Вы здесь

Приборостроение. 2. Элементы математической статистики (М. А. Бабаев)

2. Элементы математической статистики

Наука, которая, изучая и описывая совокупность явлений, составляющих одно целое, но по одному (или нескольким) видам признаков (или свойств) разбивающая эти явления на группы, подгруппы, даже на единицы, называется математической статистикой. Математическая статистика является важнейшим инструментом в теории вероятности. Пример: изделия, составляющие одно целое по длине, весу, плотности, могут быть разбиты на подгруппы, например, по радиусу.

Количественная оценка колебания признака в совокупности называется случайной величиной.

Обнаруженное значение случайной величины называют статистической переменной (или вариантой). Наблюдаемые явления выделяют в разные разряды или классы, то есть группы. Количество таких групп называется частотой. Частоту выражают, как правило, в процентах от общего числа явлений. Частота в таком конкретизированном виде называется частостью.

Принято говорить о частоте и частости типичного представителя разряда (класса группы) х, параметры которого находятся на границах [x'i, x"i], то есть

x'i < x < x"i.

Обычно говорят о срединном значении переменной ч, которое определяется формулой:


Параметр xi определяется, как и частота, и частость, эмпирически либо опытным путем. Для того, чтобы 2б получить сведения о всей массе или партии изделий, требуется отобрать их часть; эту отображенную часть называют выборкой.

Объемом выборки называют количество изделий в выборке (или число испытаний). Выборку деталей осуществляют в разных целях, чтобы определить соответствие требованиям взаимозаменяемости, оценить точность изготовления и т. д.

Пусть имеем случайные события в количестве N, которые по определенному признаку формируют определенный класс. И пусть эти события отвечают следующим требованиям:

1) все они равновероятны;

2) несовместимы, то есть если произошло одно событие, то исключено появление любого другого;

3) единственно возможны, то есть могут произойти события только из числа N событий, никакое другое произойти не может.