Вы здесь

Почвенные ресурсы. Часть I. Состав и свойства почв (Я. К. Кулико, 2013)

Часть I

Состав и свойства почв

Глава 1

Морфология и структура почв

1.1. Морфология почв

Почвы обладают внешними, так называемыми морфологическими, признаками, которые отражают внутренние процессы, происходящие в почвах, их генезис (происхождение) и историю развития.

Морфологические признаки – внешние признаки почвы, по которым ее можно отличить от горной породы или одну почву от другой, а также приблизительно судить о направлении и степени выраженности почвообразовательного процесса. Главные морфологические признаки почвы: строение почвенного профиля, мощность почвы и ее отдельных горизонтов, окраска, структура, гранулометрический состав, сложение, новообразования и включения.

Строение почвенного профиля

Общий вид почвы со всеми почвенными горизонтами называется строением почвы. Это результат генезиса почвы, постепенного развития ее из материнской породы, которая дифференцируется на горизонты в процессе почвообразования. Совокупность генетических горизонтов образует генетический профиль почвы.

Почвенный профиль – определенная вертикальная последовательность генетических горизонтов почвы. Почвенный профиль специфичен для каждого типа почвообразования.

Генетические почвенные горизонты – это однородные, обычно параллельные поверхности слои почвы, составляющие почвенный профиль и различающиеся между собой по морфологическим признакам.

Наиболее распространенным в нашей стране является использование следующих символов генетических горизонтов почв.

Горизонт A0лесная подстилка, или степной войлок. Представляет собой опад растений на различных стадиях разложения – от свежего до полностью разложившегося. Это самая верхняя часть почвенного профиля. Встречается только в естественных почвах.

Горизонт А – гумусовый горизонт. Чаще всего наиболее темно-окрашенный горизонт в верхней части почвенного профиля, в котором происходит накопление органического вещества в форме гумуса, тесно связанного с минеральной частью почвы. Цвет этого горизонта варьируется от черного, бурого, коричневого до светло-серого, что зависит от состава и количества гумуса. Мощность гумусового горизонта колеблется от нескольких сантиметров до 1,5 м и более.

Горизонт Т – торфяный горизонт. Содержание органического вещества – более 70 % со степенью разложения менее 50 %. Поверхностный органогенный горизонт с содержанием органического вещества от 30 до 70 %, состоящий из разложившихся органических остатков (степень разложения – больше 50 %) и гумуса с примесью минеральных компонентов, называют перегнойным горизонтом.

Горизонт Аддерновый. Горизонт, в котором живых корней растений более 50 %.

Горизонт Ап, или Апах – пахотный. Горизонт, измененный продолжительной сельскохозяйственной обработкой, сформированный из различных почвенных горизонтов на глубину вспашки – обычно 25–30 см. Встречается только в пахотных почвах.

Горизонт Al – минеральный гумусово-аккумулятивный. Встречается в почвах, где происходит разрушение алюмосиликатов и образование подвижных органо-минеральных веществ. Это верхний темно-окрашенный горизонт, содержащий наибольшее количество органического вещества.

Горизонт А2элювиальный (подзолистый или осолоделый). Формируется под влиянием кислотного или щелочного разрушения минеральной части. Это сильно осветленный, бесструктурный или слоеватый рыхлый горизонт, обедненный гумусом и другими соединениями, а также илистыми частицами за счет вымывания в нижележащие слои, и относительно обогащенный остаточным кремнеземом.

Горизонт В – переходный, или иллювиальный. В первом случае (черноземный тип почвообразования) в этом горизонте не наблюдается существенных перемещений веществ в почвенной толще, горизонт В является переходным слоем к почвообразующей породе, характеризуется постепенным ослаблением процессов аккумуляции гумуса, разложения первичных минералов. Во втором случае (подзолистый тип почвообразования) горизонт В располагается под элювиальным горизонтом и представляет собой бурый, охристо-бурый, красновато-бурый, уплотненный и утяжеленный, хороню острук-туренный горизонт, характеризующийся накоплением глины, окислов железа, алюминия и других коллоидных веществ за счет вмывания их из вышележащих горизонтов.

Горизонт G – глеевый. Характерен для почв с постоянно избыточным увлажнением (болотных, тундровых, аллювиальных и др.), которое вызывает восстановительные процессы в почве и придает горизонту характерные черты – сизую, серовато-голубую или грязно-зеленую окраску, наличие ржавых и охристых пятен, слитость, вязкость и т. д.

Горизонт С – материнская (почвообразующая) горная порода. Из этой породы сформировалась данная почва. На этой глубине порода уже не затронута специфическими процессами почвообразования (аккумуляцией гумуса, элювиированием и т. д.).

Горизонт Д – подстилающая горная порода. Эта порода залегает ниже материнской (почвообразующей) и отличается от нее по своим свойствам (главным образом по литологии). Встречается только в случае перекрывания горных пород.

Кроме указанных горизонтов выделяются переходные, для которых применяются двойные обозначения, например AlА2 – горизонт, прокрашенный гумусом и имеющий признаки оподзоленности; А2В – горизонт, имеющий черты подзолистого горизонта (А2) и иллювиального (В); ВС – переходный горизонт от переходного к материнской породе и т. д. Второстепенные признаки обозначаются индексом с дополнительной малой буквой, например ВСа – переходный горизонт с вторичными выделениями карбонатов в виде налетов, прожилок, псевдомицелия, белоглазки, редких конкреций; Bg– иллювиальный горизонт с пятнами оглеения; Bt– метаморфический горизонт, характеризующийся аккумуляцией глины без заметных следов ее перемещения, и др. Иными словами индексы при обозначении генетических горизонтов ставятся в зависимости от степени выраженности того или иного процесса, протекающего в данном горизонте.

Каждому почвенному типу свойственно свое сочетание горизонтов. Поэтому некоторые из них могут в том или ином профиле отсутствовать.

Типы строения почвенного профиля. По характеру соотношения генетических горизонтов выделяют ряд типов почвенных профилей. Тип профиля определяется типом почвообразования, возрастом почвы, нарушенностью природными или антропогенными педотурбациями. Различают простое и сложное строение почвенного профиля.

Простое строение почвенного профиля включает пять типов.

Примитивный профиль имеют молодые почвы, когда почвообразованием затронута лишь поверхностная часть породы. Мощность такого профиля составляет несколько сантиметров, он слабо дифференцирован на горизонты.

Неполноразвитый профиль свойственен почвам, формирующимся на массивно-кристаллических плотных породах или крутых склонах. Мощность профиля – несколько десятков сантиметров. При этом представлен полный набор генетических горизонтов, присущих данному типу почвообразования, но с небольшой их мощностью. Такие профили часто имеют горные почвы.

Нормальный профиль характерен для зрелых почв, формирующихся на рыхлых породах в равнинных условиях. Почвы имеют полный набор генетических горизонтов, свойственных данному типу почвообразования.

Слабодифференцированный профиль присущ почвам, развивающимся на породах, бедных легко выветривающимися минералами (кварцевые пески, древняя ферраллитная кора выветривания). Генетические горизонты слабо выражены, выделяются с трудом и постепенно сменяют друг друга.

Нарушенный (эродированный) профиль имеют эродированные почвы, верхняя часть профиля которых уничтожена эрозией.

Сложное строение почвенного профиля также включает пять типов.

Реликтовый профиль содержит различные по генезису погребенные горизонты (иногда целые профили) или горизонты, характерные для предшествующих фаз почвообразования.

Многочленный профиль свойственен почвам, формирующимся на многочленных породах при их смене в пределах почвенной толщи.

Полициклический профиль формируется в условиях периодического отложения почвообразующего материала (речного аллювия, вулканического пепла, эоловых наносов).

Нарушенный (перевернутый) профиль образуется при перемещении нижних горизонтов на поверхность почвы. Причины могут быть как антропогенные (например, при плантажной вспашке), так и природные (ветровал в лесу, деятельность землероев).

Мозаичный профиль образуется при большой пространственной неоднородности сочетания генетических горизонтов.

С другой стороны, почвенные профили разделяют по характеру распределения веществ.

Аккумулятивный профиль имеют почвы с максимальным накоплением тех или иных веществ с поверхности и снижением их содержания с глубиной (например, распределение гумуса). При этом кривая распределения вещества может быть вогнутой (регрессивно-аккумулятивный профиль), выпуклой (прогрессивно-аккумулятивный) и прямой (равномерно-аккумулятивный).

Элювиальный профиль характеризуется минимумом вещества на поверхности и увеличением его содержания с глубиной (например, распределение карбоната кальция). Кривая распределения вещества может быть вогнутой (регрессивно-элювиальный профиль), выпуклой (прогрессивно-элювиальный) и прямой (равномерно-элювиальный).

Элювиально-иллювиальный профиль наблюдается при минимуме вещества в верхней части и максимуме в средней или нижней.

Грунтово-аккумулятивный профиль отличается накоплением веществ из грунтовых вод в нижней и средней части профиля.

Недифференцированный профиль характеризуется равномерным содержанием вещества по всей почвенной толще.

Мощность почвы и ее отдельных горизонтов

Мощность почвы – это толщина ее от поверхности вглубь до слабо затронутой почвообразовательными процессами материнской породы. У разных почв мощность неодинакова: от 40–50 см до 150–200 см и более.

Мощность почвенного горизонта – это толщина горизонта от поверхности почвы или вышележащего горизонта до нижележащего горизонта. Границы почвенных горизонтов и подгоризонтов устанавливают по совокупности всех признаков (цвет, структура, сложение, плотность и др.).

Характер перехода между горизонтами почвы

Граница между почвенными горизонтами характеризуется по двум признакам. По форме она может быть ровной, волнистой, карманной, языковатой, затечной, размытой, пильчатой, палисадной. По степени выраженности обычно различают три типа переходов: резкий переход – смена одного горизонта другим происходит на протяжении 2–3 см; ясный переход – смена горизонтов происходит на протяжении 5 см; постепенный переход – постепенная смена горизонтов на протяжении более 5 см.

Окраска почвы

Цвет почвы – наиболее доступный для наблюдения морфологический признак. Он широко используется в почвоведении для присвоения названий почвам (чернозем, краснозем, желтозем, серозем и др.). Окраска почв зависит от ее химического состава, условий почвообразования и влажности.

Наиболее важны для окраски почв три группы веществ. Гумусовые вещества придают почве черную, темно-серую и серую окраску; соединения оксида железа – красную, оранжевую и желтую, а соединения закиси железа – сизую и голубоватую; кремнезем, карбонат кальция, каолинит, а также гипс и легкорастворимые соли – белую и белесую окраску. Различное сочетание указанных групп веществ определяет большое разнообразие почвенных цветов и оттенков.

Верхние горизонты окрашены гумусом в темные цвета. Чем большее количество гумуса содержит почва, тем темнее окрашен горизонт. Наличие железа и марганца придает почве бурые, охристые, красные тона. Белесые, белые тона предполагают наличие процессов оподзоливания (вымывания продуктов разложения минеральной части почв), осолодения, засоления, окарбоначивания, т. е. присутствие в почве кремнезема, каолина, углекислого кальция и магния, гипса и других солей.

Почвы редко бывают окрашены в какой-либо один чистый цвет. Обычно окраска почв довольно сложная и состоит из нескольких цветов (например, серо-бурая, белесовато-сизая, красновато-коричневая и т. д.), причем название преобладающего цвета ставится на последнее место.

При определении окраски почвы в полевых условиях необходимо учитывать влажность почвы и степень освещенности почвенного разреза. Влажная почва имеет более темную окраску, чем воздушно-сухая. В тени почва выглядит темнее, чем на солнце.

Влажность почвы

Влажность почвы не является морфологическим признаком, но от этого показателя зависит проявление практически всех морфологических свойств. Также влажность не является устойчивым признаком почвы. Она зависит от многих факторов: метеорологических условий, уровня грунтовых вод, гранулометрического состава почвы, характера растительности и т. д. Например, при одинаковом содержании влаги в почве песчаные (легкие) горизонты будут казаться влажнее глинистых (тяжелых).

При описании почвенного разреза используют пять степеней влажности почв: 1) сухая почва пылит, присутствие влаги в ней не ощущается, не холодит руку; влажность почвы близка к гигроскопической (влажность в воздушно-сухом состоянии); 2) влажноватпая почва холодит руку, не пылит, при подсыхании немного светлеет; 3) влажная почва дает явное ощущение влаги; увлажняет фильтровальную бумагу, при подсыхании значительно светлеет и сохраняет форму, которую придали почве при сжатии рукой; 4) сырая почва при сжимании в руке превращается в тестообразную массу, а вода смачивает руку, но не сочится между пальцами; 5) мокрая почва при сжимании в руке выделяет воду, которая сочится между пальцами; почвенная масса обнаруживает текучесть.

Степень влажности влияет на выраженность других морфологических признаков почвы, что необходимо учитывать при описании почвенного разреза. Например, влажная почва имеет более темный цвет, чем сухая. Кроме того степень влажности оказывает влияние на сложение, структуру почвы и т. д.

Гранулометрический состав

Твердая фаза почв и почвообразующих пород состоит из частиц различной величины – механических элементов. В зависимости от размера механических элементов выделяют две большие фракции: физический песок (> 0,01 мм) и физическая глина (< 0,01 мм).

Гранулометрический состав – относительное содержание в почве твердых частиц (механических элементов) разной величины. В основу классификации почв по гранулометрическому составу положено соотношение в ней физического песка и физической глины. В соответствии с этим почва бывает: песчаная (рыхло-песчаная, связно-песчаная), супесчаная, суглинистая (легкосуглинистая, среднесуглинистая, тяжел о суглинистая), глинистая (легкоглинистая, среднеглинистая, тяжелоглинистая). Песчаные и супесчаные почвы легко поддаются обработке и называются легкими, а тяжело суглинистые и глинистые почвы – тяжелыми.

В полевых условиях возможно определение гранулометрического состава визуально и на ощупь. Наиболее удобен «мокрый» способ определения гранулометрического состава.

Структура

Структура почвы – взаимное расположение структурных отдельностей (агрегатов) определенной формы и размеров.

Выделяются три группы структурных отдельностей в почвах (мм): микроагрегаты (< 0,25); мезоагрегаты (0,25-7 (10)); макроагрегаты (> 7 (10)).

Агрегаты состоят из соединенных между собой частиц (механических элементов). Они удерживаются в сцепленном виде в результате коагуляции коллоидов, склеивания, слипания под действием Ван-дер-Ваальсовых сил, остаточных валентностей и водородных связей, адсорбционных и капиллярных явлений в жидкой фазе, а также с помощью корневых тяжей, гифов грибов и слизи микроорганизмов.

Различают три основных типа структуры (табл. 1.1, рис. 1.1), каждый из которых в зависимости от характера ребер, граней подразделяется на роды, а в зависимости от размера – на виды.


Таблица 1.1.

Классификация структурных отдельностей почв (С.А. Захаров,1929)






Рис. 1.1. Типичные структурные элементы почв (по С.А. Захарову):

I тип: 1 – крупнокомковатая; 2 – среднекомковатая; 3 – мелкокомковатая; 4 – пылеватая; 5 – крупноореховатая; 6 – ореховатая; 7 – мелкоореховатая; 8 – крупнозернистая; 9 – зернистая, 10- порошистая; II тип: 11 – столбчатая; 12 – столбовидная; 13- крупнопризматическая; 14 – призматическая; 15 – мелкопризматическая; 16 – тонкопризматическая; III тип: 17 — сланцевая; 18 – пластинчатая; 19 – листовая; 20 – грубочешуйчатая; 21 – мелкочешуйчатая


Почва может быть структурной и бесструктурной. При структурном состоянии масса почвы разделена на отдельности той или иной формы и размеров. Бесструктурное состояние имеют почвы, в которых механические элементы либо не соединены между собой в более крупные агрегаты (рыхлый песок), либо залегают сплошной сцементированной массой.

В песчаных и супесчаных почвах механические элементы обычно находятся в раздельно-частичном состоянии. Суглинистые и глинистые почвы могут быть структурными и бесструктурными. Различные генетические горизонты имеют определенную структуру. Так, дерновым и гумусовым горизонтам присуща комковатая и зернистая структура, элювиальным – пластинчато-листоватая, иллювиальным – ореховатая.

Существуют агрономическое (агрофизическое) и морфологическое (морфолого-генетическое) понимание структуры. В агрономическом смысле почва считается структурной, если в ее составе преобладают агрономически ценные мезоагрегаты, т. е. отдельности размером от 0,25 до 7 (10) мм. Иные почвы считаются бесструктурными.

Для определения агрономической ценности структуры почвы используют коэффициент структурности почвы К:


К = а / b,


где а – количество мезоагрегатов; b – сумма макро- и микроагрегатов в почве.


Таким образом, с агрономической точки зрения структурной считается почва, в которой комковато-зернистые водопрочные агрегаты размером от 0,25 до 7(10) мм (т. е. мезоагрегаты) составляют более 55 %.

Сложение почвы

Сложение почвы – взаимное расположение в пространстве и соотношение механических элементов, структурных отдельностей и связанных с ними пор в почве. Это внешнее выражение плотности и пористости почвы. Сложение почвы зависит от ее структуры, гранулометрического и химического состава и от влажности почвенных горизонтов.

По плотности в сухом состоянии сложение бывает слитое, плотное, рыхлое и рассыпчатое.

Слитое (очень плотное) сложение – лопата или нож при сильном ударе входят в почву на незначительную глубину, не более 1 см; характерно для слитых черноземов, иллювиальных горизонтов солонцов.

Плотное сложение – лопата или нож при большом усилии входят в почву на глубину 4–5 см и она с трудом разламывается руками; типично для иллювиальных горизонтов суглинистых и глинистых почв.

Рыхлое сложение – лопата или нож без усилия входят в почву, которая легко разламывается руками, хорошо оструктурена, но структурные агрегаты слабо сцементированы между собой; наблюдается в хорошо оструктуренных гумусовых горизонтах.

Рассыпчатое сложение – почва обладает сыпучестью, отдельные частицы не сцементированы между собой; характерно для пахотных горизонтов супесчаных и песчаных почв.

Пористость почвы характеризуется формой и размерами пор внутри структурных отдельностей или между ними. По пористости различают следующие типы сложения почв: 1) по расположению пор внутри структурных отдельностей: тонкопористое строение – почвенная масса пронизана порами диаметром менее 1 мм; пористое – почвенная масса пронизана порами в 1–3 мм; губчатое – в почве много пустот от 3 до 5 мм; ноздреватое (или дырчатое) – почвенная масса содержит полости от 5 до 10 мм; ячеистое – пустоты крупнее 10 мм; трубчатое строение – почва пронизана каналами, прорытыми крупными землероями; 2) по расположению пор между структурными отдельностями в сухом состоянии: тонкотрещиноватое строение – полости шириной менее 3 мм; трещиноватое – полости размером 3-10 мм; щелеватое строение – полости шириной более 10 мм.

Сложение имеет большое практическое значение, так как оно характеризует почву с точки зрения трудности ее обработки. Давно установлено, что глинистые и тяжело суглинистые (тяжелые) почвы требуют значительно больше усилий при обработке, чем средне суглинистые и песчаные (легкие). Также от сложения зависят водно-физические свойства почвы, легкость проникновения воды и корней растений в почву.

Новообразования

Новообразования – скопления веществ различной формы и химического состава, которые образуются и откладываются в горизонтах почвы в результате почвообразовательных процессов. По происхождению различают новообразования химического и биологического происхождения.

Новообразования химического происхождения делят по форме и по химическому составу.

По форме химические новообразования разделяют на следующие группы: 1) выцветы и налеты – химические вещества, которые выступают на поверхности почвы или на стенке разреза в виде тончайшей пленочки (например, растворимые соли); 2) корочки, примазки, потеки – вещества, которые, выступая на поверхности почвы или по стенкам трещин, образуют слой небольшой толщины; 3) прожилки и трубочки – вещества, заполняющие ходы червей или корней, поры и трещины почвы; 4) конкреции и стяжения – скопления различных веществ более или менее округлой формы; 5) прослойки – вещества, накапливающиеся в больших количествах, пропитывая отдельные слои почвы.

По составу химические новообразования подразделяют на следующие группы.

1. Скопления легкорастворимых солей (NaCl, CaCl2, MgCl2, Na2SO4 и т. п.). Белого цвета. Встречаются в засоленных почвах и породах, чаще в условиях сухой полупустынной и пустынной степи. Наиболее характерные формы скопления – налеты и выцветы, корочки и примазки, крупинки и отдельные кристаллы солей.

2. Скопления гипса (CaSO4). Белого цвета. Отмечаются в тех же почвах, что и легкорастворимые соли в форме выцветов, налетов, прожилок, а также в глубоких горизонтах черноземов южных и каштановых почв в виде особых сростков, называемых «земляными сердцами», которые чаще всего располагаются в подпочвенных горизонтах в лёссовидных породах.

3. Скопления карбоната кальция (СаCO3). Белого и грязнобелого цвета. Залегают в форме карбонатной плесени, карбонатных трубочек, «белоглазки» и др. Новообразования углекислой извести встречаются в почвах почти всех зон, но наиболее типичные формы образуются в черноземах и каштановых почвах, где повсеместно можно встретить в горизонте С «белоглазку» – бесформенные белые плотные пятна извести величиной 1–2 см.

4. Скопления окислов и гидратов окислов железа, марганца и фосфорной кислоты. Красно-бурые, ржаво-охристые, розовые, желтые и др. Образуют налеты, пленки, выцветы, примазки, пятна, трубочки, конкреции и т. д. Эти образования наиболее характерны для почв дерново-подзолистой зоны и влажных субтропиков, а в условиях избыточного увлажнения нередко встречаются и в почвах других зон.

5. Закисные соединения железа. Встречаются в виде сизоватых или сизовато-серых пленок, пятен, корочек. Они образуются в условиях избыточного увлажнения почв при анаэробных процессах, поэтому встречаются главным образом в болотных и заболоченных почвах.

6. Скопления кремнекислоты. Встречаются в виде кремнеземистой присыпки (белесый налет), прожилок и пятен (скопления кремнезема округлой формы). Эти образования характерны главным образом для почв подзолистого типа почвообразования и солодей.

7. Выделения и скопления органических веществ. Черного или темно-серого цвета. Образуют гумусовые потеки и корочки, которые покрывают поверхность структурных отдельностей и стенки трещин, или гумусовые пятна, карманы, языки, связанные с проникновением перегнойных веществ по трещинам в нижележащие горизонты.

Новообразования биологического происхождения делят на следующие группы: 1) червороины (червоточины) – извилистые ходы и канальцы червей; 2) капролиты – зернистые клубочки экскрементов червей, представляющие собой кусочки земли, прошедшие через пищеварительный аппарат червей и пропитанные их выделениями; 3) кротовины – пустые или заполненные ходы роющих животных (сусликов, сурков, кротов и др.); 4) корневины – полости, образующиеся после перегнивання крупных корней растений; 5) дендриты – «узоры» от перегнивання мелких корешков на поверхности структурных отдельностей.

Перечисленные новообразования химического и биологического происхождения дают возможность судить о генезисе и плодородии почв.

Включения

Включения – присутствующие в почве тела органического и неорганического происхождения, фомирование которых не связано с почвообразовательным процессом.

По происхождению включения можно разделить на четыре группы.

1. Литоморфы – обломки почвообразующей породы, рассеянные в почве (камни, валуны, галька).

2. Криоморфы – различные формы льда, связанные с сезонной или вечной мерзлотой (конкреции, линзы, прожилки).

3. Биоморфы – включения, образование которых связано с деятельностью следующих живых организмов: 1) остатки корней, стеблей, стволов растений; 2) кости животных; 3) раковины моллюсков; 4) окаменелости – окремнелые, обызвеоткованные, загипсованные или ожелезненные остатки растений.

4. Антропоморфы – предметы, связанные с деятельностью человека (фрагменты кирпича, стекла, металлические предметы, черепки и т. п.). К последним относятся археологические находки, позволяющие судить о возрасте почв.

Микроморфология почв

Помимо макромор фол огических признаков почвы, различимых невооруженным глазом, почва обладает микроморфоло-гическими признаками, исследовать которые можно только при помощи микроскопа. В почвенной микроморфологии пользуются следующими понятиями. Матрица почвы – каркас почвы, состоящий из твердых частиц (или их микроагрегатов) с порами между ними. Матрица почвы включает скелет, плазму и поры. Скелет почвы – частицы крупнее 2 мкм[1], относительно устойчивые и нелегко перемещаемые во время почвообразовательных процессов (минеральные зерна, устойчивые кремневые и органические компоненты крупнее коллоидного размера). Плазма почвы – частицы менее 2 мкм, легко перемещаемые в процессе почвообразования (глинистые минералы, свободные полуторные окислы, гумус). Микросложение почвы – пространственное соотношение матрицы (скелета, плазмы и пор), а также микроновообразований в почве. Для изучения микросложения почв готовят почвенные шлифы – образцы почвы с ненарушенным сложением, которые исследуют под поляризационным микроскопом. В зависимости от соотношения и взаимного расположения в пространстве скелета, плазмы и пор выделяют следующие типы микростроения почвы: песчаное, плазменно-песчаное, песчано-пылеватое, песчано-плазменное, плазменно-пылеватое, пылевато-плазменное, плазменное.

1.2. Полевое исследование почв

В полевых условиях изучают и определяют почвы и дают им названия по морфологическим признакам. По морфологическим (внешним) признакам почву можно определить так же, как определяется минерал, растение или животное.

Типы почвенных разрезов

Для изучения и определения почв в природе, установления границ между различными почвами, взятия образцов для анализов закладывают специальные ямы, которые принято называть почвенными разрезами. Они бывают трех типов: полные (основные) разрезы, полуямы (контрольные), прикопки (поверхностные).

Полные, или основные, разрезы делают с таким расчетом, чтобы были видны все почвенные горизонты и частично верхняя часть неизмененной или малоизмененной материнской породы. Их закладывают в наиболее типичных, характерных местах. Они служат для детального изучения морфолого-генетических признаков почв и отбора образцов по генетическим горизонтам для физико-химических, биологических и других анализов, определения окраски, структуры и т. д. Глубина основных почвенных разрезов сильно варьирует в зависимости от мощности почв и целей исследований. Обычно в практике полевых почвенных исследований и картирования почв почвенные разрезы закладывают на глубину 1,5–2 м.

Полуямы, или контрольные разрезы, закладывают на меньшую глубину – от 75 до 125 см, обычно до начала материнской породы. Они служат для дополнительного (контрольного) изучения основной части почвенного профиля – мощности гумусовых и других горизонтов, глубины вскипания и залегания солей, степени выщелоченности, оподзоленности, солонцевато сти, солончаковости и др.

Прикопки, или мелкие поверхностные разрезы, глубиной менее 75 см служат главным образом для уточнения почвенных границ, выявленных полными разрезами и полуямами.

Заложение почвенных разрезов

Разрез необходимо закладывать в наиболее характерном, типичном месте обследуемой территории. Почвенные разрезы не должны закладываться вблизи дорог, рядом с канавами, свалками, отстойниками на нетипичных для данной территории элементах микрорельефа (понижения, кочки).

На выбранном для почвенного разреза месте копают яму размером 0,8x1,5x2,0 м так, чтобы три стенки ее были отвесны, т. е. вертикальны, а четвертая – со ступеньками. Передняя «лицевая» стенка, которая предназначается для изучения почвенного разреза, должна быть обращена к солнцу. Почву из ямы необходимо выбрасывать на длинные боковые стороны, но ни в коем случае не в сторону «лицевой» стенки, так как это приводит к ее «загрязнению» и даже к разрушению верхней части стенки почвенного разреза. Когда яма готова, необходимо, в первую очередь, определить характер почвообразующей породы, ее гранулометрический состав, засоление, степень увлажнения и взять образец материнской породы для последующего изучения или анализа, так как в дальнейшем при препарировании нижняя часть «лицевой» стенки и дно ямы будут засорены осыпающейся почвенной массой из верхних горизонтов. После этого «лицевую» стенку гладко очищают лопатой и одну (правую) половину стенки препарируют стамеской или маленькой лопаткой для того, чтобы лучше рассмотреть морфолого-генетические признаки почв, а вторую (левую) половину стенки оставляют в гладко зачищенном виде для сравнения и контроля. Затем необходимо приступить к изучению морфолого-генетических признаков почв и описанию почвенного разреза.

Описание почвенных разрезов

По морфологическим признакам можно «читать» историю развития почв, выяснить ее генезис и до некоторой степени установить агрономическую ценность почв. Поэтому при изучении почв в поле и морфологическом описании почвенного разреза очень важно правильно «прочитать» почвенный разрез.

Техника и последовательность работ при изучении и описании почвенного разреза и ведении дневника следующие.

1. Записать номер, дату и географическое положение разреза, отметить характер рельефа, точно указать, на каком элементе рельефа сделан разрез, описать угодье и его состояние; растительность (состав, густота и состояние); состояние поверхности (заболоченность, кочковатость, трещиноватость, засоленность, каменистость и другие характерные особенности); дать агрономическую оценку почв с учетом данных о сельскохозяйственной ценности почвы; отметить материнские и подстилающие породы и глубину грунтовых вод, если они обнаружены; определить местоположение разреза и его привязку Ознакомление с рельефом, растительностью, ее состоянием и другими характерными особенностями участка, на котором сделан разрез, проводится в тот промежуток времени, который необходим для копки предназначенного к изучению разреза.

2. Определить глубину и характер вскипания почвы от 10 % раствора соляной кислоты. Для этого на свежепрепарирован-ной «лицевой» стенке разреза закрепляют клеенчатый сантиметр так, чтобы нуль совпал с поверхностью почвы, и последовательно сверху донизу капают на почву соляную кислоту, которая при наличии карбонатов кальция дает «вскипание» различной интенсивности (слабое, среднее, сильное или бурное). В той части стенки, где определялась глубина и характер вскипания от соляной кислоты, образцы почв для анализа брать нельзя.

3. Определить мощность каждого горизонта и подгоризонта почв с последующим подробным изучением их морфологогенетических признаков: гранулометрического состава, физических свойств и других особенностей (окраска, структура, влажность, плотность, скважность, новообразования, включения, корневая система, характер перехода одного горизонта в другой).

4. В некоторых случаях для более полной характеристики почв (засоленные, переувлажненные и др.) произвести простые химические анализы (определение pH, хлористых и сернокислых солей, наличия железа, соды и др.); определить физические свойства (влажность, плотность и др.), не требующие сложного оборудования.

5. Дать полевое определение почвы, установить ее ценность. В названии почв необходимо отразить тип, подтип, вид, разновидность и материнскую породу, например: чернозем обыкновенный среднемощный тяжело суглинистый на лёссах. Наметить примерные границы ее распространения на изучаемой территории и, наконец, взять почвенные образцы для анализов, а при необходимости и монолит. Почвенный разрез после его изучения, описания и взятия образцов должен быть зарыт.

Глава 2

Гранулометрический и минералогический состав почв

2.1. Понятия и классификация

Твердая фаза почвы состоит из механических элементов различного происхождения. Механические элементы – это разнообразные по величине обломки минералов и горных пород, органические вещества и органо-минеральные соединения. Кристаллы льда и живое вещество к механическим элементам не относятся.

Механические элементы неодинаковы по размеру. В Беларуси, как и в России, принята классификация, разработанная Н.А. Качинским.




Почвы с содержанием скелетных механических элементов называют каменистыми. Они могут быть валунными, галечниковыми и щебнистыми. Классифицируются почвы по степени каменистости следующим образом.




Гранулометрический состав – содержание в мелкоземе почвы механических элементов (фракций) различной крупности. Почвы классифицируются но гранулометрическому составу в зависимости от содержания физического песка (частицы крупнее 0,01 мм) или физической глины (частицы менее 0,01 мм) (табл. 2.1).


Таблица 2.1.

Классификация почв по гранулометрическому составу




В бытовой терминологии различают почвы глинистые, песчаные, суглинистые (глина, песок, суглинок). В научно-практических специальных исследованиях для более детального разделения почв по гранулометрическому составу используется содержание преобладающих фракций: песка (1–0,25 мм), пыли (0,25-0,001 мм) и ила (менее 0,001 мм). Исходя из этого могут выделяться черноземы среднеглинистые иловато-пылеватые или каштановые почвы суглинистые иловато-песчаные (иловато-пылеватые, пылеватые и т. п.). Детализированная классификация почв по гранулометрическому составу применяется редко.

2.2. Генетическое и экологическое значение гранулометрического состава почв

Гранулометрический состав – важнейшая характеристика почвы. От нее зависят очень многие свойства почвы и плодородие. Гранулометрический состав оказывает существенное влияние на водно-физические, физико-механические, воздушные, тепловые свойства, окислительно-восстановительные условия, поглотительную способность, накопление в почве гумуса, зольных элементов и азота.

Размеры частиц отражают различия гранулометрических фракций, свойства которых напрямую зависят от удельной поверхности частиц и их химического и минералогического состава.

Песчаная фракция (1–0,25 мм) состоит из обломков разных горных пород и минералов, среди которых чаще всего преобладают кварц и полевые шпаты. Пески имеют очень высокую водопроницаемость, свободно фильтруют воду, не набухают, непластичны. Эти их свойства повсеместно используются при заполнении различных выемок, например канав и траншей, где недопустима усадка грунта.

Фракция крупной пыли (0,25-0,01 мм) по минералогическому составу мало отличается от песчаной, поэтому обладает многими свойствами песка: непластична, очень слабо набухает, имеет низкую влагоемкость.

Средняя пыль (0,01-0,005 мм) в своем составе содержит много слюды. Слюды придают фракции некоторую пластичность и связанность. Средняя пыль уже более дисперсна, чем предыдущие крупные фракции. Например, 1 г частиц этой фракции имеет удельную поверхность около 2000 см2. Поэтому средняя пыль лучше удерживает влагу и обладает слабой водопроницаемостью. Характерна неспособность частиц к коагуляции и структурообразованию. Почвы, в которых преобладает фракция средней пыли, легко распыляются, склонны к уплотнению и образованию сплошной корки.

Тонкая пыль (0,005-0,001 мм) характеризуется относительно высокой дисперсностью. Кусочки горных пород отсутствуют, характерно наличие минералов как первичных, так и вторичных. Заметно резкое уменьшение количества кварца. Появляются свойства, не присущие крупным фракциям: способность к коагуляции и структурообразованию. Фракция тонкой пыли уже может содержать органические вещества. В неструктурных почвах присутствие этой фракции способствует развитию явлений набухания, усадки, низкой водопроницаемости, липкости, трещиноватости, плотного сложения.

Ил (< 0,001 мм) состоит преимущественно из вторичных глинистых минералов, гумусовых и органо-минеральных веществ. Все коллоиды почвы входят в состав этой фракции. Илистые частицы обладают громадной поверхностной энергией, так 1 г частиц имеет удельную поверхность около 20 000 см2. Илистую фракцию называют плазмой почвы. Это главный участник практически всех происходящих в почве процессов. Содержание ила предопределяет многие генетические характеристики почвы. Связь с илом характерна для запасов гумуса, поглощенных оснований, глубины появления карбонатов. В илистой фракции почв сосредоточен почти весь гумус. Здесь главным образом сконцентрированы азот и фосфор, а также многие жизненно необходимые для растений элементы. От количества ила, содержащегося в почвах, и его способности к агрегированию во многом зависят физические свойства почв, их влагоемкость и структурное состояние, водопроницаемость. Ил – главный поглотитель, абсорбент многих тонкодисперсных веществ, в том числе и загрязнителей окружающей среды, различных катионов, включая как элементы-биофилы, так и тяжелые металлы и радиоактивные элементы. Физические и водно-физические свойства фракции ила зависят от состояния дисперсности частиц. Скоагулированные оструктуренные частицы ила придают почвам в высшей степени экологически оптимальные условия влаго- и воздухообеспеченности биологических объектов. Наоборот, бесструктурный дезагрегированный ил превращается в твердую сплошную массу, где нет места ни свободному воздуху, ни доступной живым организмам влаги. Это сплошная, вязкая, липкая, набухающая при увлажнении и сильно растрескивающаяся при высыхании глинистая масса.

Таким образом, гранулометрический состав играет существенную роль при регулировании водного режима почв и проведении оросительных и осушительных мелиораций. Велико его влияние на скорость просыхания почв, он определяет различное сопротивление почв воздействию почвообрабатывающих орудий в связи с неодинаковой липкостью и плотностью песчаных и глинистых почв. Песчаные и супесчаные почвы легко поддаются обработке и называются легкими, а тяжело суглинистые и глинистые почвы – тяжелыми. Существенную роль играет гранулометрический состав в тепловых свойствах почв: легкие почвы относятся к более «теплым», т. е. быстрее оттаивают и прогреваются. Тяжелые почвы считаются «холодными». Это имеет большое значение на северной границе распространения земледелия. Гранулометрический состав почв часто определяет ландшафтный облик громадных территорий в различных природных зонах земли: глинистые такыры и песчаные барханы в пустынях, сосновые боры на песках таежного пояса и т. д.

Высокая значимость гранулометрического состава в почвообразовании и в плодородии почв определяет постоянное внимание к его изучению как ученых, так и практиков сельского хозяйства. Это важнейшее условие среды обитания растений. Его экологическая значимость прежде всего определяется тем, что с гранулометрическим составом связаны богатство или бедность почв. Обычно чем легче гранулометрический состав, тем меньше в почвах гумуса и элементов питания растений. По мере возрастания количества илистых частиц увеличивается и потенциальное плодородие, которое зависит не только от богатства почвы, но и от ее физического состояния. Например, очень тяжелые глинистые почвы хотя и могут содержать много гумуса и элементов питания, но снижают свое плодородие из-за ухудшения физических свойств.

Не все растения одинаково реагируют на гранулометрический состав почв. Несмотря на большую экологическую приспособленность к почвам различного гранулометрического состава, есть определенный оптимум для каждой группы культур, и это необходимо учитывать при разработке мероприятий по рациональному использованию земель. Например, черешня и картофель неплохо плодоносят на тяжелосуглинистых черноземах. Однако наибольшая урожайность, лучшее развитие наблюдается на супесчаных и легкосуглинистых почвах. Есть целая группа растений-псаммофитов, предпочитающих песчаные местообитания: житняк сибирский, кумарчик песчаный, саксаул, овес песчаный, сосна и др. Многие растения, такие как кукуруза, слива, вишня, ель, дуб и другие, не выносят песчаных почв.

2.3. Происхождение и состав минеральной части почв

Минеральная часть почв в подавляющем большинстве случаев составляет 55–60 % от ее объема и до 90–97 % от массы. Общее число минералов, находящихся в почвах и почвообразующих породах, исчисляется сотнями. Каждый минерал обладает определенным химическим составом и имеет характерное для него внутреннее строение, т. е. определенное расположение атомов в кристаллической решетке. Минералы почв и почвообразующих пород изучает особый раздел почвоведения – минералогия почв.

Все минералы почв и почвообразующих пород делятся на следующие группы.

1. Первичные минералы, оставшиеся неизмененными после разрушения массивно-кристаллических пород литосферы Земли.

2. Вторичные глинистые минералы и окислы, образовавшиеся главным образом в результате комплекса процессов выветривания и почвообразования из первичных минералов и продуктов их разрушения.

Первичные минералы почв

Первичные минералы – основная группа веществ почвы и коры выветривания, являющихся исходным материалом для образования тонкодисперсных вторичных минералов. Эта потенциальная часть почвы неустойчива в условиях зоны гипергенеза.

Первичные минералы почти целиком сосредоточены в гранулометрических фракциях размером более 0,001 мм. Это определяется исходными размерами минеральных зерен в плотных породах, а также максимальными пределами их дробления при механических и температурных воздействиях.

В почвах и почвообразующих породах наиболее распространены следующие группы первичных минералов.

Полевые шпаты (алюмосиликаты) – большая группа широко распространенных и относительно устойчивых к выветриванию минералов. Они составляют около 60 % от массы земной коры, а в почвах их около 10–15 %. Типичные представители полевых шпатов: ортоклаз – KAlSi3O8, альбит – NaAlSi3O8, анортит – CaAlSi2O8 и плагиоклазы как изоморфные смеси альбита и анортита.

Силикаты в литосфере содержатся в количестве около 20 %: оливин – (Mg,Fe)SiO4, авгит – Ca(Mg,Fe)Si206, роговая обманка – MgSiO3 и др.

Кварц (SiO2) – один их наиболее распространенных минералов многих магматических пород, осадочных отложений и почв. Преобладание кварцевых минералов в почвах обусловливает их низкое плодородие.

Слюды (3 % от общего объема пород) являются важнейшими источниками питания растений калием, так как разрушаются сравнительно быстро. В числе слюд отмечаются мусковит – KH2Al3(SiO4)3 и биотит – KH2(Mg, Fe)3Al(SiO4)3.

Апатит – очень прочный минерал изверженных пород, в состав которого входят фосфор, кальций, фтор, хлор -3Ca3P2O8 Ca(F,Cl)2. Апатит – главнейший первоисточник фосфора в биосфере.

Преобразование первичных минералов в почвах и коре выветривания сопровождается образованием различных растворов, золей и гелей кремнезема, силикатов, окислов железа, алюминия, а также формированием вторичных глинистых алюмосиликатов, поступлением в почвенные растворы простых солей.

Вторичные минералы почв

К вторичным минералам относятся глинистые минералы, минералы оксидов кремния, железа, алюминия и марганца, а также минералы простых солей.

Глинистые минералы составляют основную часть вторичных минералов. Названы они так в связи с тем, что преимущественно определяют минералогический состав глин. Важнейшая роль глинистых минералов состоит в том, что в силу присущей им поглотительной способности они определяют емкость поглощения почв и наряду с гумусом являются основным источником поступления минеральных элементов в растения.

Глинистые минералы являются вторичными алюмосиликатами с общей химической формулой nSiO2Al2O3 · EmH2O и характерным молярным отношением SiO2: Al2O3, изменяющимся в пределах от 2 до 5.

Глинистые минералы образуются путем постепенного изменения первичных минералов в процессе выветривания и почвообразования, а также биогенным путем из продуктов минерализации растительных остатков.

К наиболее распространенным глинистым минералам относятся минералы групп монтмориллонита, каолинита, гидрослюд, хлоритов, смешанослойных минералов.

Глинистым минералам присущи общие свойства: слоистое кристаллическое строение, высокая дисперсность, поглотительная способность, наличие в них химически связанной воды. Однако каждая группа минералов имеет специфические свойства и значение в плодородии. Велика их роль в создании физических свойств, структуры и порозности почвы, водопроницаемости и влагоемкости.

Монтмориллонит, бейделит, нонтронит – группа трехслойных минералов с набухающей решеткой. Монтмориллонит и бейделит встречаются в почве самостоятельно и в смешанослойных образованиях с гидрослюдами, хлоритами, вермикулитами. Нонтронит по химическому составу отличается повышенным содержанием железа. Монтмориллонит и бейделит весьма сходны. Различия в том, что в бейделите часть кремния замещена на алюминий, поэтому соотношение SiO2: Al2O3 равно трем вместо четырех в монтмориллоните. Соотношение групп атомов в минералах: монтмориллонит – (Al, Mg)2(OH)2 [Si4O10] nН2O; бейделит – (К, Na, Н3O)Al2(OН)2 [Al Si3O10] х nН2O; нонтронит – Fe2(OH)2 [Si4O10] • nН2O.

Между пакетами трехслойной структуры монтмориллони-товых минералов находятся молекулы воды и обменные катионы, определяющие особенности отдельных минералов группы. Межпакетные расстояния могут изменяться. В связи с этим для монтмориллонита характерно сильное набухание с увеличением объема в 1,5–3 раза и связанная с этим жирность, липкость, вязкость, высокая пластичность и гигроскопичность. Цвет монтмориллонита белый с сероватым, буроватым, красноватым оттенками и зеленый. Нонтронит – зеленовато-желтый, зеленоватый, буровато-зеленый.

Отличительная черта монтмориллонитовых минералов – высокая поглотительная способность в отношении обменных катионов и в отношении загрязняющих веществ. Средние величины катионного обмена – 80-120 м-экв. на 100 г. С гуминомыми кислотами монтмориллонит образует прочные темно-окрашенные (серые и черные) комплексы.

Вермикулиты по химическому составу близки к магниевым алюмосиликатам. Вермикулит – (Mg, Fe+2, Fe+3)3 (ОН)2 [(Al, Si)4O10] nН2O, нонтронит – Fe2(OH)2 [Si4O10] x nН2O. По структуре они сходны с монтмориллонитом и гидрослюдами. Цвет минерала бурый, желтовато-бурый, золотисто-желтый; иногда наблюдаются зеленоватые оттенки. Вермикулиты обладают высокой способностью к набуханию. Емкость поглощения катионов около 100 м-экв. на 100 г.

Группа каолинита – каолинит, диккит, накрит – имеет следующее строение: Al2(OH)4[Si2O5]. Наиболее распространенным является каолинит. Кристаллическая структура этих минералов состоит из двухслойных пакетов. Отдельные чешуйки каолинита бесцветны, а сплошные массы белые. Каолинит не набухает, так как доступ воды в межпакетное пространство затруднен из-за сильной связи между пакетами. Расстояние между пакетами не изменяется. Каолинит не содержит щелочных и мало содержит щелочноземельных оснований. Дисперсность его высокая, он свободно мигрирует в суспензиях. Емкость поглощения – 10–20 м-экв. на 100 г. Каолинит набухает слабо, имеет небольшую липкость, связность и гидрофильность.

Галлуазит встречается в виде гелеподобных полуматовых масс. Цвет галлуазита белый, часто с желтоватым, красноватым и голубоватым оттенками. По свойствам близок к каолиниту, но более гидратирован и имеет расширяющуюся кристаллическую решетку. Емкость поглощения – 25–30 м-экв. на 100 г.

К группе гидрослюд (иллитов) относятся гидратированные формы слоистых минералов с морфологически чешуйчатым строением: гидробиотит – (К, H30)(Mg, Fe)3 (ОН)2 [(Al, Si)4O10] nН2O; гидромусковит – (К, Н3О) Al2 (ОН)2 [(Al, Si)4O10] • nН2O; глауконит – K(Fe+3, Al, Fe+2, Mg)2 (ОН)2 [Al, Si3O10] • nН2O.

Гидробиотит и гидромусковит золотисто-желтого, серебряного и белого цвета. Глауконит имеет зеленый цвет различных оттенков. Структура гидрослюд подобна монтмориллониту. Они относятся к трехслойным минералам с многочисленными изоморфными замещениями. В отличие от монтмориллонита связь между пакетами прочная, и вода в них не проникает. Гидрослюды – важный источник калия для растений. Обменный калий находится на краях кристаллической решетки. Гидрослюды не набухают. Емкость поглощения – 40 м-экв. на 100 г. Гидрофильность, липкость, связность, набухание значительно меньше, чем у монтмориллонита.

К группе хлоритов относится большое количество минералов, которые по целому ряду свойств близки к слюдам. Кристаллическая решетка хлоритов состоит из четырех слоев. В связи с тем что хлориты представлены слоями различных минералов, их можно отнести к смешанослойным минералам с правильным чередованием слоев. Решетка хлоритов не набухающая, стабильная. Хлориты имеют зеленый цвет различных оттенков.

Минералы гидроокисей и окисей кремния, алюминия, железа, марганца образуются в аморфной форме при выветривании первичных минералов в виде гидратированных высокомолекулярных гелей и постепенно подвергаются дегидратации и кристаллизации с образованием окисей и гидроокисей кристаллической структуры. Кристаллизации способствуют высокая температура, замерзание, высушивание, окислительные условия почвы.

Гидроокись кремния (SiO2nН2O) по мере старения переходит в твердый гель – опал (SiO2nН2O) с содержанием воды от 2 до 30 %, затем, теряя воду, – в кристаллические формы халцедона и кварца SiO2. Гидроокись марганца кристаллизуется в виде минерала пиролюзита MnO2, псиломелана mMnO х MnO2nН2O.

Гидраты полутораокисей (Al2O3nН2O, Fe2O3nН2O), кристаллизуясь, образуют вторичные минералы: бемит Al2O3 х Н2O; гидроргилит (гиббсит) Al2O3nН2O или Al(ОН)3; гематит Fe203; гетит Fe2O3 • Н2O; гидрогетит Fe2O3nН2O. Эти минералы встречаются в небольших количествах во многих почвах. Гетита и гиббсита много в ферраллитных почвах. Эти минералы могут обволакивать пленками агрегатные скопления глинистых минералов, а также встречаться в виде конкреций. Поглотительной способностью, липкостью, набуханием практически не обладают.

Встречаются в почвах цеолиты. Эта группа своеобразных минералов щелочных и щелочноземельных алюмосиликатов. Цеолиты образуются в условиях различной реакции среды: в пресноводных и соленых озерах, лагунах. При подъеме дна водоема на поверхность цеолиты остаются в почве как унаследованные от породы.

Каркасная решетка цеолитов характеризуется большим количеством пор, полостей и каналов, что определяет их высокую поглотительную способность. Часто цеолиты используются в тепличных хозяйствах.

Минералы простых солей образуются при выветривании первичных минералов, а также в результате почвообразовательного процесса. К таким солям относятся: кальцит СаCO3; магнезит MgCO3; доломит [Са, Mg](CO3)2; сода Na2CO3 х nН2O; гипс CaSO42O; мирабилит Na2SO4nН2O; галит NaCl; фосфаты; нитраты и др. Эти минералы способны накапливаться в почвах в больших количествах в условиях сухого климата. Качественный и количественный состав их определяет степень и характер засоления почв.

Глава 3

Органическое вещество почв

Органическое вещество почв представлено органическими остатками живых организмов, продуктами их метаболизма, а также специфическими органическими соединениями, носящими название почвенного гумуса. По современным представлениям все органические вещества, находящиеся в почвенной массе генетических горизонтов, делятся на две группы.

Неспецифические органические вещества – вещества непочвенного происхождения, которые имеют фито-, зоо-, микробо-ценотическую природу и поступают в процесс почвообразования как отмирающая биомасса (органические остатки) и как продукты жизнедеятельности живых организмов. Почвенный гумус, или специфические органические вещества почвенно-генетической природы, присущ только почвам. В вещественном составе почв органическим соединениям принадлежит особая роль, поскольку гумусообразование и гумусонакопление связаны только с почвообразовательным процессом и не наследуются, как правило, от материнской почвообразующей породы, хотя, безусловно, она влияет на состав и свойства гумуса.

3.1. Неспецифические органические соединения почв

Из массы органических веществ биологического происхождения в почвоведении широко представлены углеводы (целлюлоза, моносахариды, дисахариды, гемицеллюлоза, пектиновые вещества), лигнин, белки, жиры, липиды, дубильные вещества, воски, смолы и др. Особую роль играют ферменты и фенолы.

Углеводные компоненты, поступающие в почву с растительными и животными остатками, довольно быстро подвергаются различным превращениям: ферментативному гидролизу, окислению, конденсации.

Специфические функции углеводов в почве:

• формирование почвенной структуры за счет образования водопрочных агрегатов и усиления их стабильности, определяемых высокой клеящей способностью микробных слизей, обусловленных различными углеводами;

• образование органо-минеральных золей с полуторными окислами и глинистыми частицами; ускорение выветривания минералов за счет образования хелатных соединений;

• участие в ионообменных процессах, т. е. значительное влияние на поглотительную способность почвы;

• влияние на питание растений как путем непосредственного поглощения (моносахариды), так и косвенным, через образование различных соединений (полисахариды);

• трансформация гумусовых веществ микроорганизмами ускоряется в присутствии углеводов как источника энергии и углерода.

Хотя вопросы о распространении углеводов в почвах, влиянии типа почвы на их содержание и распределение пока изучены недостаточно, можно сделать вывод о существенной роли углеводов в почвообразовании.

Гемицеллюлоза сопутствует целлюлозе и составляет 15–30 % от растительной массы.

Лигнин отличается высоким содержанием углерода, наличием бензольных колец с гидроксильными (ОН) и метоксильными (ОСН3) группами, которые входят затем как структурные компоненты гумусовых веществ. В растительных остатках содержание лигнина может достигать 35 %.

Белки и аминокислоты – главные химические компоненты не специфических органических веществ, содержащие азот и фосфор. Содержание белков в биомассах крайне неодинаково: древесина – <1 %; сено (трава) -5-10; грибы – 10–50; бактерии – 40–80 %.

Смолы имеют различное химическое строение. Чаще всего встречаются в хвойных деревьях.

Воски выполняют функции защитных веществ, содержатся в незначительных количествах в почвах.

Дубильные вещества содержатся почти во всех растениях. Их много в коре древесных пород (5-20 %), мало в травах и микроорганизмах.

Смолы, воски и дубильные вещества плохо разлагаются в почве, а в некоторых случаях угнетают почвенную микрофлору.

Ферменты определяют ферментативную активность почвенной массы, имеют биологическое происхождение и являются обязательными катализаторами всех биохимических процессов, происходящих при почвообразовании. Очень много ферментов участвует в катализе процессов расщепления, превращения, минерализации органических веществ неспецифической природы и гумуса.

Фенолы представляют собой особый класс органических соединений. Фенольные соединения присутствуют во всех трех фазах почвы и участвуют в биологических, гидрологических, геологических, химических, биохимических и физикохимических процессах, происходящих в почве, подвергаясь многообразным метаморфозам биотического и абиотического синтеза и разложения. Вещества фенольной природы принимают участие в образовании органо-минеральных соединений. Почвенные фенолы существуют в нескольких формах: свободные, связанные и прочносвязанные с почвенной матрицей и не передвигающиеся в профиле почвы. Соотношение между ними определяется химической структурой фенолов и совокупностью почвенных условий.

Таким образом, все неспецифические органические вещества почв по их биохимической значимости в процессах почвообразования можно разделить на 5 групп.

1. Быстроразлагающиеся и поглощающиеся микроорганизмами – сахара и белки. Обеспечивают незамедлительное поступление в почвенный раствор соединений азота, фосфора и других биофильных элементов.

2. Разлагающиеся медленно, расщепляющиеся под действием ферментов и являющиеся основными источниками гумусообразования – целлюлоза, лигнин, гемицеллюлоза, пектин.

3. Вещества-ингибиторы, подавляющие микробиологическую деятельность, трудноразлагаемые: дубильные вещества, воски, смолы. Способствуют консервации органического опада, образованию органогенных генетических горизонтов.

4. Ферменты различной биохимической направленности.

5. Фенольные соединения различного структурообразующего и функционального действия.

В связи с высокой динамичностью массы неспецифических органических соединений количество этих веществ в почвах варьирует в широких пределах. Считается, что около 10 % определяемого в лабораториях гумуса составляют органические вещества неспецифической природы, полностью утратившие морфологические структуры исходных организмов. Неспецифические органические вещества почвы представляют интерес как исходный материал для образования другой группы органических веществ, специфичных только для почвенных масс и носящих название гумусовые вещества почвы.

3.2. Гумус почв как комплекс специфических органических веществ

Гумус, или гумусовые вещества, – это особая группа химических соединений, свойственная почвенному покрову Земли, т. е. специфичная только для почвенных образований. Гумус образуется из веществ растительных, животных и микробных остатков во взаимодействии с комплексом компонентов окружающей среды.

Главные продукты гумификации, от которых непосредственно зависит формирование разных свойств почв и типов почвообразования, представлены гуминовыми и фульвокислотами.

К сожалению, несмотря на выдающиеся достижения химии, сейчас нельзя вывести определенную химическую формулу гуминовой кислоты или фульвокислоты, так как это группы химических соединений переменного состава. Однако они состоят из следующих одинаковых структурных элементов, количество которых в молекулах варьирует.

1. Ароматическое ядро у гуминовых кислот или ароматические участки у фульвокислот.

2. Азот- и фосфорсодержащие компоненты. При разложении гумусовых кислот обнаружено большое разнообразие составляющих их аминокислот, в том числе и ароматических. Установлено, что все потенциальные запасы азота сосредоточены в органическом веществе. В нем же содержится и 50 % запасов фосфора.

3. Различные функциональные группы соединений: карбоксильные, фенольные, спиртовые, метоксильные и др. Водород функциональных групп способен к реакциям замещения. Именно благодаря функциональным группам гумусовые кислоты могут обменно поглощать из окружающей среды катионы и образовывать коллоидные комплексы.

4. Углеводородные цепи.

Установлена биохимическая сущность гумификации как специфического почвенного процесса превращения целлюлозы, белков, лигнина и других химических соединений растительных остатков в различные компоненты почвенного гумуса. Гумификацию можно рассматривать как процесс превращения органических остатков, протекающий под влиянием как биохимических, так и чисто химических агентов и ведущий к формированию наиболее стабильной в конкретных экологических условиях системы специфических (собственно гумусовых) и неспецифических органических соединений.

Существуют разные подходы к трактовке и созданию научных теорий происхождения гумуса.

Наиболее распространены схемы гумификации, предложенные М.М. Кононовой и Л.Н. Александровой. М.М. Кононова считает, что специфической реакцией гумификации является конденсация ароматических соединений фенольного типа с аминокислотами и протеинами. Источники структурных единиц – продукты распада лигнинов, танинов, фенольные соединения продуктов метаболизма микроорганизмов, аминокислоты и пептиды частичного распада и синтеза белковых соединений.

Л.Н. Александрова подчеркивает длительность и многообразие отдельных звеньев гумификации. На первой стадии ведущим оказывается процесс кислотообразования в результате биохимического окисления продуктов разложения органических остатков. При этом происходит фракционирование системы образующихся гумусовых кислот по степени растворимости на группы гуминовых кислот и фульвокислот. В почве формируется сложная система свободных гуминовых кислот и их органо-минеральных производных. Одновременно образуется и азотная часть гуминовых кислот. На второй стадии гумификации в гуминовых кислотах постепенно возрастает степень ароматизации вследствие частичного отщепления алифатических цепей, дезаминирования и внутримолекулярных перегруппировок. Эта стадия очень длительная, осложняющаяся постоянным поступлением вновь образующихся гумусовых веществ. Третья стадия трансформации гумусовых веществ – их постепенная минерализация.

Конденсационная теория М.М. Кононовой не исключает участия высокомолекулярных фрагментов в процессе гумификации. Гипотеза Л.Н. Александровой, в свою очередь, не исключает реакций конденсации в процессе гумификации. Можно полагать, что оба эти пути гумификации возможны и реально существуют в природе.

В общем виде взаимосвязь между процессами минерализации и гумификации, между основными источниками гумусовых веществ и самими гумусовыми веществами можно представить как постоянно идущий распад, доходящий до разных степеней, и одновременно постоянно идущий синтез, начинающийся с любого этапа разложения.

Гуминовые кислоты (ГК) идентифицируются своей нерастворимостью в кислотах и легкой растворимостью в растворах щелочей, из которых они осаждаются при подкислении. ГК имеют интенсивный бурый (бурые лесные почвы) или черный (черноземы, дерновые почвы) цвет, который и придает почвам темную окраску даже при невысоком содержании гумуса. В сухом состоянии ГК нерастворимы в воде. Однако свеже-осажденные, только что образованные ГК медленно растворяются в воде. Эта способность играет важную роль в продвижении гумуса в черноземах и в формировании мощного гумусового профиля в почвах под травянистыми биоценозами.

Фульвокислоты (ФК) гумуса отличаются растворимостью в кислотах и щелочах, а также частично в воде. ФК, растворясь в воде, могут давать очень концентрированные кислые растворы. Их цвет – от соломенно-желтого до оранжевого.

ФК в ненасыщенном состоянии отличаются значительной агрессивностью по отношению к силикатной и алюмосиликатной частям почв, разрушая минералы химически. С этим свойством связано их активное участие в подзолообразовательном процессе. При нейтрализации фульвокислот двухвалентными и трехвалентными катионами, что характерно для буроземо-образования, их агрессивность резко падает и подзолистые явления не проявляются.

Гумины – самая устойчивая часть гумусовых веществ, не извлекаемая из почв щелочными растворами даже при нагревании. Для них характерна прочная связь с минеральной частью почвы. Вернее говорить не об органических соединениях, а об особых органо-минеральных комплексах, практически не поддающихся процессам микробиологической минерализации и имеющих длительную сохранность в почвах.

Географические закономерности гумусообразования впервые разработаны И.В. Тюриным. Мощность гумусового горизонта, содержание и запасы гумуса имеют зональный характер распределения. Максимальное гумусонакопление проявляется в типичных черноземах лесостепи. К северу и югу показатели гумусового состояния снижаются.

3.3. Экологическое значение органических веществ почвы

Природно-экологическая значимость органического вещества почв определяется следующими показателями.

1. Минерализация органических веществ – первостепенный источник поступления в почвы доступных растениям элементов-биофилов в концентрациях, близких к экологическим потребностям организмов. При минерализации сложные органические соединения при участии различных групп микроорганизмов превращаются в простые химические вещества – воду, углекислый газ, соли различных анионов и катионов. В процессе минерализации участвует большая часть органических остатков – до 80–90 %. Продукты минерализации попадают в почвенные растворы и в значительной степени становятся объектом питания растений, т. е. вновь включаются в биологический круговорот. Минерализации подвергаются и гумусовые вещества, но значительно медленнее, что обеспечивает регулярность и стабильность минерального азотного и фосфорного питания живых организмов почвы.

2. Гумусовые вещества почв следует рассматривать как консервант солнечной энергии, которая была накоплена благодаря процессам фотосинтеза зелеными растениями в бесчисленном множестве неспецифических органических соединений, а затем трансформирована в вещества почвенного гумуса. Постепенное ее высвобождение осуществляет энергетическое обеспечение многих почвенных процессов, включая плодородие почв. Следовательно, почвенный гумус имеет конкретную калорийную энергетическую значимость.

3. Гумусовые вещества обладают физиологической активностью. Фульвокислоты и гумат натрия, выделенные из разных почв, действуют неодинаково. Стимулирующая роль гуматов широко используется в практике выращивания черенков-саженцев кустарниковых культур. В присутствии гуматов они намного быстрее дают рост корней. Гуминовые удобрения уже давно имеют спрос у огородников и садоводов, обеспечивая коммерческий успех фирмам, их производящим.

4. Гумус оптимизирует физическое состояние почв. При оценке экологической роли гумуса всегда подчеркивается его положительное значение в связи с образованием агрономически ценной структуры, которая в конечном итоге создает для растений благоприятные водно-воздушные свойства. Главную структурообразующую роль выполняют гуматы кальция и железа. Это очень водоустойчивые структурообразователи с высокими клеящими свойствами. Они обеспечивают формирование в почвах зернистой и пористой структуры, устойчивой к разрушающему действию воды.

Гумусовые вещества оптимизируют для растений многие физические характеристики почвы. Чем выше содержание в почвах органических веществ, тем шире диапазон физической спелости, т. е. почвы могут обрабатываться в более широком интервале влажности. Многогумусные почвы легко обрабатываются, менее податливы к уплотнению. Никогда не встречаются слитые почвы с высоким содержанием органического вещества.

Почвенный гумус отличается типичными характеристиками гидрофильных коллоидов. Он увеличивает водоудерживающую способность почв, так как может поглощать значительное количество воды.

5. Гумусовое состояние почв – важнейший показатель количественной оценки плодородия. Это вызвано тем, что гумус выступает как интегральный показатель плодородия, объединяющий в себе ряд свойств почв. С гумусовыми веществами связаны многие условия жизни растений, которые отражаются в свойствах почвенного профиля: мощность и богатство гумусового профиля, пригодность к сельскохозяйственному использованию, реакция среды, физическое состояние почвенной массы, ее биохимическая активность и т. д. Поэтому, оценивая гумус почв, мы оцениваем сразу многие почвенные характеристики.

6. Влияние гумусового содержания на плодородие почв неоднозначно. Не для всех растений соблюдается закономерность: большее содержание гумуса отвечает высокому уровню плодородия. Некоторые культуры безразличны к гумусовому содержанию почвы. Это картофель, гречиха, арбуз. Они прекрасно произрастают как на многогумусных почвах, так и на низкогумусных. А у виноградной лозы и табака на почвах с высоким содержанием органического вещества резко снижается качество урожая. Виноградники на почвах, богатых гумусом, дают продукцию с высокой кислотностью и низкой сахаристостью, а табак неудовлетворительно ароматизирован. Богатые почвы обычно считаются неудовлетворительными для этих растений.

Глава 4

Почвенная влага и газовая фаза почв

4.1. Формы состояния почвенной влаги

Вода в почве имеет разные физические свойства в зависимости от взаимного расположения и взаимодействия молекул воды между собой и с другими фазами почвы (твердой, газовой, жидкой). Части воды, обладающие одинаковыми свойствами, получили название форм почвенной воды.

Твердая вода (лед) является одним из источников жидкой и парообразной воды. Появление воды в форме льда зависит от климатических условий и может иметь сезонный или многолетний характер. Чаще всего многолетняя влага приурочена к вечной мерзлоте.

Химически связанная вода включает конституционную и кристаллизационную влагу.

Конституционная вода входит в состав минералов (Al(ОН)3, Fe(OH)3, глинистых и др.), органических и органоминеральных соединений в виде групп ОН. Кристаллизационная вода содержится в кристаллогидратах различных солей: гипс – CaSO4 · 2H2O, мирабилит – Na2SO4 · 10H2O, битофит – MgCl2 · 6H2O, гидрофилит – CaCl2· 6Н2O и т. д.

Парообразная вода содержится в почвенном воздухе в виде водяного пара. Почвенный воздух практически всегда близок к насыщению парами воды и незначительное понижение температуры приводит к конденсации влаги. Система «парообразная вода – жидкая вода» постоянно находится в движении, пары воды передвигаются в почвах и грунтах от участков с более высокой к участкам с более низкой температурой. Во многих случаях переход парообразной воды в жидкую становится важнейшим источником снабжения растений. Это характерно, например, для заасфальтированных городских улиц и площадей с древесными растениями. В условиях умеренного климата типична следующая закономерность: в теплые периоды года парообразная вода атмосферы мигрирует в холодные слои почв и почвообразующих пород с возможной ее конденсацией, а в зимнее время происходит обратный процесс – миграция пара из глубоких слоев и его конденсация в верхних почвенных горизонтах.

Физически связанная (сорбированная) вода представлена двумя формами: прочно связанная и рыхло связанная влага.

Физически прочно связанная (гигроскопическая) вода адсорбируется из водяных паров почвенного воздуха твердыми частицами почвы, главным образом илистой фракцией. Она прочно удерживается силами электростатического притяжения и для растений недоступна. Содержание этой воды в почвах зависит от механического состава. В глинистых почвах количество гигроскопической воды достигает 5–6%, а в песчаных и супесчаных ее содержание не превышает 1–2% от массы почвы.

Физически рыхлосвязанная (пленочная) вода представляет собой многомолекулярную пленку вокруг почвенных частиц, в углах их стыка и внутри тончайших пор. Эта вода находится как бы в вязкожидкой форме и ограниченно доступна для растений. Осмотическое давление внутриклеточного сока позволяет корневым волоскам всасывать пленочную воду. Но подвижность этой влаги крайне низкая, и поэтому растения расходуют запас влаги быстрее, чем он восстанавливается. При снижении влажности почвы до уровня рыхло связанной воды растения начинают увядать и не в состоянии синтезировать органическое вещество.

Свободная вода наблюдается в двух формах: капиллярная и гравитационная.

Капиллярная вода находится в капиллярах или на стыках (точках соприкосновения) почвенных частиц, удерживается в почве силами менискового сцепления. Это основная форма влаги, используемая растениями. Она может находиться в разобщенном, или неподвижном, состоянии (влага разрыва капилляров) или в капиллярно-подвижном, когда все капилляры заполнены. Капиллярная влага является продуктивной формой влаги в почвах. Она подразделяется на капиллярно-подвешенную и капиллярно-подпертую.

Капиллярно-подвешенная вода заполняет капиллярные поры при увлажнении почв сверху (после дождя или полива). При этом под промоченным слоем всегда имеется сухой, т. е. гидростатическая связь увлажненного горизонта с постоянным или временным горизонтом подпочвенных вод отсутствует. Вода, находящаяся в промоченном слое, как бы «висит», не стекая, в почвенной толще над сухим слоем. Поэтому она и получила название подвешенной.

Капиллярно-подпертая вода образуется в почвах при подъеме воды снизу от горизонта грунтовых вод по капиллярам на некоторую высоту, т. е. это вода, которая содержится в слое почвы непосредственно над водоносным горизонтом и гидравлически с ним связана – подпирается водами этого горизонта. Капиллярно-подпертая вода встречается в почвенно-грунтовой толще любого гранулометрического состава. Слой почвы или грунта, содержащий капиллярно-подпертую воду непосредственно над водоносным горизонтом, называют капиллярной каймой. В почвах тяжелого механического состава она обычно больше (от 2 до 6 м), чем в почвах песчаных (40–60 см). Содержание воды в кайме уменьшается снизу вверх. Изменение влажности в песчаных почвах при этом происходит более резко. Мощность капиллярной каймы при равновесном состоянии воды в ней характеризует водоподъемную способность почвы. Выход капиллярной каймы на поверхность или в активно испаряющие почвенные горизонты в условиях сухого климата приводит к накоплению легкорастворимых солей.

Гравитационная вода – свободная форма воды в почве, передвигающаяся под действием сил тяжести. Занимает крупные поры в почве, принимает участие в формировании уровня грунтовых вод. Гравитационная вода – явление временное. Длительное ее присутствие в почве вызывает процесс заболачивания.

Гравитационную воду делят на просачивающуюся гравитационную и воду водоносных горизонтов (подпертая гравитационная вода).

4.2. Почвенно-гидрологические константы

Перечисленные формы влаги не являются постоянными по количественному содержанию воды и изменяются в зависимости от уровня влажности почвы. В практике для оценки почв и для почвенно-гидрологических расчетов пользуются константными категориями, постоянными для каждой почвы и ее горизонтов.

Почвенно-гидрологическими константами называют граничные значения влажности, при которых количественные изменения в подвижности и свойствах воды переходят в качественные.

Максимальная гигроскопичность (МГ) – максимально возможное содержание в почве гигроскопической воды. Соответствует уровню влажности, когда почва полностью насыщена из атмосферы с относительной влажностью воздуха 94–99 %. Глинистые почвы характеризуются величинами МГ 12–20 %, суглинистые – 6-12 %, легкие почвы – менее 6 % от веса почвы. Вода в состоянии максимальной гигроскопичности недоступна растениям. Это «мертвый запас влаги».

Влажность завядания растений (ВЗ), или коэффициент завядания, – уровень влажности в почве, при котором начинается устойчивое завядание растений.

Влажность разрыва капилляров (ВРК) – капиллярно-подвешенная вода при испарении передвигается в жидкой форме к испаряющей поверхности в пределах всей промоченной толщи по капиллярам, сплошь заполненным водой. Но при определенном снижении влажности, характерном для каждой почвы, восходящее передвижение этой воды прекращается или резко затормаживается. Потеря способности к такому передвижению объясняется тем, что в почве при испарении исчезает сплошность заполнения капилляров водой, т. е. в ней не остается систем пор, сплошь заполненных влагой и пронизывающих промоченную часть почвенной толщи. Эта критическая величина влажности названа влажностью разрыва капиллярной связи. При этом вода неподвижна, но физиологически доступна растениям.

ВРК называют также критической влажностью, так как при влажности ниже ВРК рост растений замедляется и их продуктивность снижается. В почвах и грунтах эта величина варьирует довольно сильно, составляя в среднем около 50–60 % от наименьшей влагоемкости почв. На содержание воды, соответствующей ВРК, помимо гранулометрического состава почв, существенное влияние оказывает их структурное состояние. В бесструктурных почвах запасы воды расходуются на испарение значительно быстрее, чем в почвах с агрономически ценной структурой. Поэтому в них влажность будет быстрее достигать ВРК, т. е. обеспеченность влагой растений будет быстрее снижаться.

Наименьшая, или полевая, влагоемкостъ (НВ) – максимально возможное количество влаги в почве, которое остается в ней после оттока гравитационной воды. При глубоком залегании грунтовых вод НВ – это максимально возможное содержание капиллярно-подвешенной влаги. Полевая влагоемкость изменяется в различных почвах в довольно широких пределах: от 5 до 10 % от массы – у легких почв, до 55 % – у некоторых тяжелых почв. Полевую влагоемкость не следует путать с полевой влажностью, которая представляет количество воды в почве, определяемое в конкретный момент.

Полная влагоемкость (ПВ) – это влажность, при которой все поры почвы заполнены водой, т. е. полная водовместимость почвы.

Анализ гидрологических констант позволяет оценивать количественно запасы продуктивной влаги в почвах. Обычно это вода, находящаяся в пределах двух констант – от ВЗ до НВ.

Влажность почвы, ее влагоемкость и константы выражают в процентах от массы почвы или в процентах от объема, что удобно сопоставлять с объемом почвенных пор, учитывая, что плотность воды равна единице. Выражается влагоемкость также в кубических метрах на гектар. В данном случае ее удобно сопоставлять с нормами орошения. Кроме того, количество воды в почвах часто рассчитывают в миллиметрах, что дает возможность сравнивать количество почвенной влаги с атмосферными осадками и объемом воды на определенной площади (1 мм равен 10 м3 воды на 1 га).

Важной характеристикой водных свойств почвы является ее водопроницаемость. Водопроницаемость – способность почвы воспринимать и пропускать через себя воду. Различают две стадии водопроницаемости – впитывание и фильтрацию. Если поры почвы лишь частично заполнены водой, то при поступлений воды наблюдается ее впитывание в толщу почво-грунта; когда почвенные поры полностью насыщены водой, происходит ее фильтрация, т. е. движение в условиях сплошного потока жидкости.

В природе чаще наблюдается движение влаги при неполном насыщении пор водой. Фильтрация может проявиться лишь при выпадении большого количества осадков, бурном снеготаянии или при орошении большими объемами.

Водопроницаемость зависит от пористости почв, их гранулометрического состава, структурного состояния. Пески быстро фильтруют воду, а глины – медленно. Структурный глинистый чернозем хорошо водопроницаем, а глыбистый бесструктурный солонец практически является водоупором.

4.3. Экологическое значение почвенной воды

Растения чувствительны как к недостатку влаги в почвах, так и к ее избытку. При недостатке влаги падает тургурное давление клеток, теряется их эластичность, резко снижается динамика всех биохимических процессов, сокращается поглощение углекислоты через устьица, в биомассе накапливаются вещества-ингибиторы – все это приводит к падению биологической продуктивности или к полной гибели растений.

При избытке влаги у растений нарушается кислородный обмен, а в почвах накапливаются ядовитые закисные соединения. Для большинства сельскохозяйственных растений содержание воздуха в почве, обеспечивающее хорошие условия для роста и развития, а также надлежащий газообмен между почвой и атмосферой, равно 20–40 % от порозности. Это достигается уровнем влажности почвы, равной 60–80 % от наименьшей (полевой) влагоемкости.

Растения по-разному приспосабливаются к недостатку или избытку влаги в почвах. При недостатке воды засухоустойчивые растения имеют повышенную сосущую силу корней, а также развивают мощную глубокопроникающую корневую систему. Уменьшение потери воды происходит благодаря закрытию устьиц, кутикулярной защите и уменьшению транспири-рующей поверхности. Многие растения обладают способностью запасать воду.

Растения, приспособленные к избытку влаги, могут образовывать внутренние воздухоносные ткани в корнях (кукуруза, рис). Адаптация к плохой аэрации заключается в развитии неглубокой корневой системы в верхнем слое почвы, который лучше снабжается воздухом.

Важнейшей экологической характеристикой почвы является влажность устойчивого завядания, или влажность завяДания. Она характеризуется коэффициентом завядания. Его величина зависит от количества в почвах коллоидов и глинистых минералов. Почвы, богатые гумусом и тяжелые по механическому составу, отличаются более высокими значениями влажности, при которых растения начинают завядать, чем почвы песчаные и супесчаные.

Влажность завядания зависит от плотности почвы. При уплотнении почвенного профиля резко сокращается содержание водо- и воздухопроводящих пор, в которые могли бы проникать корни растений. В то же время увеличивается количество мелких неактивных пор, содержащих непродуктивную влагу, удерживаемую почвой с давлением более 16 атмосфер. В связи с этим влажность завядания неодинакова на рыхлых и плотных почвах. При плотности 1,50-1,55 г/см3 ВЗ на 28–30 % больше, по сравнению с плотностью 1,11-1,44 г/см3.

Влажность завядания служит нижней границей продуктивной влаги. Ее определяют непосредственно, фиксируя влажность почвы, при которой растения начинают завядать. Используются также величины максимальной гигроскопичности:


ВЗ = К · МГ,


где МГ – максимальная гигроскопичность; К – коэффициент завядания, зависящий от растения и типа почвы. В среднем К= 1,50 для тяжелых почв и 1,25 – для легких.

4.4. Формы и состав почвенного воздуха

Газовая фаза почв, или почвенный воздух, – это смесь газообразных веществ, занимающая поровые пространства почвы и находящаяся в свободном, водорастворенном или адсорбированном состоянии. Почвенный воздух формируется:

• путем заполнения поровых пространств воздухом из приземного слоя атмосферы;

• в результате диффузионных процессов, как следствие различия парциальных давлений отдельных газов почвенной газовой фазы и атмосферы;

• как продукт почвенных биохимических и химических процессов, включая дыхание почвенных организмов.

Газы почвенного воздуха находятся в нескольких физических состояниях: собственно почвенный воздух (свободный и защемленный), адсорбированные и растворенные газы.

Свободный почвенный воздух – это смесь газов и летучих органических соединений, свободно перемещающихся по системам почвенных поровых пространств, сообщающихся с воздухом атмосферы. Его объем в воздушно-сухой почве соответствует ее порозности. При увлажнении почвы количество воздуха уменьшается пропорционально насыщению влагой. При полной влагоемкости почвы газовая фаза присутствует только в растворенном состоянии.

Защемленный почвенный воздух – воздух, находящийся в порах, со всех сторон изолированных водными пробками. Чем более тонкодисперсна почвенная масса и компактней ее упаковка, тем большее количество защемленного воздуха она может иметь. В суглинистых почвах содержание защемленного воздуха достигает более 12 % от общего объема почвы или более четвертой части всего ее порового пространства. Защемленный воздух неподвижен, практически не участвует в газообмене между почвой и атмосферой, существенно препятствует фильтрации воды в почве, может вызывать разрушение почвенной структуры при колебаниях температуры, атмосферного давления, влажности.

Адсорбированный почвенный воздух – газы и летучие органические соединения, адсорбированные почвенными частицами на их поверхности. Чем более дисперсна почва, тем больше содержит она адсорбированных газов при данной температуре. Количество сорбированного воздуха также зависит от минералогического состава почв, содержания органического вещества, влажности. Песок поглощает в 10 раз меньше воздуха, чем тяжелый суглинок, мелкодисперсный кварц сорбирует в 100 раз меньше CO2, чем гумус.

Растворенный воздух – газы, растворенные в почвенной воде. Растворенный воздух ограниченно участвует в аэрации почвы, так как диффузия газов в водной среде затруднена. Однако растворенные газы играют большую роль в обеспечении физиологических потребностей растений, микроорганизмов, почвенной фауны, а также в физико-химических и химических процессах в почвах.

Из всех компонентов почвы воздушная фаза – наиболее динамичная по объему и соотношению формирующих ее газов. Главные по массе – это N2, O2 и CO2, а также вода. Примерное их содержание в сравнении с атмосферой (% от объема) представлено ниже.




Почвенный воздух имеет почти такое же количество азота, как и атмосфера Земли, кислорода обычно в два раза меньше, а двуокиси углерода – в десятки и сотни раз больше. Установлено, что атмосфера Земли на 90 % обеспечивается углекислым газом, т. е. основным источником углеродного питания растений, за счет его диффузии из почвенного воздуха. Вода как неизменный компонент в почвенном воздухе всегда находится на грани конденсации, и ее переход в капельно-жидкое состояние возможен при относительно небольших снижениях температур. Это часто служит источником свободной воды, например в песках пустыни, в глубоких горизонтах черноземов при градиенте температур воздуха почвы в верхних слоях 30 °C, в нижних – 10 °C.

В незначительных количествах в почвенном воздухе присутствуют такие компоненты, как N2O, NO2, СО, различные углеводороды (этилен, ацетилен, метан), сероводород, аммиак, эфиры и др. Происхождение микрогазов связывается с жизнедеятельностью организмов, особенно в анаэробных условиях. Болота часто выделяют самовозгорающиеся и психотропные газы. Обязательно присутствие инертных газов, в том числе и радиоактивных. Источником последних является распад радионуклидов минеральной части почвы. Естественная радиоактивность почвенного воздуха намного выше атмосферного.

4.5. Свойства воздушной фазы

Главные свойства воздушной фазы почв: воздухоемкость, воздухопроницаемость и высокая динамичность воздухообмена и химического состава.

Воздухоемкость – это та часть объема почвы, которая занята воздухом при данной влажности. Выделяют полную, или потенциальную, воздухоемкость, которая свойственна сухим почвам, соответствует пористости (порозности) почв и напрямую зависит от их плотности. Актуальная воздухоемкость – это содержание воздуха в почве в каждый конкретный момент при том или ином уровне увлажнения.

Вода и воздух в почвах антагонисты: чем больше воды в почве, тем меньше воздуха. Оптимальная экологическая гармония для большинства растений – вода и воздух должны содержаться в равных по объему количествах, что соответствует влажности почвы 60 % от НВ.

Воздухопроницаемость – способность почвы пропускать через себя воздух. Воздухопроницаемость – непременное условие газообмена между почвой и атмосферным воздухом. Чем она выше, тем лучше газообмен, тем больше в почвенном воздухе содержится кислорода и меньше углекислого газа. Воздух в почве передвигается по порам, не заполненным водой и не изолированным друг от друга. Чем крупнее поры аэрации, тем лучше воздухопроницаемость. В структурных почвах, где наряду с капиллярными порами имеется достаточное количество крупных некапиллярных пор, создаются наиболее благоприятные условия для воздухопроницаемости.

Динамика почвенного воздуха зависит от многих факторов. Постоянно протекающий процесс обмена почвенного воздуха с атмосферным называется аэрацией почвы.

При постоянной влажности почвы аэрация зависит от интенсивности диффузии, изменения температуры и барометрического давления.

Диффузия – перемещение газов в соответствии с их парциальным давлением. Поскольку в почвенном воздухе кислорода меньше, а углекислого газа больше, чем в атмосфере, то под влиянием диффузии создаются условия для непрерывного поступления кислорода в почву и выделения CO2 в атмосферу.

Изменение температуры и барометрического давления также обусловливает газообмен, потому что происходит сжатие или расширение почвенного воздуха.

При аэрации почвы постоянна тенденция уравнивания вещественного состава воздуха почвы и атмосферы. Но равновесие всегда нарушается в сторону накопления продуктов жизнедеятельности организмов и тем в большей степени, чем выше биологическая активность. В связи с этим различают суточную и сезонную динамику почвенного воздуха.

Суточная динамика определяется суточным ходом атмосферного давления, температур, освещенности, изменениями скорости фотосинтеза. Эти параметры контролируют интенсивность диффузии, дыхания корней, микробиологической активности.

Суточные колебания состава почвенного воздуха затрагивают лишь верхнюю полуметровую толщу почвы. Амплитуда этих изменений для кислорода и диоксида углерода невелика. Наиболее существенно в течение суток изменяется интенсивность почвенного дыхания.

Сезонная (годовая) динамика определяется годовым ходом атмосферного давления, температур и осадков и тесно связанными с ними вегетационными ритмами развития растений и микробиологической деятельности. Годовой воздушный режим включает в себя динамику воздухозапасов, воздухопроницаемости, состава почвенного воздуха, растворения и сорбции газов, почвенного дыхания.

Сезонная динамика состава почвенного воздуха отражает биологические ритмы. Концентрация диоксида углерода имеет в верхней толще четко выраженный максимум в период наивысшей биологической активности. В это время происходит насыщение почвенной толщи углекислотой. По мере затухания биологической деятельности происходит отток CO2 за пределы почвенного профиля. Динамика концентрации кислорода имеет обратную зависимость.

4.6. Экологическая значимость почвенного воздуха

Воздушная фаза – важная и наиболее мобильная составная часть почв, изменчивость которой отражает биологические и биохимические ритмы почвенных процессов. Количество и состав почвенного воздуха оказывают существенное влияние на развитие и функционирование растений и микроорганизмов, растворимость и миграцию химических соединений в почвенном профиле, интенсивность и направленность почвенных процессов. Кроме того, почва является поглотителем, сорбирующим токсичные промышленные выбросы газов и очищающим атмосферу от техногенного загрязнения.

Воздействие кислорода на жизнь растений проявляется в актах дыхания. При недостатке O2 дыхание ослабляется, что уменьшает метаболическую активность и в конечном итоге снижает урожай. Повышение аэрации почвы способствует лучшему развитию корней, более интенсивному поглощению питательных веществ растениями, усилению их роста и увеличению урожая при достаточном количестве почвенной воды. При отсутствии свободного кислорода в почве развитие растений прекращается. Оптимальные условия для них создаются при содержании кислорода в почвенном воздухе около 20 %.

При недостатке O2 в почве возникает низкий окислительно-восстановительный потенциал, развиваются анаэробные процессы с образованием токсичных для растений соединений, уменьшается содержание доступных питательных веществ, ухудшаются физические свойства, что в совокупности снижает плодородие почвы.

Большая часть углекислого газа почвенного воздуха образуется в процессах работы макро- и микроорганизмов, причем около 30 % – за счет дыхания корней высших растений и около 65 % – при разложении органических остатков микроорганизмами. Избыток углекислоты угнетает развитие корней и прорастание семян. Однако современная концентрация CO2 в атмосферном воздухе не вполне достаточна для потенциальной возможности биологической продуктивности зеленого листа. Приземное повышение концентрации углекислого газа может увеличивать урожай зеленой массы, что практикуется в тепличных хозяйствах. При этом следует помнить, что CO2 в высоких концентрациях – быстродействующий яд, и при почвенных исследованиях разрезы, особенно в болотных почвах, должны быть хорошо проветриваемые, так как CO2, являясь тяжелым газом воздуха, склонен к накоплению в понижениях.

Существует высокоинформативный показатель биологической активности почв, так называемое дыхание почв, которое характеризуется скоростью выделения CO2 за единицу времени с единицы поверхности. Интенсивность «дыхания почв» колеблется от 0,01 до 1,5 г/ м2/ч и зависит не только от почвенных и погодных условий, но и от физиологических особенностей растительных и микробиологических ассоциаций, фенофазы, густоты растительного покрова. «Дыхание почв» характеризует биологическую активность экосистемы в каждый конкретный период времени. Сравнительный уровень плодородия почв, фиксируемый при определении «дыхания» по выделению CO2, производят в оптимально насыщенной влагой почвенной массе (60 % от наименьшей влагоемкости). Различия в уровнях могут изменяться в широких пределах при анализе генетически отдаленных и антропогенно измененных почв.

Глава 5

Биологическая фаза почв

5.1. Фауна почв

Важную роль в круговороте веществ в природе, почвообразовании, плодородии почв играют животные. В глобальном масштабе видовое разнообразие фауны почвенных беспозвоночных составляет примерно треть от общего числа известных видов. В одном местообитании встречается до нескольких сотен видов беспозвоночных, относящихся к одной размерной группировке. Например, количество видов раковинных амеб в лесной почве составляет 60–70, гамазовых клещей – 70–75, криптостигматных клещей – 25–53, насекомых, относящихся к группе мезофауны, – 20-150. Показатели локального разнообразия животного населения в почве выше, чем в наземном ярусе: среднее видовое богатство почвенной фауны в расчете на единицу площади (альфа-разнообразие) превышает таковое в наземной среде. Если принять во внимание, что в почвенном профиле животное население сосредоточено лишь в верхнем горизонте, то индекс разнообразия видов на единицу объема оказывается еще выше, чем, например, в растительном ярусе.

Величина биомассы животных в почве варьирует в пределах от сотен миллиграммов до сотен граммов на 1 м2. Мелкие животные вносят ощутимый вклад в общую зоомассу почвы. Даже филогенетически очень далекие организмы (микробы, беспозвоночные, позвоночные), принадлежащие к близким трофическим группам, имеют величины биомассы одного порядка. Существует обратная зависимость интенсивности обмена веществ от размеров (массы) организма. Чем мельче животное, тем больше оно расходует кислорода на единицу массы своего тела.

Зоологами установлена зависимость между уровнем численности и размерами животных. Размеры почвообитающих беспозвоночных различаются на 5 порядков (от 5 микрон до 25 см), а уровни их численности варьируют от десятков до сотен тысяч особей на 1 м2, увеличиваясь по мере снижения размеров животных (табл. 5.1).

В разных типах почв и растительных ассоциаций показатели обилия почвенных животных кардинально различаются. Наиболее разнообразны комплексы беспозвоночных в лесных почвах умеренного и тропического пояса и луговых степей, т. е. в областях с оптимальным для животных сочетанием тепла и влаги. При этом соотношения обилия отдельных размерных групп в почвах разных климатических поясов широко варьируют. Например, в южной тайге максимальные значения суммарной плотности популяции микрофауны достигают 1150 тыс. экз./м2, в лесостепных дубравах Центральной России – 70 тыс. экз./м2, в тропических лесах всего 16 тыс. экз./м2; при этом обилие мезофауны в тайге всего 1,8 тыс. экз./м2, в дубравах – 2,0 тыс. экз./м2, в тропических лесах оно достигает 7,5 тыс. экз./м2. Соотношение фитомасса – зоомасса во всех травянистых сообществах находится в пределах 1000:1-2000:1, примерно такое же соотношение между приростом растений и продукцией животных.


Таблица 5.1.

Уровни численности различных размерных групп многоклеточных почвенных беспозвоночных, экз./м2 (Б.Р. Стриганова, 2000)


В разложении мертвой органики основную роль играют беспозвоночные животные. В огромном количестве в почвах обитают простейшие (корненожки, жгутиконосцы и инфузории). Их численность достигает несколько миллионов и даже миллиардов особей на 1 м2, а биомасса – 2-20 г/м2, или несколько центнеров на гектар. Их основная пища – бактерии, однако сейчас доказано, что они съедают лишь малую часть последних. Польза почвенных простейших заключается в выделении ими биологически активных веществ, стимулирующих рост тех же микроорганизмов, корней растений, повышающих всхожесть семян, подавляющих активность вредных для растений грибов.

Множество микроскопических или просто очень мелких животных (обычно до 1 мм), относящихся к нематодам, энхитреидам, коловраткам, тихоходкам и некоторым другим группам, постоянно обитают в пленках воды вокруг почвенных частиц. На 1 м2 в естественных биотопах встречается от нескольких сот тысяч до десятков миллионов особей нематод, от 10 000 до 300 000 – энхитреид, до 200 000 – коловраток. Разнообразие и функциональная роль нематод очень большая. Помимо прямого участия в процессах разложения органических остатков они имеют важное значение в регуляции группового состава и активности микрофлоры. Черви принимают участие в механическом разрушении растительных тканей: вбуравливаясь в отмершие ткани, они с помощью ферментов разрушают клеточные стенки, открывая путь для проникновения в растения более крупных беспозвоночных – сапрофагов. Тела нематод после отмирания представляют собой легкоусвояемый, богатый белком субстрат, который быстро используется некрофагами и микроорганизмами, высвобождающими азот в доступной для растений форме.

В естественных почвенных скважинах живут многие группы микрофауны (размеры от 0,1 до 2–3 мм), из которых надо особо выделить панцирных клещей, или орибатид (паукообразные), и ногохвосток (низшие насекомые). Они являются наиболее активными разрушителями растительных остатков среди организмов почвенной микрофауны. Плотность орибатид и ногохвосток достигает десятков – сотен тысяч, иногда миллионов особей на 1 м2 почвы. Неудивительно, что роль этих организмов в жизни почвы трудно переоценить.

Исключительная роль в почвообразовательных процессах дождевых червей была показана еще Ч. Дарвином. Будучи влаголюбивыми организмами, они многочисленны в зоне широколиственных лесов, а в степной зоне – в поймах рек, на орошаемых землях, участках, занятых древесно-кустарниковой растительностью. В наиболее благоприятных местах (чаще это широколиственные леса) численность червей достигает 500–800, а биомасса – 290 г/м2. В процессе пищеварения в кишечнике червей происходит разложение клетчатки и частичная минерализация растительных тканей опада и другой органики, которой они питаются. В широколиственных лесах черви ежегодно возвращают в почву азота около 100 кг/га. Они стимулируют развитие микроорганизмов. Скорость разложения дубовой подстилки в отсутствии земляных червей замедляется в 3-10 раз в зависимости от времени года. Сама почва обогащается ферментами, что активизирует ряд важных элементов питания растений. Кроме того, дождевые черви перемешивают слои почвы, а их многочисленные ходы способствуют проникновению в почву и равномерному распределению в ней воды и воздуха, что особенно важно на тяжелых почвах. По ходам червей в более глубокие слои проникают корни растений. Доказано, что во многих районах урожайность сельскохозяйственных культур зависит от численности дождевых червей в почве.

Из других крупных беспозвоночных важную роль в почвообразовательных процессах играют диплоподы (кивсяки). Они многочисленны как на открытых степных равнинах, так и в лесной зоне. Их биомасса достигает 100–200 кг/га. Питаются кивсяки исключительно мертвыми органическими остатками, вовлекая в почву листовой опад и способствуя его гумификации. Экскременты этой группы беспозвоночных становятся мелкими зернистыми структурными элементами почвы.

Наземные брюхоногие моллюски в некоторых местообитаниях также играют заметную роль в разложении опада листьев, валежника деревьев и различных травянистых растений. В буковых лесах они съедают до 40 % годового поступления подстилки. Видовой состав моллюсков разнообразен, например в пределах Лагонакского нагорья Западного Кавказа обнаружено 114 видов и подвидов наземных моллюсков, относящихся к 68 родам и 27 семействам. Некоторые виды в ряде мест рассматриваются как основные потребители органики в лесах и горных лугах, где они достигают высокой численности. В пронизанных лишайниками толстых дернинах альпийских лугов моллюски концентрируются до 120 экз. на 25 см2.

В гумусовом слое почвы, а также под корой пней и колод концентрируются наземные подстилочные мокрицы. Они употребляют в пищу в основном листовой опад и погибшую древесину.

Жизненные процессы 98 % видов класса насекомых в течение хотя бы короткого периода связаны с почвой. Как взрослые насекомые, так и личинки являются постоянными компонентами во всех типах почв, нередко достигая здесь высоких показателей численности и биомассы. Преобладают среди этих насекомых сапрофаги. Из мезофауны мертвыми органическими остатками питаются личинки многих хрущей, щелкунов, чернотелок, долгоносиков и т. д. Важную роль в этом процессе

(особенно на участках с древесной растительностью) могут играть личинки двукрылых, в первую очередь представители семейств долгоножек, толстоножек, ликориад и некоторых других. Они являются активными гумификаторами. В лесной, лесостепной и степной зонах эти насекомые интенсивно разрушают листовой опад. Поэтому личинки двукрылых играют важную роль в разложении и гумификации подстилки в лесах и лесопосадках, где дуб является наиболее распространенной породой. Сапрофаги усваивают 30–40 % от потребляемых отмерших растительных тканей. В их кишечнике происходит механическое и химическое разрушение органического вещества, клеточной структуры растительного материала и частичная минерализация органического вещества. Сапрофаги ускоряют разложение растительных остатков не только как потребители опада, но и как стимуляторы деятельности микроорганизмов. При участии почвенных животных за летне-осенний период дубового опада разлагается в 2,5–4 раза, а мертвой травы на полях – в 6–9 раз больше, чем без участия животных (насекомых, дождевых червей, панцирных клещей и др.). В дубравах при обилии сапрофагов за год разлагается до 13 т/га только дубовой и до 15 т/га всей подстилки. В почве «тонкие» химические процессы зависят в основном от микроорганизмов, но скорость разложения растительных остатков, величина накопления деятельного гумуса и масштабы круговорота вещества, энергии в системе растения – почвы определяется главным образом деятельностью почвенных беспозвоночных.

Многие почвенные животные являются эффективными индикаторами почвенных свойств и плодородия, на чем основано использование животных для зоологической индикации почв. Под влиянием антропогенных факторов, в частности распашки земель, использования пестицидов, нефтяного, промышленного и других форм загрязнения окружающей среды, видовое разнообразие и численность почвенной фауны снижается. На сельскохозяйственных угодьях количество дождевых червей, мокриц, кивсяков и многих других сапрофагов в несколько раз меньше, чем в естественных биотопах.

5.2. Микрофлора

Микроорганизмы обнаруживаются в окружающей природной среде практически повсеместно. Однако из всех известных сред обитания наиболее богаты как количественно, так и качественно почвы, в 1 г которых может находиться до 10 млрд микробов и более.

Несмотря на то, что средний вес бактериальной клетки составляет всего 7–9 10-14 г, их живая биомасса в почве на площади 1 га составляет 2–5 т.

Микробная биомасса в разных почвах колеблется от единиц до нескольких десятков тонн на 1 га, причем на долю грибов приходится от 88 до 99 % биомассы, а доля прокариот (бактерии, актиномицеты) составляет 1-12 %. Доля живого мицелия – от 50 % в нижних горизонтах до 85 % в подстилке. Жизнеспособность спор составляет 70-100 %.

Основными представителями почвенной микрофлоры являются бактерии, актиномицеты, микроскопические грибы и водоросли.

Бактерии – мельчайшие организмы, обладающие клеточным строением. Диаметр бактериальной клетки в среднем составляет 1 мкм, варьируя в пределах от 0,1 до 10 мкм. Обнаруживаются во всех средах обитания вплоть до самых экстремальных (соленые и термальные источники и т. д.).

Бактерии вместе с сине-зелеными водорослями относятся к прокариотам (доядерным) – самой древней форме жизни на Земле. Клетки прокариот не имеют обособленного ядра. Генетический материал (ДНК) прокариот находится прямо в цитоплазме и не окружен ядерной мембраной.

Максимальной численности бактерии достигают в органических средах и почве. В 1 мл парного молока содержится свыше 3 млрд бактерий, в 1 г чернозема может находиться свыше 10 млрд бактерий.

Ориентировочная величина видового разнообразия бактерий крайне неопределенна и составляет 10 000-1 000 000 видов. Это следует из очевидных недостатков традиционного подхода, который оценивает разнообразие многих свободно-живущих форм бактерий лишь на групповом уровне: аммонификаторы, целлюлозолитические и т. д.

Большинство бактерий относится к классу истинных бактерий (Eubacteriaea). Это, как правило, безъядерные одноклеточные организмы. Размножаются простым делением. Некоторые обладают подвижностью. Клетка истинных бактерий имеет неэластичную оболочку, а сами бактерии – различную форму: круглую (кокки), палочковидную (бациллы), изогнутую. К палочковидным бактериям относятся бактерии рода Bacillus – подвижные и неподвижные бактерии, обладающие способностью образовывать споры внутри клеток при неблагоприятных условиях среды. Из неспороносных палочковидных бактерий в почве чаще всего встречаются представители родов Pseudomonas и Bacterium. К изогнутым палочковидным бактериям относятся вибрионы (р. Vibrio, р. Spirillum, р. Spirochaetta).

Бактерии способны очень быстро размножаться при поступлении свежего органического вещества. Неспороносные формы размножаются быстрее, чем бациллярные. Поэтому бациллы встречаются на более поздних этапах сукцессии. К тому же они обладают более мощным ферментативным аппаратом и могут питаться веществами, недоступными неспороносным бактериям. Большинство почвенных бактерий относится к сапрофитам.

Актиномицеты – особая группа бактерий, имеющих тенденцию к образованию ветвящихся гиф, которые у определенных родов развиваются в мицелий. Диаметр гиф варьируется в пределах 0,5–2,0 мкм, обычно 1,0 мкм. Мицелиальный план организации, присущий значительной части представителей порядка, определяет дифференциацию организмов, сложность жизненных циклов, биохимические и физиологические проявления, отличные от истинных бактерий. Экологическая стратегия актиномицетов подобна более сложно организованным мицелиальным организмам – эукариотам грибам. Тесно связана с актиномицетами группа коринеподобных бактерий.

Актиномицеты широко распространены в природе. В их группу включено свыше 60 родов. Большинство актиномицетов – грамположительные аэробные бактерии. Споры актиномицетов менее термоустойчивы, чем бактериальные. Характерный признак многих актиномицетов – яркая окраска.

В почвах среди актиномицетов доминируют актиномицеты рода Streptomyces. Кроме них из почвы выделены представители родов Nocardiodes, Actynomadura, Streptosporangium, Micromonospora, Saccaropolyspora, Saccaromonospora, Glicomyces, Kibdelosporangium.

В основном актиномицеты относятся к сапротрофам, растут медленно и разлагают многие труднодоступные для остальных вещества. Азот усваивают как из органических, так и из минеральных соединений. В основном актиномицеты – аэробы, но могут развиваться при небольшом количестве кислорода, предпочитают нейтральную реакцию среды. Более 160 видов растений имеют на корнях актиноризу.

Грибы, являясь эукариотными организмами, обладают рядом своеобразных черт, отличающих их от растений и животных и дающих основание выделять их в самостоятельное царство Mycota (от греч. mykes – гриб). Почвенные грибы представляют самую крупную экологическую группу организмов, участвующих в минерализации органических остатков растений и животных и в образовании гумуса.

Истинные грибы (Eumycota) насчитывают более 100 тыс. видов и делятся на 4 основных класса: зигоспоровые, аскоспоровые, базидиоспоровые и несовершенные.

Основная вегетативная структура грибов – гифа. Их совокупность образует мицелий, или грибницу. Диаметр гиф вегетативного мицелия колеблется от 5 до 50 мкм и более. Нити часто хорошо видны невооруженным глазом. Гифы имеют нитевидное строение и бывают без перегородок или с поперечными перегородками-септами с простыми или сложными отверстиями-порами. Грибы с несептированными гифами называют низшими, с септированными – высшими. Размножаются грибы бесполым (конидиями, спорами) и половым путем (образование различных половых структур – зигоспор, сумок или базидий), что является одним из основных критериев их систематики и деления на виды.

Сапротрофные грибы – главные редуценты в экосистемах суши, самые древние из них известны с позднего силура. Грибы являются основными деструкторами таких стойких соединений, как лигнин, хитин, дубильные вещества, целлюлоза, гумус, делая возможным дальнейшее их использование другими организмами. П.А. Костычев (1885) установил, что только грибы способны образовать продукты разложения растительных остатков, окрашенные в темный цвет. Темная окраска обусловлена накоплением меланинподобных (черных) пигментов, которые входят в состав гумуса. Меланины грибов близки к гуминовым кислотам по элементному составу, содержанию углеводных компонентов и кислотно-основным свойствам. Грибы активно участвуют в превращениях соединений азота и способствуют улучшению структуры почвы, агрегируя почвенные частицы. В процессе жизнедеятельности грибы выделяют различные физиологически активные вещества – ферменты, органические кислоты, витамины, антибиотики, токсины, влияющие на развитие других микроорганизмов и высших растений.

Распространение грибов в почве и их высокая активность объясняются их большей, по сравнению с другими микроорганизмами, устойчивостью к изменяющимся условиям окружающей среды. Так, например, имея неодинаковый оптимум pH для развития, грибы хорошо переносят любые условия кислотности и поэтому встречаются и в кислых, и в щелочных почвах. Многие виды грибов развиваются в почвах, имеющих pH ниже 4, при котором жизнедеятельность большинства бактерий и актиномицетов невозможна. Многие грибы отличаются большой устойчивостью к высокой концентрации солей и условиям затрудненного водоснабжения. Грибы очень требовательны к условиям аэрации, поэтому богаче представлены в верхних горизонтах почвы, хорошо развиваются как при кислой, так и при нейтральной реакции среды.

В почвах встречаются грибы с разным типом стратегии. Есть грибы-сахаролитики, использующие легкодоступные сахара, с большими скоростями роста при высоких концентрациях субстрата. Эти виды грибов-копиотрофов относятся к родам Mucor, Rhizopus, Absidia. Есть виды грибов-олиготрофов с высокой экономичностью обмена из так называемой микрофлоры рассеяния – Mortierella ramanniana, Mucor htemalis, Aposphaeria pulviscula. Однако большая часть почвенных грибов отличается полифункциональностью.

В зональных почвах из микромицетов распространены представители родов Penicillium, Aspergillium, Fuzarium, Mucor, Trichoderma.

В лесных почвах определяющую роль в минерализации таких стойких и широко распространенных полимеров, как целлюлоза и особенно лигнин, играют грибы-макромицеты – высшие базидиальные грибы. Несовершенные грибы способны участвовать в разложении лигнина лишь на отдельных стадиях. Кроме того, именно эти грибы образуют симбиоз с корнями сосудистых растений, большинство (9/10) из которых микосимбиотрофно. Микоризные грибы обеспечивают растения элементами минерального питания, в первую очередь фосфором, улучшают снабжение водой и повышают устойчивость корней к патогенам.

Почвенные водоросли – также специфичный и неотъемлемый компонент почв. Они являются пионерами при заселении горных пород, различных обнажений, отвалов горных пород и т. п., где образуют самостоятельные сообщества водорослей, или альгоценозы. Встречаются они как в арктических и антарктических полярных пустынях, нивальном поясе гор, так и в тропических сухих пустынях. Вместе с тем входят в состав любого фитоценоза, образуя его структурную часть – альгосинузии, которые формируются под влиянием наземной растительности и почвенных условий и в разных фитоценозах различаются по видовому составу, численности и экологическим особенностям входящих в их состав водорослей. Зональности почв и растительности соответствует зональность водорослевых группировок. К главным факторам, контролирующим особенности альгосинузии, относятся: степень сомкнутости растительного покрова, наличие и качество опада на поверхности почвы, водный и солевой режимы почвы.

Биомасса водорослей колеблется от нескольких килограммов до нескольких центнеров, достигая в отдельных случаях, особенно при преобладании Nostoc commune, 2 т/га сырой массы. Почвенные водоросли – единственная группа продуцентов наземных экосистем, у которой продукция в несколько раз (часто во много раз) превышает биомассу.

Для большинства бактерий географические закономерности распространения не установлены. Географические различия структурного и функционального разнообразия бактериальных сообществ разных типов почв менее значимы, чем профильные, связанные с субстратом. Считается, что большинство бактерий – космополиты. Почва содержит огромное разнообразие бактерий, но в различном соотношении. Поэтому их выявление связано с методическими трудностями. Однако известно, что в ряде почв определенные микроорганизмы не обнаруживаются. Академик Е.Н. Мишустин установил, что почвы разных зон различаются не по общему количеству микроорганизмов, а по содержанию спорообразующих бактерий. Среди них имеются виды – индикаторы типов почв и их плодородия.

Грибы, несмотря на их возможность широкого распространения с воздушными потоками, обладают достаточно выраженным географическим распределением.

Микробиологическая характеристика почв – наиболее сложный раздел почвенной диагностики, связанный с большими методологическими и методическими проблемами. Однако почвенные микроорганизмы быстрее всех реагируют на внешние изменения среды и поэтому могут использоваться для ранней диагностики антропогенного воздействия, особенно загрязнения. В этой связи применение почвенных микроорганизмов в биодиагностике и биомониторинге имеет большие перспективы.

5.3. Ферменты в почвах

Из многочисленных показателей биологической активности почвы большое значение имеют почвенные ферменты. Их разнообразие и богатство делают возможным осуществление последовательных биохимических превращений поступающих в почву органических остатков.

В основу единой классификации ферментов положена специфичность к типу реакции, и в настоящее время ферменты подразделяют на 6 классов. В почвах наиболее изучены оксидоредуктазы (катализируют процессы биологического окисления) и гидролазы (катализируют расщепление с присоединением воды). Из оксидоредуктаз в почве наиболее распространены каталаза, дегидрогеназа, фенолоксидаза и др. Они участвуют в окислительно-восстановительных процессах синтеза гумусовых компонентов. Из гидролаз в почвах наиболее широко распространены инвертаза, уреаза, протеаза, фосфатаза. Эти ферменты участвуют в реакциях гидролитического распада высокомолекулярных органических соединений и тем самым играют важную роль в обогащении почвы подвижными и доступными растениям и микроорганизмам питательными веществами.

Исследованием ферментативной активности почв занималось большое количество ученых. В результате исследований доказано, что ферментативная активность – это элементарная почвенная характеристика. Ферментативная активность почвы складывается в результате совокупности процессов поступления, иммобилизации и действия ферментов в почве. Источниками почвенных ферментов служит все живое вещество почв: растения, микроорганизмы, животные, грибы, водоросли и т. д. Накапливаясь в почве, ферменты становятся неотъемлемым реактивным компонентом экосистемы. Почва является самой богатой системой по ферментному разнообразию и ферментативному пулу. Это позволяет осуществляться последовательным биохимическим превращениям различных поступающих органических остатков.

Значительную роль почвенные ферменты играют в процессах гумусообразования. Превращение растительных и животных остатков в гумусовые вещества является сложным биохимическим процессом с участием различных групп микроорганизмов, а также иммобилизованных почвой внеклеточных ферментов. Выявлена прямая связь между интенсивностью гумификации и ферментативной активностью.

Особо следует отметить значение ферментов в тех случаях, когда в почве складываются экстремальные для жизнедеятельности микроорганизмов условия, в частности при химическом загрязнении. В этих случаях метаболизм в почве остается в известной мере неизменным благодаря действию иммобилизированных почвой, и поэтому устойчивых, ферментов.

Максимальная каталитическая активность отдельных ферментов наблюдается в относительно небольшом интервале pH, который является для них оптимальным. Поскольку в природе встречаются почвы с широким диапазоном реакции среды (pH 3,5-11,0), то их уровень активности весьма разнообразен.

Исследованиями различных авторов установлено, что активность почвенных ферментов может служить дополнительным диагностическим показателем почвенного плодородия и его изменения в результате антропогенного воздействия. Применению ферментативной активности в качестве диагностического показателя способствуют низкая ошибка опытов и высокая устойчивость ферментов при хранении образцов.

5.4. Биологическая активность почвы

При проведении биомониторинга и биодиагностики почв ведущими являются показатели биологической активности. Под биологической активностью следует понимать напряженность (интенсивность) всех биологических процессов в почве. Ее необходимо отличать от биогенности почвы – заселенности почвы различными организмами. Биологическая активность и биогенность почвы часто не совпадают друг с другом.

Биологическая активность почвы обусловлена суммарным содержанием в почве определенного запаса ферментов, как выделенных в процессе жизнедеятельности растений и микроорганизмов, так и аккумулированных почвой после разрушения отмерших клеток. Биологическая активность почв характеризует размеры и направление процессов превращения веществ и энергии в экосистемах суши, интенсивность переработки органических веществ и разрушения минералов.

В качестве показателей биологической активности почв используются: численность и биомасса разных групп почвенной биоты, их продуктивность, ферментативная активность почв, активность основных процессов, связанных с круговоротом элементов, некоторые энергетические данные, количество и скорость накопления продуктов жизнедеятельности почвенных организмов.

Из-за того, что важные и всеобщие процессы, осуществляемые в почве всеми или большинством организмов (например, термогенез, количество АТФ), практически невозможно исследовать, определяют интенсивность более частных процессов, таких как выделение CO2, накопление аминокислот и др.

Показатели биологической активности определяют, используя различные методы: микробиологические, биохимические, физиологические и химические.

Биологическая активность почв подразделяется на актуальную и потенциальную. Потенциальная биологическая активность измеряется в искусственных условиях, оптимальных для протекания конкретного биологического процесса. Актуальная (действительная, естественная, полевая) биологическая активность характеризует реальную активность почвы в естественных (полевых) условиях. Измерить ее можно только непосредственно в поле.

Методы определения потенциальной биологической активности почв могут служить хорошими диагностическими показателями потенциального плодородия почв, степени удобренности, окультуренности, эродированности, а также загрязненности какими-либо химическими веществами. Однако при характеристике интенсивности биологических процессов, протекающих в естественных условиях, следует пользоваться методами для определения актуальной биологической активности, так как в реальной обстановке лимитирующие факторы (pH среды, температура, влажность и т. д.) могут резко ограничивать интенсивность процесса, который, несмотря на большие потенциальные возможности, может идти очень медленно.

Важной особенностью показателей биологической активности почв является их значительное пространственное и временное варьирование, что требует при их определении большого числа повторных наблюдений и тщательной вариационно-статистической обработки.

С биологической активностью почвы тесно взаимосвязаны ее физические и химические свойства, такие как гумусовое состояние, структура, щелочно-кислотные условия, окислительно-восстановительный потенциал и др. Следует отметить, что физические и химические свойства характеризуют относительно консервативные накопившиеся признаки и свойства почв, биология почв располагает показателями динамических свойств, являющихся индикаторами современного режима жизни почв.

Для выявления негативных последствий антропогенного воздействия используют мониторинг почвенного покрова. Деградационные явления прежде всего затрагивают биологические объекты, снижая биологическую активность и, в конечном счете, плодородие. Поэтому использование методов биологической диагностики позволяет определить негативные последствия антропогенного воздействия на ранних стадиях. Особенно это касается диагностики разных загрязнений.

Биологические индикаторы обладают рядом преимуществ по сравнению с другими. Во-первых, это высокая чувствительность и отзывчивость на внешние воздействия, во-вторых, они позволяют проследить за негативными изменениями на ранних стадиях процесса, в-третьих, только по ним можно судить о воздействиях, не подвергающих существенному изменению вещественный состав почв (радиоактивное и биоцидное загрязнение). К существенным недостаткам можно отнести большую пространственную и временную вариабельность.

В настоящее время разработан широкий набор биологических показателей, определяющих способность почвы обеспечивать растения факторами жизни, т. е. определяющих потенциальное плодородие почв и коррелирующих с урожайностью.

Глава 6

Поглотительная способность, кислотность и щелочность почв

Поглотительной способностью почв называется свойство ее компонентов (твердой, жидкой, газообразной и биологической фаз) обменно или необменно поглощать из окружающей среды различные твердые, жидкие и газообразные вещества, отдельные молекулы, катионы и анионы.

Всякое тело можно дроблением или растворением, или другим путем измельчить до частиц различной величины. Тело в распыленном состоянии представляет собой дисперсную систему, в которой различают две части: дисперсную фазу и дисперсионную среду. Дисперсная фаза – совокупность частиц раздробленного тела. Дисперсионная среда – жидкое, газообразное или твердое тело, в котором распределены эти частицы.

Дисперсные системы классифицируются следующим образом:

• грубодисперсные – взвеси;

• коллоидно-дисперсные – коллоидные растворы;

• молекулярные – растворы недиссоциированных веществ;

• ионно-дисперсные – растворы диссоциированных на ионы веществ.

Почва представляет собой совокупность всех типов дисперсных систем, постоянно взаимодействующих друг с другом.

6.1. Виды поглотительной способности

Наиболее полно характеристика поглотительной способности почв изложена в работах К.К. Гедройца, который выделил пять ее видов: механическая, химическая, биологическая, физическая и физико-химическая.

Механическая поглотительная способность – свойство почвы поглощать поступающие с водным или воздушным потоком твердые частицы, размеры которых превышают размеры почвенных пор. В данном случае почва выступает как «сито» или «губка», пропускающая через себя все, что мельче почвенных отверстий. Водные суспензии освобождаются от взвесей. Это свойство почвы используется для первой стадии очистки питьевых и сточных вод. Яркий пример механического поглощения твердых частиц – очистка полых речных вод (водные суспензии) при затоплении пойм рек. В результате после паводка на поверхности пойменных почв накапливаются твердые взвеси – почвенный наилок. Почва поглощает атмосферную пыль, в том числе и техногенного происхождения.

Химическая поглотительная способность обусловлена образованием в результате происходящих в почве химических реакций труднорастворимых соединений, выпадающих из раствора в осадок. Поступающие в почву в составе атмосферных, грунтовых, поливных вод катионы и анионы могут образовывать с солями почвенного раствора нерастворимые или труднорастворимые соединения. Например:


А1(ОН)3 + Н3РО4 → AlPO4↓ + 3Н2О;

Na2CO3 + CaSO4 → CaCO3↓+ Na2SO4.


Химическая поглотительная способность связана с взаимодействием ионно-дисперсных систем.

Биологическая поглотительная способность – способность живых почвообитающих организмов (корни растений, микроорганизмы) поглощать различные элементы. Биологическая поглотительная способность характеризуется большой избирательностью поглощения, обусловленной специфической для каждого вида потребностью живых организмов в элементах питания.

Физическая поглотительная способность связана с изменением концентрации молекул на поверхности раздела дисперсной фазы и дисперсионной среды. С увеличением поверхности частиц увеличивается их поверхностная энергия.

Поверхностная энергия частиц, измеряющаяся произведением поверхностного натяжения, возникающего на границе соприкосновения дисперсной фазы с дисперсионной средой, на суммарную поверхность дисперсной фазы, стремится к наибольшему сокращению. Это поведение можно обобщить теоремой Джиббса: поверхность раздела дисперсной фазы и дисперсионной среды имеет иную концентрацию, чем в остальной части. Вещества, понижающие поверхностное натяжение, стремятся сконцентрироваться на поверхности раздела и тем самым уменьшить энергию системы; обратно, вещества, повышающие поверхностное натяжение, стремятся разжижаться на поверхности раздела, чтобы этим уменьшить поверхностную энергию системы. Вещества, понижающие поверхностное натяжение, называются поверхностно-активными. Это органические кислоты, алкалоиды, высокомолекулярные органические соединения. Они обусловливают положительную физическую адсорбцию. Многие минеральные соли, кислоты, щелочи вызывают явление отрицательной физической адсорбции, при которой концентрация данных веществ уменьшается по мере приближения к поверхности частицы.

Известна отрицательная сорбция почвой хлоридов и нитратов, которая впервые была описана К.К. Гедройцем как отрицательное физическое поглощение веществ. Сущность этого явления сводится к снижению концентрации электролита в пределах «нерастворяющего объема молекулярно сорбированной воды» во внутренней части сорбционной пленки, вследствие чего концентрация электролита в более рыхло связанных слоях водной пленки возрастает. Отрицательная сорбция нитратов – явление неблагоприятное, так как она усиливает процессы их вымывания из почвы.

Известна молекулярная сорбция ряда органических веществ. Сорбируются как низкомолекулярные органические вещества, постоянно присутствующие в почве, вследствие разложения исходных растительных остатков, так и высокомолекулярные соединения типа белков и полисахаридов вследствие амфотерности этих соединений.

Физико-химическая, или обменная, поглотительная способность – способность почвы поглощать и обменивать ионы, находящиеся на поверхности коллоидных частиц, глинистых минералов и связанные в функциональных группах гумусовых веществ, на эквивалентное количество ионов раствора, взаимодействующего с твердой фазой почвы. Эта поглотительная способность связана с ионно-дисперсными и коллоидными системами.

6.2. Почвенные коллоиды и физико-химическая поглотительная способность

Твердая фаза почвы, способная к реакциям ионного обмена и представляющая совокупность различных коллоидов и тонкодисперсных веществ, представляет почвенный поглощающий комплекс (ППК).

Конец ознакомительного фрагмента.