Бенара. Диссипативные структуры возникают всякий раз, когда есть условия для их появления, и исчезают вместе с ними. Форма диссипативных структур определяется этими условиями. Любой современный живой организм, в отличие от них, обладает эволюционной историей, уходящей на четыре миллиарда лет в прошлое – это более четверти возраста Вселенной! Устройство живых организмов гораздо больше зависит от путей эволюции в прошлом, чем от современных условий их жизни. Такая историческая память обеспечивается молекулами ДНК, хранящими информацию об устройстве клеточных белков, эта информация копируется из поколения в поколение с высокой точностью. В следующих главах мы попытаемся понять, как из химических диссипативных структур возникла жизнь, основанная на наследственной информации.

Глава 6

Место происхождения жизни, «первичный бульон», пицца и майонез

Сколько воды надо для появления жизни?

«Первичный бульон» как среда для появления жизни имеет свои недостатки. В водной среде белки, РНК и ДНК неустойчивы. Эти длинные молекулы со временем распадаются на отдельные звенья – аминокислоты или нуклеотиды. Химическое соединение аминокислот в белок или нуклеотидов в РНК происходит с выделением воды. Поэтому когда ее вокруг много, равновесие этой реакции смещено в сторону распада белка или РНК (такой распад с участием воды называется «гидролиз»). Первым обратил внимание на эту проблему в контексте происхождения жизни Джон Бернал еще в 1949 году.

Клетки строят длинные молекулы, используя активированные нуклеотиды и аминокислоты. При построении РНК и ДНК в ход идут нуклеотид-трифосфаты, их соединение в цепочку сопровождается выделением пирофосфорной кислоты, а не воды. Похожая хитрость позволяет клеткам собирать белки. Однако в аппарате Миллера получаются обычные, а не активированные аминокислоты. Без сложных клеточных систем активации получить из них белки в водной среде нельзя. Поэтому на безжизненной планете для соединения аминокислот и нуклеотидов в цепочки надо как-то избавляться от воды. Для этого хорошо подходят, например, заливы и лагуны по берегам океана, которые наполняются водой во время прилива и пересыхают в отлив. Похожие условия частого высыхания возможны в вулканических районах благодаря регулярным выбросам горячей воды из гейзеров.

Эксперименты показали, что запекание сухих смесей нуклеотидов при температуре 120 °C приводит к образованию коротких цепочек РНК из 3–10 нуклеотидов. Для соединения аминокислот в белки эти условия слишком жесткие, они приводят к разложению самих аминокислот. Однако, как выяснилось, полного высыхания и не требуется: достаточно, чтобы в растворе не было «химически свободной» воды. В крепком рассоле (100 и более граммов NaCl на литр, как в Мертвом море) все молекулы воды прочно связаны с ионами натрия и хлора и не являются химически свободными. Поэтому в рассоле при температурах 60–80 °C равновесие смещено в сторону образования связей, и аминокислоты соединяются в короткие цепочки (эта реакция называется «солевой пептидный синтез» и будет подробнее описана в следующих главах). Так что, хотя вода и необходима для жизни, ее не должно быть слишком много.

Другая проблема теории «первичного бульона» связана с тем, что в нем нет границ. В клетках тысячи генов «играют в одной команде» благодаря клеточной мембране, отделяющей их от внешней среды. Чтобы возникла простейшая кооперация между разными РНК, одни из которых занимаются копированием, а другие, например, готовят для этого детали-нуклеотиды, эти РНК должны как-то отделить свою тесную компанию от остального мира. Тогда нуклеотиды пойдут на копирование только тех РНК, которые их делали, а копирующая РНК будет копировать только себя и своих соседей, которые поставляют ей нуклеотиды. В безграничном бульоне же эти нуклеотиды будут расплываться и достанутся всем соседям, независимо от их вклада в общее дело. Копирующая РНК, которая попытается копировать не только себя, но и другие молекулы, в условиях бульона не сможет отличить союзников от прихлебателей и в итоге проиграет в конкуренции.

Ученые предложили два разных решения проблемы границ, которые по аналогии с «первичным бульоном» были названы «первичная пицца» и «первичный майонез». В модели «первичной пиццы», изложенной в книге «The Major Transitions in Evolution» (John Maynard Smith, Eörs Szathmáry, 1995), предполагается, что жизнь зарождалась в виде тонкого слоя органических молекул на поверхности глины (например, каолинита или смектита), частицы которой состоят из тонких алюмосиликатных слоев. Глина может набухать, потому что молекулы воды, как и другие катионы и анионы, внедряются между этими слоями, увеличивая расстояния между ними.

Эксперименты показали, что глина довольно прочно связывает аминокислоты, нуклеотиды, белки, РНК и другие биологические молекулы. На поверхности кристаллов глины и между ее слоями они накапливаются в высокой концентрации даже из очень разбавленного раствора. Адсорбирующие свойства глины используются и в быту: вы наверняка видели смектит под названием «минеральный наполнитель для кошачьих туалетов». На глине нуклеотиды самопроизвольно выстраиваются именно так, как нужно для их «сшивания» в цепочку РНК. Длинные молекулы РНК очень редко отделяются от глины полностью, но могут медленно перемещаться по ее поверхности, открепляясь то одним, то другим концом. Математическое моделирование взаимодействия разных РНК на плоской минеральной поверхности (Czaran T., Szathmary E., 2000) показало, что в таких условиях легко образуются группы разных молекул, связанных взаимной помощью, а размножение паразитов ограничено и не приводит к вымиранию кооперирующихся РНК. Так что, хотя четких границ на минеральной поверхности нет, она достаточно ограничивает подвижность РНК и нуклеотидов, чтобы могли появиться тесные группы взаимопомощи.

Еще один вклад минеральной подложки в возникновение жизни состоит в том, что она может работать катализатором, т. е. ускорять химические реакции. Эта функция выходит на первый план в тех вариантах модели «первичной пиццы», в которых в качестве минеральной основы предлагается не глина, а сульфидные минералы – пирит (FeS2), сфалерит (ZnS), алабандин (MnS). Дальше в этой главе мы подробнее рассмотрим связь сульфидных минералов с биохимией.

Модель «первичного майонеза» предложена Гарольдом Моровицем в книге «Mayonnaise and The Origin of Life: Thoughts of Minds and Molecules». Она предполагает, что примитивные аналоги клеточных мембран существовали с древнейших времен, еще до появления самокопирующихся РНК. Иными словами, весь мир РНК существовал внутри протоклеток – мелких жировых пузырьков. Теория «первичного майонеза» имеет меньше сторонников, чем теория «первичной пиццы», потому что для протоклеток существует проблема питания: нуклеотиды очень плохо проходят через мембраны. В современных клетках для этого существуют специальные транспортные белки, но адекватного решения для поглощения нуклеотидов примитивными протоклетками пока не найдено. Зато в модели «первичного майонеза» достигается очень эффективное разделение молекул РНК на кооперирующиеся группы, поэтому отвергать ее ученые не спешат. Более того, есть пути совмещения теорий «первичной пиццы» и «первичного майонеза»: частицы глины, как оказалось, помогают образованию мембранных пузырьков, при этом возникший пузырек окружает частицу глины со всех сторон.

Солнце: друг или враг?

Почти вся современная жизнь прямо или косвенно зависит от энергии солнечного света, которая в ходе фотосинтеза используется для построения сахаров и других клеточных веществ. Даже глубоководные сообщества, обитающие в полной темноте, зависят от кислорода, вырабатываемого водорослями в верхних слоях океана. Как известно, в стратосфере существует озоновый слой, который поглощает 99 % ультрафиолетового излучения Солнца. Озон (О3) образуется из кислорода под действием того же ультрафиолета. В древние геологические эпохи, когда кислорода в атмосфере еще не было, озонового слоя тоже не могло быть. Более того, молодое Солнце излучало больше ультрафиолета, чем сейчас, когда оно, разменяв пятый миллиард лет, стало спокойной звездой среднего возраста. Поэтому во времена появления жизни на Земле ее поверхность подвергалась мощному ультрафиолетовому излучению, и смертельная для многих современных организмов доза излучения набиралась за несколько минут. В связи с этим многие ученые склонялись к тому, чтобы спрятать первые живые организмы поглубже под воду для защиты от губительных лучей.

Однако ультрафиолетовое излучение вызывает самые разнообразные химические реакции, в том числе ведущие к синтезу аминокислот и нуклеотидов из простых молекул. Так что для каких-то этапов происхождения жизни оно, наоборот, могло быть полезно. Как же разобраться, какие из первых шагов жизни происходили на свету, а какие – в темноте?

Ответ на этот вопрос пришел с неожиданной стороны. В последние годы бурно развивается синтетическая биология, целью которой является создание организмов с принципиально новыми свойствами. Например, коллектив под руководством Стивена Беннера достиг больших успехов в создании альтернативных нуклеотидов. Эти искусственные звенья хорошо встраиваются в ДНК и РНК обычными природными ферментами, образуют комплементарные пары друг с другом, но не со стандартными нуклеотидами А, Г, Т и Ц, и расширяют нуклеотидный алфавит до шестибуквенного (рис. 6.1) (Malyshev et al., 2014; Yang et al., 2011 (русский краткий анонс: http://www.chemport.ru/datenews.php?news=2557)).




Получается, что с задачей хранения генетической информации в принципе могут справиться самые разные варианты нуклеиновых оснований, и А, Г, Т, Ц, возможно, были отобраны природой совсем по другим признакам. Как считает известный биофизик Армен Мулкиджанян, таким признаком была устойчивость к ультрафиолетовому излучению (Mulkidjanian, A. Y., Galperin, M. Y., 2007).

Здесь надо пояснить, как устроены молекулы и как происходит их взаимодействие со светом. Каждая химическая связь, изображаемая в структурных формулах линией между атомами, обычно состоит из двух электронов, которые вместе движутся между двумя связанными атомами. У каждого электрона есть собственное магнитное поле, направление которого называется «спин». Два электрона, образующие химическую связь, имеют противоположные спины, так что их магнитные поля взаимно компенсируются. Такие электроны называются «спаренными». Если молекулу разорвать на две части, то электроны из разорванной связи имеют два варианта дальнейшей судьбы. Они могут разойтись по одному в каждый фрагмент молекулы или оба вместе в один из фрагментов. В первом случае эти электроны остаются без пары и готовы к образованию новой связи с любой подходящей молекулой. Фрагменты молекул, имеющие неспаренный электрон, очень химически активны и называются «радикалы». Во втором случае, когда одному фрагменту достаются два электрона, а другому – ни одного, эти фрагменты имеют электрический заряд и называются «ионами». Неспаренных электронов в них нет, и они более стабильны, чем радикалы.

Когда в молекулу попадает фотон с подходящей энергией, он поглощается парой электронов, образующей химическую связь, и молекула переходит в возбужденное состояние с избыточной энергией. Возбужденных состояний как минимум два. Сначала молекула оказывается в неустойчивом и короткоживущем состоянии (так называемом синглетном состоянии). В нем спины электронов возбужденной пары еще антипараллельны, как и в спокойном состоянии молекулы. В синглетном состоянии молекула может сбросить возбуждение и вернуться в исходное состояние путем флюоресценции (излучения светового кванта с энергией чуть меньше исходной) или рассеяния энергии в тепло либо перейти в следующее – триплетное – состояние, в котором спины электронов становятся параллельными и химическая связь между атомами фактически разрывается. Если в молекуле была возбуждена одинарная связь, то молекула разрушается в этом месте. Если же была возбуждена двойная связь (точнее, так называемая пи-электронная система, образующая «вторые палочки» двойных связей), то молекула в триплетном состоянии сохраняет целостность, но становится бирадикалом – иными словами, у нее теперь имеются два неспаренных электрона, которые могут образовать две новые химические связи. Поэтому молекула в триплетном состоянии химически активна и вступает в разнообразные реакции. Например, молекулы этилена (С2H4), имеющие двойную связь между атомами углерода, при УФ-облучении частично объединяются попарно в циклобутан (С4H8), у которого вместо одной двойной связи образуются две одинарные связи между двумя дополнительными атомами углерода (рис. 6.2). Молекула может также вернуться из триплетного состояния в основное, невозбужденное путем излучения кванта света – фосфоресценции. В отличие от флюоресценции фосфоресценция может происходить спустя минуты и часы после облучения вещества, а разница в энергии поглощенного и излученного кванта света больше.




Так вот, у природных азотистых оснований синглетное состояние крайне короткоживущее. Оно легко рассеивает энергию возбуждения в тепло через колебания и вращение молекулы, обмен атомами водорода и другие механизмы и возвращается обратно в невозбужденное состояние. Синглетное состояние пуриновых оснований, аденина и гуанина, живет около 10–12 секунды – примерно в 10 000 раз меньше, чем синглетные состояния большинства молекул сравнимого размера и сложности, например аминокислоты триптофана. Благодаря быстрому рассеиванию энергии они из синглетного состояния практически всегда переходят в невозбужденное, а не в химически активное триплетное. А раз азотистые основания практически не попадают в триплетное состояние, то и разрушение их под действием ультрафиолета происходит очень редко.

Пиримидиновые основания, цитозин и тимин, рассеивают энергию несколько хуже, чем пурины, и, соответственно, менее устойчивы. Однако образование комплементарных пар улучшает рассеивание энергии еще примерно в 50 раз благодаря обмену протонами в водородных связях пары. Поэтому устойчивость комплементарной пары нуклеотидов к ультрафиолету выше, чем каждого из них по отдельности. Кроме того, в нуклеиновых кислотах плоские молекулы азотистых оснований лежат стопкой, поэтому их пи-электронные системы взаимодействуют между собой (так называемое стэкинг-взаимодействие) и могут передавать друг другу энергию возбуждения, еще усиливая рассеивание и дополнительно увеличивая устойчивость к ультрафиолету – до 20 раз по сравнению с одной комплементарной парой нуклеотидов (Mulkidjanian et al., 2003).

Конец ознакомительного фрагмента.