Глава 1
МЕХАНИЗМЫ СОКРАТИТЕЛЬНОЙ АКТИВНОСТИ И НАСОСНОЙ ФУНКЦИИ СЕРДЦА
1.1. Краткий очерк морфологии сердца
Сердце (рис. 1) является центральным органом системы кровообращения. Благодаря непрерывной сократительной деятельности сердечной мышцы осуществляется движение крови по сосудам и, следовательно, обеспечивается жизнедеятельность человека.
Сердце – полый мышечный орган, расположенный в грудной клетке, переднем средостении, так что его основание обращено к позвоночнику, а верхушка находится на уровне пятого левого межреберья книзу и внутрь от левого соска. Таким образом, продольная ось сердца проходит косо: справа и сверху вниз и влево. В результате сердце расположено в грудной клетке асимметрично: одна треть – вправо от срединной плоскости тела, а две трети – слева от нее. Асимметрия положения сердца проявляется также в том, что поверхность, обращенная кпереди, образуется главным образом стенкой правого желудочка и правого предсердия и лишь в малой степени передней стенкой левого желудочка. В клинической практике границы сердца определяются методами перкуссии или рентгеноскопии. Масса сердца взрослого человека составляет 0,40–0,46 % от массы тела (в среднем около 300 г).
Полость сердца человека подразделяется на четыре камеры: два предсердия и два желудочка. Левое предсердие и желудочек составляют вместе левое, или артериальное, сердце, перекачивающее артериальную кровь, а правое предсердие и желудочек – правое, или венозное, сердце, перекачивающее венозную кровь. Правое и левое предсердия отделены друг от друга перегородкой, также как правый и левый желудочки. Между правым предсердием и правым желудочком, равно как левым предсердием и левым желудочком, имеются предсердно-желудочковые отверстия, через которые кровь направляется в желудочки во время их сокращения.
Рис. 1. Сердце млекопитающих:
а – поперечный разрез: 1 – левое предсердие; 2 – ветви левой легочной вены; 3 – париетальный листок перикарда; 4 – полость перикарда; 5 – митральный клапан; 6 – эпикард (висцеральный листок перикарда); 7 – миокард; 8 – эндокард; 9 – левый желудочек; 10 – верхушка; 11 – межжелудочковая перегородка; 12 – правый желудочек; 13 – трехстворчатый клапан; 14 – правое предсердие; б – внутреннее строение: 1 – легочная артерия; 2 – легочные вены; 3 – левое предсердие; 4 – левый предсердножелудочковый (двустворчатый) клапан; 5 – клапан аорты; 6 – левый желудочек; 7 – межжелудочковая перегородка; 8 – правый желудочек; 9 – нижняя полая вена; 10 – правое предсердие; 11 – легочные вены; 12 – верхняя полая вена; 13 – аорта
Эти отверстия снабжены створчатыми клапанами: правое предсердно-желудочковое отверстие – трехстворчатым, или трикуспидальным, а левое предсердно-желудочковое отверстие – двустворчатым, или митральным. Во время расслабления желудочков створчатые клапаны открыты, тогда как во время сокращения желудочков эти клапаны закрывают предсердно-желудочковые отверстия, что препятствует обратному току крови из желудочков в предсердия.
От левого желудочка отходит аорта, по которой кровь устремляется в сосуды большого круга кровообращения, после чего по полым венам (верхней и нижней) возвращается в правое предсердие и далее в правый желудочек. Кроме того, в правое предсердие (через коронарный синус сердца) оттекает венозная кровь из тканей самого сердца. От правого желудочка отходит легочный ствол, по которому кровь поступает в малый круг кровообращения, а по четырем легочным венам возвращается в левое предсердие и левый желудочек.
Таким образом, движение крови осуществляется по двум последовательно соединенным в сердце кругам кровообращения. Количество крови, протекающее за единицу времени через большой и малый круги кровообращения, в норме одинаково.
Основными прогрессивными признаками в общем ходе эволюции сердца у млекопитающих и человека являются:
– полное разделение большого и малого (легочного) кругов кровообращения;
– более полное объединение синусовой области с собственным предсердием, что достигается редукцией, часто еще в раннем эмбриональном периоде, обоих синусных клапанов;
– вторичное увеличение синусовой области в объеме и изменение наклона впадающих полых вен при развитии на их устьях миокардных наслоений;
– развитие у человека в эмбриогенезе на основе задненижнего конца правого синусового клапана специальных образований: клапана каудальной полой вены (евстахиева), служащего для направления тока крови в овальное отверстие, и клапана венечного синуса (тебезиева);
– редукция левой краниальной полой вены и формирование венечного синуса, устье которого прикрывается или специальной заслонкой (крупные четвероногие), или особым клапаном (человек);
– более полное втягивание в левое предсердие устья первичной легочной вены и формирование четырех ее первичных устий; образование трех устий у четвероногих и вторичное расхождение в стороны задних легочных вен у антропоидов с формированием четырех стволов;
– концентрация внутри сердечной сумки сильных миокардных наслоений на коллекторных стволах легочных вен, формирующих специальные манжеты;
– заметная редукция ушек предсердий, особенно сильно выраженная на левом;
– стабилизация положения, формы и величины створок в предсердно-желудочковых клапанах: трех в правом и двух в левом в соответствии с условиями внутрисердечной гемодинамики;
– образование высокой и расширенной восходящей аорты при очень крутой ее дуге и формирование на границе второго излома с нисходящей аортой специфического порогообразного перешейка у человека. Данные особенности строения создают особые гемодинамические условия – своеобразную запруду с повышенным давлением – для направления потока крови вертикально к голове с крупным головным мозгом;
– тенденция у человека к смещению устьев обеих венечных артерий сердца из кармашков аортального клапана выше, непосредственно на начальную часть самой аорты (освобождение их от прикрытия полулунными створками), что создает условия для сохранения высокой величины коронарного кровотока в диастолу;
– формирование относительно крупного овального отверстия и относительно слабой проходимости артериального протока (при его ответвлении из самой конечной части легочной артерии) у антропоидов. Это позволяет быстрее переключать плацентарное кровообращение на постоянное;
– формирование у высших плацентарных в клапане овального отверстия во второй половине эмбриональной жизни особой, циркулярно расположенной сердечной мускулатуры, развитой особенно у антропоидов. Это позволяет регулировать у плода ток крови через овальное отверстие в зависимости от фаз сокращения предсердий. Прогрессивное развитие сердечной мускулатуры к рождению тем самым как бы предварительно разобщает функционально обе половины во время систолы;
– формирование на конце клапана овального отверстия во второй половине эмбриональной жизни у крупных форм млекопитающих особых эластичных сетевидных образований, помогающих закрытию при рождении овального отверстия;
– высвобождение основания сердца от облегающей его сердечной сумки с образованием серозных выростов у человека, что позволяет сердцу более свободно совершать свои движения.
Сердце окружено околосердечной сумкой, или перикардом, который имеет два листка: внутренний (висцеральный) и наружный (париетальный). Между этими листками образуется щелевидная перикардиальная полость, выстланная мезотелием и содержащая небольшое количество серозной жидкости (в норме около 30–50 мл). Эта жидкость уменьшает взаимное трение листков перикарда при сокращениях сердца. Париетальный листок перикарда переходит в адвентицию крупных сосудов, а спереди прикрепляется к грудине. Висцеральный листок перикарда образует наружную оболочку сердца – эпикард.
Внутренняя оболочка сердца – эндокард – выстилает полости сердца изнутри. Она образована соединительнотканными элементами, гладкомышечными клетками и эпителиальной тканью (эндотелием), покрывающей поверхность эндокарда, обращенную в полость сердца. Складки (дупликатуры) эндокарда образуют клапаны сердца. Между правым предсердием и правым желудочком располагается трехстворчатый, или трикуспидальный, клапан, а между левым предсердием и левым желудочком – двустворчатый, или митральный. В проксимальных отделах аорты и легочного ствола расположены полулунные клапаны, каждый из которых представляет собой три карманообразные складки, направленные свободными краями в просвет сосудов.
Основную массу сердца составляет его средняя оболочка – сердечная мышца, или миокард, образованный целомической поперечнополосатой мышечной тканью. Миокард предсердий состоит из двух слоев: поверхностного, образованного циркулярными волокнами, который является общим для обоих предсердий, и внутреннего, образованного продольно расположенными волокнами, самостоятельными в каждом предсердии. Внутренний слой миокарда предсердий формирует вокруг устьев полых и легочных вен подобие сфинктеров, которые при сокращении предсердий почти полностью перекрывают просвет этих сосудов, препятствуя обратному току крови из предсердий в эти вены.
В желудочках миокард образован тремя слоями: поверхностным, средним и глубоким. Косо расположенные волокна поверхностно спускаются к верхушке сердца, где загибаются внутрь и переходят в глубокий продольный слой. Производными последнего являются сосочковые (папиллярные) мышцы, выступающие в просвет желудочков. От этих мышц отходят сухожильные нити (хорды), которые прикрепляются к атриовентрикулярным клапанам со стороны, обращенной в полость желудочков. При сокращении миокарда желудочков сокращаются и сосочковые мышцы. В результате сухожильные нити натягиваются и удерживают створчатые клапаны от прогибания в полость предсердий. Недостаточность этой функции, например генетически обусловленная, приводит к прогибанию (пролапсу) створок клапанов в полость предсердий во время сокращения желудочков и нарушению внутрисердечной гемодинамики.
Расположенный между поверхностным и глубоким средний слой миокарда образован циркулярными волокнами, самостоятельными для каждого желудочка. Толщина миокарда зависит от приходящейся на них нагрузки: стенки левых отделов сердца у взрослых толще стенок правых, а стенки желудочков толще стенок предсердий. Наибольшую толщину (10–15 мм) имеет стенка левого желудочка, который проталкивает кровь по сосудам большого круга кровообращения. Толщина стенок правого желудочка составляет 5–8 мм, толщина же стенок предсердий лишь около 2–3 мм. Однако при адаптации сердца к повышенной физической нагрузке, например у спортсменов, масса миокарда и толщина стенок сердца могут увеличиваться (рабочая гипертрофия миокарда).
Основным тканевым компонентом миокарда является мышечная ткань сердечного (целомического) типа. Волокна сердечной мышцы мельче волокон скелетной мускулатуры. Они имеют лентовидную форму (15–20 мкм ширины при толщине около 5 мкм) и разделены на отдельные клетки – кардиомиоциты. До 35,8 % от массы кардиомиоцитов составляют митохондрии – органоиды энергетического обмена. Кроме кардиомиоцитов в состав миокарда входят волокна соединительной ткани. Соединительнотканный каркас сердца связывает мышечные волокна между собой, а также с эндои эпикардом, влияя на механические характеристики сердечной мышцы – ее растяжимость и упругость.
Наряду с собственно миокардом в состав сердца входят две группы папиллярных (сосочковых) мышц, соединяющих внутреннюю поверхность миокарда со створками митрального и трикуспидального клапанов. В начале сокращения желудочков папиллярные мышцы тянут створки митрального или трикуспидального клапанов вниз, в полость желудочков. Удержание концов створок приводит к схлопыванию в первую очередь базальных участков створок и тем самым обеспечивает их герметичное смыкание. Поскольку папиллярные мышцы образованы такой же мышечной тканью, как и миокард, но анатомически обособлены от него, их часто используют как модельный объект для изучения биофизических закономерностей работы сердца.
В составе сердечной мышечной ткани выделяют несколько морфофункциональных разновидностей кардиомиоцитов:
1. Сократительные (типичные, рабочие) кардиомиоциты составляют 99 % массы миокарда. Они обеспечивают сократительную функцию сердца и содержат большое количество упорядоченных миофибрилл и митохондрий, имеют развитый саркоплазматический ретикулум и систему Т-трубочек.
Рис. 2. Продольное расположение и поперечная исчерченность миофибрилл кардиомиоцитов
Для миофибрилл кардиомиоцитов, как и скелетных мышц, характерна картина продольного расположения и поперечной исчерченности, видимая под микроскопом с помощью поляризованного света (рис. 2).
В этих условиях различают светлые изотропные (I), или однородные, полосы, темные анизотропные (А), или неоднородные, полосы и поперечно расположенные им Z-полосы (нем. zwischenscheibe – разделительные). Классической единицей продольного деления каждой миофибриллы кардиомиоцитов, как и в скелетной мышце, является саркомер, который содержит две половинки I-полосы и одну А-полосу. Границами же саркомера являются Z-полосы. Таким образом, в кардиомиоцитах, как и в скелетных мышцах, саркомер является функциональной единицей сократительного аппарата. Поскольку саркомеры в миофибрилле расположены последовательно, сокращение саркомеров вызывает сокращение миофибриллы и общее ее укорочение.
Миофибриллы, состоящие из белковых нитей – миофиламентов, – расположены в саркомере параллельно друг другу с высокой упорядоченностью и окружены мембранами цистерн саркоплазматического ретикулума, а также митохондриями. Различают два типа миофиламентов: толстые, образованные белком миозином, и тонкие, образованные другим белком – актином (рис. 2-1).
Молекула миозина состоит из длинной хвостовой части, суженной шейки и утолщенной головки. Каждая толстая нить содержит более 100 молекул миозина, собранных в пучок, в средней части которого находятся хвостовые частицы молекул, а на обоих концах – выступающие над поверхностью нити головки. Каждая тонкая нить состоит из двух линейных молекул актина, спирально скрученных друг с другом. В желобках между нитями актина уложены линейные молекулы белка тропомиозина (по две пары молекул на один шаг спирали актиновой нити). Вблизи соединений между двумя последовательными молекулами тропомиозина к актину прикрепляются глобулярные молекулы еще одного белка – тропонина, состоящего из трех субъединиц: I, T и С. Он принимает участие в процессах сопряжения возбуждения и сокращения рабочего миокарда.
Рис. 2-1. Работа актомиозинового комплекса:
а – тонкий филамент состоит из трех протеинов. Его основу составляет актин. В состоянии расслабления миозинчувствительный сайт молекулы актина заблокирован тропомиозином. Когда кальций присоединяется к тропонину, последний претерпевает конформационную перестройку, в результате которой становится возможным взаимодействие актина и миозина; б – присоединение головки миозина к актину; в – скольжение тонких и толстых филаментов относительно друг друга. В результате гидролиза молекулы АТФ образуются АДФ и неорганический фосфат Pi; г – присоединение новой молекулы АТФ к головке миозина
2. Проводящие (атипичные, специализированные) кардиомиоциты имеют слабо развитый сократительный аппарат и формируют проводящую систему сердца. Среди этого вида кардиомиоцитов различают Р-клетки и клетки Пуркинье:
а) округлые Р-клетки (англ. рale – бледный) со светлой цитоплазмой, почти лишенной сократительных элементов, обладают способностью периодически генерировать электрические импульсы, обеспечивая (в норме) автоматию сердечной мышцы;
б) клетки Пуркинье имеют протяженную форму с большим диаметром и образуют волокна, осуществляя быстрое, незатухающее, своевременное и синхронное проведение возбуждения к сократительным кардиомиоцитам. Автоматия у клеток Пуркинье есть, но выражена в меньшей степени, чем у Р-клеток.
3. Переходные кардиомиоциты, или Т-клетки (англ. transitional – переходный), располагаются между проводящими и сократительными кардиомиоцитами и имеют промежуточные цитологические характеристики. Эти клетки обеспечивают взаимодействие остальных типов кардиомиоцитов.
4. Секреторные кардиомиоциты располагаются преимущественно в предсердиях и выполняют эндокринную функцию. В частности, эти клетки секретируют во внутреннюю среду предсердный натрийуретический пептид – гормон, принимающий участие в регуляции водно-электролитного баланса и артериального давления.
Морфологически сердечная мышечная ткань, в отличие от скелетной, не имеет симпластического строения, однако отдельные кардиомиоциты и структурно, и функционально тесно связаны друг с другом посредством вставочных дисков, особенно хорошо выраженных между сократительными кардиомиоцитами. Механическую связь обеспечивают находящиеся в области вставочного диска десмосомы и интердигитации, а функциональное взаимодействие – щелевые контакты (англ. gap junctions), или нексусы. В зоне щелевых контактов, которая занимает около 10–20 % площади вставочного диска, мембраны соседних клеток находятся на очень малом (около 2–3 нм) расстоянии друг от друга и пронизаны каналами, которые представляют собой сложные белковые комплексы (коннексоны) и проницаемы для ионов. Такое строение межклеточных контактов обеспечивает их низкое электрическое сопротивление и свободную передачу электрического сигнала от одной клетки к другой (по типу электрического синапса). Вставочные диски, расположенные на торцах клеток, соединяют кардиомиоциты «конец в конец», что приводит к образованию мышечных волокон, которые также связаны друг с другом посредством вставочных дисков.
Таким образом, кардиомиоциты объединены в непрерывную электрическую сеть – функциональный синцитий, что отличает миокард от скелетных мышц. Вследствие данных особенностей строения миокарда возбуждение, возникшее в одном кардиомиоците, с высокой скоростью передается на другие клетки и быстро охватывает миокард целиком. Однако при повреждающих воздействиях на сердце, например в условиях гипотермии, проницаемость каналов в области щелевых контактов резко снижается, что приводит к нарушениям проведения возбуждения в миокарде. Важно также отметить, что большая часть мышечных волокон предсердий и желудочков прикреплена к фиброзной ткани, которая разделяет камеры сердца и электрически изолирует их друг от друга. В результате возможно раздельное последовательное сокращение предсердий и желудочков.
Все клетки миокарда являются высоко дифференцированными и не обладают способностью к делению, поэтому в постэмбриональном периоде жизни человека мышечная ткань сердца не способна к регенерации и процессы рабочей гипертрофии миокарда развиваются за счет увеличения размеров и объема отдельных кардиомиоцитов, а не их общего количества (гиперплазии). В случае некроза участка миокарда (инфаркта), например при ишемической болезни сердца, поврежденный участок замещается соединительной тканью, что приводит к формированию рубца. Поэтому при лечении инфаркта миокарда перспективным является использование стволовых клеток. Указанные клетки при их введении непосредственно в миокард под влиянием клеточных факторов роста могут превращаться в кардиомиоциты и восполнять, таким образом, утраченную сократительную функцию участка миокарда. Однако широкое применение клеточных технологий в клинической практике требует наличия дорогостоящего высокотехнологичного оборудования и проведения дополнительных клинических исследований.
1.2. Происхождение автоматии сердца
Со времен анатомических исследований, выполненных в эпоху Возрождения, и практически до конца XIX в. в физиологии оставался нерешенным вопрос о причинах сокращений сердца, то есть вопрос о том, обусловлены ли они нервными влияниями (нейрогенный механизм) или же являются собственными свойствами сердечной мышцы (миогенный механизм). Еще Леонардо да Винчи писал: «…Проследи нервы до сердца и посмотри, сообщают ли они движение сердцу или оно движется само собой». Исследования, выполненные на беспозвоночных животных, показали, что у многих из них – насекомых, ракообразных, моллюсков – электрические импульсы, запускающие сокращения сердца, возникают в нервных клетках ганглия, расположенного в толще стенок венозного конца сердца или на поверхности последнего. Однако, как было установлено уже к началу XX в., причина сокращения сердца позвоночных животных зависит от собственного миогенного механизма. Следовательно, нейрогенная гипотеза автоматии сердца, справедливая в отношении многих беспозвоночных животных, неприменима к человеку.
В пользу миогенной теории свидетельствует опыт, поставленный в середине XIX в. немецким физиологом Г. Станниусом. В этом опыте показано, что при наложении лигатуры на сердце лягушки по границе между венозным синусом (место впадения полых вен) и правым предсердием венозный синус продолжает сокращаться с исходной частотой, а предсердия и желудочек останавливаются. Через 30–40 с сокращения желудочка и предсердий возобновляются, но с собственной частотой, меньшей, чем частота сокращений венозного синуса. Иногда возобновление сокращений желудочка происходит только после стимуляции области сердца между предсердиями и желудочком путем наложения второй лигатуры по атриовентрикулярной борозде. Наложение еще одной лигатуры в нижней трети желудочка приводит к прекращению сокращений верхушки сердца, в то время как остальные отделы продолжают сокращаться в прежнем ритме. При этом возбудимость и сократимость верхушки сердца не нарушаются – в ответ на раздражение (укол иголкой) происходит сокращение.
Примерно в это же время английский физиолог В. Гаскелл показал, что охлаждение сравнительно небольшой зоны в области устья полых вен приводит к остановке сердца у млекопитающих. Результаты опытов Г. Станниуса и В. Гаскелла указывали также на то, что участки сердечной мышцы, ответственные за ее самовозбуждение (очаги автоматии), имеют ограниченную локализацию и находятся, в частности, в правом предсердии, а также на границе предсердий и желудочков. В дальнейшем было установлено, что клеточными элементами, обеспечивающими автоматию сердца, являются специализированные кардиомиоциты. В 1902 г. в России А. А. Кулябко наблюдал восстановление сократительной активности сердца человека, которое извлекли из трупа, поместили в теплый физиологический раствор и некоторое время массировали.
Таким образом, в результате перечисленных экспериментов было доказано существование в сердце собственных, миогенных механизмов обеспечения его периодической сократительной активности, автономных по отношению к центральной нервной системе и достаточных для поддержания нормального ритма сердечной деятельности.
Миогенная природа автоматии сердца является результатом его ранней эмбриональной дифференцировки (зачаток сердца формируется к концу второй недели эмбриогенеза). Тем самым обеспечиваются формирование кровеносной системы плода и оптимальный режим снабжения кислородом всех тканей, включая нервную. С другой стороны, автономность кровеносной системы по отношению к нервной необходима вследствие большой зависимости нервной ткани от уровня доставки кислорода. Прекращение кровоснабжения мозга даже на несколько секунд вызывает резкие функциональные нарушения, которые уже через 4–6 мин приводят к необратимым органическим изменениям в ЦНС. Поэтому зависимость сердечной деятельности и всей системы снабжения организма кислородом от состояния ЦНС резко снизила бы адаптивные возможности организма в условиях действия на него экстремальных факторов среды.
1.3. Особенности строения проводящей системы сердца и распространения возбуждения в миокарде
Проводящая система сердца образована специализированными кардиомиоцитами и включает в себя следующие основные структуры (рис. 3):
1. Синоатриальный, или синусовый, узел (в старой литературе – узел Кейт – Флака) располагается на задней стенке правого предсердия вблизи устья верхней полой вены. Он образован Р-клетками, которые посредством Т-клеток связаны между собой и с сократительными кардиомиоцитами предсердий. Этот узел гомологичен синусовому узлу холоднокровных (узел Ремака). Венозный синус как анатомически обособленное место впадения полых вен у теплокровных существует только на ранних стадиях эмбриогенеза, сливаясь в дальнейшем с правым предсердием. От синоатриального узла в направлении к атриовентрикулярному узлу отходят три межузловых тракта: передний (тракт Бахмана) с отходящим от него к левому предсердию межпредсердным пучком, средний и задний (соответственно тракты Венкебаха и Тореля). Однако степень гистологической дифференциации этих структур от окружающих тканей миокарда у разных людей сильно варьирует.
2. Атриовентрикулярное соединение, в котором выделяют три зоны: зону перехода от предсердных кардиомиоцитов к атриовентрикулярному узлу; АN (лат. аtrium nodus) – предсердный узел, или атриовентрикулярный узел (в старой литературе – узел Ашоф-Тавара), расположенный непосредственно над местом прикрепления септальной створки трехстворчатого клапана; NH (лат. nodus His – узел Гиса) – зона перехода от атриовентрикулярного узла к общему стволу пучка Гиса. В атриовентрикулярном соединении обнаруживаются Р-клетки (в меньшем количестве, чем в синусовом узле), клетки Пуркинье, а также Т-клетки. У холоднокровных этим структурам соответствуют узлы Биддера и Людвига.
Рис. 3. Проводящая система сердца:
ВПВ – верхняя полая вена; НПВ – нижняя полая вена; штриховка – фиброзная ткань между миокардом предсердий или желудочков; СА – синоатриальный узел; АВ – атриовентрикулярный узел.
Основные проводящие пути: 1 – передний межузловой тракт; 1а – межпредсердный пучок Бахмана; 2 – средний межузловой тракт Венкебаха;
3 – задний межузловой тракт Тореля; 4 – общий ствол предсердно-желудочкового пучка (пучка Гиса); 5 – правая ножка пучка Гиса; 6 – левая ножка пучка Гиса; 6а – передневерхняя ветвь левой ножки пучка Гиса; 6б – задненижняя ветвь левой ножки пучка Гиса; 7 – субэндокардиальные волокна Пуркинье. Дополнительные (аномальные) проводящие пути: 8 – пучок Джеймса; 9 – пучки Кента
3. Предсердно-желудочковый пучок, или пучок Гиса (описан немецким анатомом В. Гисом в 1893 г.), в норме является единственным путем проведения возбуждения от предсердий к желудочкам. Он отходит от атриовентрикулярного узла общим стволом и проникает через фиброзную ткань, разделяющую предсердия и желудочки, в межжелудочковую перегородку. Здесь пучок Гиса разделяется на две ножки – правую и левую, идущие к соответствующим желудочкам, причем левая ножка делится на две ветви: передневерхнюю и задненижнюю. Эти разветвления пучка Гиса проходят под эндокардом, широко ветвятся и заканчиваются в желудочках сетью субэндокардиальных волокон Пуркинье (описаны чешским физиологом Я. Пуркинье в 1845 г.). Основу проводящей системы желудочков (системы Гиса – Пуркинье) составляют клетки Пуркинье, связанные с сократительными кардиомиоцитами посредством Т-клеток.
У некоторых людей встречаются варианты развития, при которых в сердце содержатся дополнительные (аномальные) проводящие пути, например пучок Джеймса, соединяющий предсердия с нижней частью атриовентрикулярного соединения, пучки Кента, соединяющие предсердия и желудочки, а также пучок Махайма, соединяющий нижние участки атриовентрикулярного узла и правую ножку пучка Гиса. Данные пути участвуют в возникновении некоторых нарушений сердечного ритма (например, синдрома преждевременного возбуждения желудочков). В норме возбуждение сердечной мышцы зарождается в синусовом узле, охватывает миокард предсердий и, пройдя атриовентрикулярное соединение, распространяется по ножкам пучка Гиса и волокнам Пуркинье на миокард желудочков.
Таким образом, нормальный ритм сердца определяется активностью группы Р-клеток синоатриального узла, который называют водителем ритма первого порядка, или истинным пейсмекером (англ. pacemaker – отбивающий шаг). Такой ритм сердца называется синусовым. Однако кроме клеток синусового узла автоматия присуща и другим структурам проводящей системы сердца. Водитель ритма второго порядка локализован в NН-зоне атриовентрикулярного соединения. Задаваемый им ритм называется идиовентрикулярным.
Водителями ритма третьего порядка являются клетки Пуркинье, входящие в состав проводящей системы желудочков. Кардиомиоциты клеток атриовентрикулярного узла и волокон Пуркинье в норме автоматию не проявляют.
Водители ритма распределены в сердце согласно «закону градиента автоматии», сформулированному В. Гаскеллом в 1887 г.: степень автоматии пейсмекера тем выше, чем ближе он расположен к синоатриальному узлу. Так, собственная частота нормальной ритмической активности клеток синусового узла в покое составляет 60–80 имп./мин, атриовентрикулярного соединения – 40–60 имп./мин, системы Гиса – Пуркинье – 20–40 имп./мин, причем в дистальных отделах меньше, чем в проксимальных. Поэтому активность нижележащих водителей ритма в норме подавляется синоатриальным узлом. Иными словами, синусовый узел как бы навязывает свою частоту генерации импульсов водителям ритма второго и третьего порядков. В радиотехнике аналогичный процесс навязывания частоты генерации импульсов одним генератором другому называется синхронизацией. Следовательно, пейсмекерные клетки синусового узла обеспечивают синхронизацию распространения возбуждения по проводящей системе сердца к рабочему миокарду, поэтому водители ритма второго и третьего порядков называют латентными (или потенциальными) пейсмекерами. При снижении активности синусового узла или же нарушении проведения возбуждения к латентным пейсмекерам (как, например, в опыте Станниуса) частота возбуждений и сокращений сердца определяется активностью водителей ритма второго или третьего порядка. Кроме того, в патологических условиях электрические импульсы могут генерироваться не только клетками проводящей системы сердца, но и сократительными кардиомиоцитами.
Возникшее в синоатриальном узле возбуждение распространяется по миокарду предсердий, однако из-за асимметрии расположения синусового узла правое предсердие возбуждается раньше левого. Значение предсердных специализированных проводящих путей в этом процессе невелико, и их перерезка существенно не нарушает распространение возбуждения по миокарду, так как скорость проведения по этим путям (0,4–0,8 м/с) почти такая же, как и по сократительным кардиомиоцитам предсердий (0,1–0,2 м/с).
В атриовентрикулярном соединении (АN- и N-зоны) скорость проведения возбуждения составляет около 0,05 м/с, что является минимальной величиной по сравнению со скоростью проведения в других участках проводящей системы, а также рабочего миокарда. Поэтому при переходе возбуждения от предсердий к желудочкам возникает задержка проведения импульса на 0,02–0,04 с. Атриовентрикулярная задержка, а также низкая скорость проведения возбуждения в предсердиях обеспечивают последовательное сокращение предсердий и желудочков, которые начинают сокращаться только после систолы предсердий. Наличие атриовентрикулярной задержки может вызывать частичную блокаду проведения импульсов, следующих из предсердий к желудочкам с высокой частотой (более 300 в 1 мин), при мерцательной аритмии. В результате желудочки сокращаются с меньшей частотой (до 100–120 в 1 мин), что обеспечивает их удовлетворительное кровенаполнение во время диастолы.
Пройдя атриовентрикулярное соединение, электрическое возбуждение продолжает распространяться по проводящей системе желудочков и достигает их сократительных кардиомиоцитов. При этом скорость проведения возбуждения по проводящей системе и рабочему миокарду желудочков существенно различается: в пучке Гиса она составляет около 1 м/с, в волокнах Пуркинье – до 4 м/с, тогда как в сократительных кардиомиоцитах лишь около 0,5 м/с. Высокая скорость проведения импульсов по проводящей системе желудочков обеспечивает синхронное возбуждение и сокращение последних, что повышает эффективность выполнения насосной функции сердца. Особенности возбуждения рабочего миокарда желудочков состоят также в том, что сначала возбуждается межжелудочковая перегородка, далее – верхушка сердца и в конце цикла – базальные отделы желудочков. Папиллярные мышцы, образованные глубоким слоем миокарда, возбуждаются несколько раньше, чем средний и поверхностный слои миокарда желудочков, что имеет большое значение для нормальной работы атриовентрикулярных клапанов. Такие особенности распространения возбуждения в миокарде желудочков обусловлены взаиморасположением пучка Гиса и волокон Пуркинье. Общее время охвата миокарда желудочков возбуждением составляет около 5–10 мс. Нарушение распространения возбуждения по пучку Гиса, что может иметь место, например, при инфаркте миокарда, часто приводит к десинхронизации сократительных кардиомиоцитов и снижению скорости проведения возбуждения в рабочем миокарде. В результате резко (до 50 %) снижается сократимость миокарда и насосная функция сердца.
1.4. Ионные механизмы возникновения мембранных потенциалов кардиомиоцитов и автоматии клеток – водителей ритма
Фундаментальные исследования механизмов электрической активности миокарда были выполнены в 1950–1960-е гг. в лабораториях Б. Гоффмана и П. Крейнфилда наряду с экспериментами А. Ходжкина и Б. Катца по изучению общих электрофизиологических свойств нервной ткани. Эти исследования позволили установить, что кардинальные свойства миокарда: возбудимость – способность отвечать на действие раздражителей возбуждением в виде электрических импульсов; проводимость – способность проводить возбуждение от клетки к клетке без затухания; автоматия (автоматизм) – способность генерировать электрические импульсы в отсутствие внешних раздражителей, – обеспечиваются трансмембранными ионными токами, движущимися как внутрь клетки (входящие токи), так и из нее (выходящие токи); рефрактерность – неспособность к тетаническому сокращению, которая обеспечивает периодичность фаз сердечного цикла и пульсирующий характер кровотока.
Активный транспорт ионов (движение против градиента концентраций) осуществляется ионными насосами, которые сопряжены с мембранными ферментами, ускоряющими гидролиз аденозинтрифосфорной кислоты (АТФ), – АТФ-азами. Выделяющаяся в результате энергия АТФ расходуется на перенос ионов. Наиболее значимая роль в процессах активного транспорта на наружной мембране (сарколемме) кардиомиоцитов, как и в мембранах клеток других возбудимых тканей, принадлежит К+/Nа+-насосу, который переносит ионы К+ внутрь клетки, а Nа+ – из нее. При работе этого насоса происходит неэквивалентный (электрогенный) обмен ионов: на каждые 2 иона К+, перенесенных в клетку, выводится 3 иона Na+. Однако в кардиомиоцитах, в отличие от нейронов, клеток гладких и скелетных мышц, осуществляется и так называемый Ca2+/Na+-обмен, когда из клетки выводятся ионы кальция в обмен на ионы натрия. Обеспечивающий этот обмен ионный насос, как и калий-натриевый, также является электрогенным – один ион кальция заменяется на три иона натрия. Основным результатом деятельности ионных насосов является создание и поддержание градиентов концентрации ионов по обе стороны плазматической мембраны: внутри клетки больше концентрация ионов калия, тогда как снаружи – натрия и кальция. Так, концентрация калия внутри кардиомиоцитов составляет около 140 ммоль/л, а снаружи – 5 ммоль/л. Концентрация же натрия внутри клетки – около 10 ммоль/л, а снаружи – примерно 142 ммоль/л.
Пассивный транспорт ионов через сарколемму, не требующий затрат энергии, осуществляется через ионные каналы – специальные комплексы интегральных белков мембраны. Направление и скорость диффузии определяются разностью внутри- и внеклеточной концентраций ионов, а также зарядом мембраны. Скорость диффузии ионов из области высокой концентрации в область низкой концентрации описывается дифференциальным уравнением Фика, согласно которому
где V – скорость диффузии; k – коэффициент диффузии; S – площадь поверхности мембраны; dC – градиент концентраций; dx – толщина мембраны. Знак «минус» перед уравнением означает, что по мере выравнивания концентраций ионов по обе стороны мембраны скорость диффузии убывает во времени.
Большинство ионных каналов относительно селективны, то есть проницаемы преимущественно для какого-либо одного вида ионов, хотя некоторые ионные каналы могут проводить ионы разных типов. Поскольку ионные каналы образованы белками, которые кодируются определенными генами, то очевидно, что изменения свойств ионных каналов, которые могут наблюдаться при патологии сердца, зависят от нарушений генетического аппарата клетки. Поэтому исследования свойств отдельных ионных каналов являются перспективными для понимания патогенеза и лечения аритмий и других заболеваний сердца.
Классические представления А. Ходжкина и Б. Катца о свойствах ионных каналов клеток возбудимых тканей, в том числе и миокарда, получили дальнейшее развитие в 1970– 1980-е гг. благодаря разработке методики точечной фиксации мембранного потенциала и регистрации тока через одиночные ионные каналы (patch clamp). Эта методика была впервые предложена Э. Неером и Б. Сакманом в 1976 г. и оказала огромное влияние на развитие клеточной электрофизиологии. (В 1991 г. указанные авторы получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся функций одиночных ионных каналов в клетках».) Ими было установлено, что активация (открытие) и закрытие ионных каналов представляют собой вероятностный процесс, поскольку у каждого канала имеется свой порог открытия. Некоторые ионные каналы могут проводить токи как внутрь клетки, так и из нее, то есть в различных направлениях.
В кардиомиоцитах были обнаружены несколько подтипов калиевых и натриевых каналов, различные виды каналов для ионов кальция и хлора. Приводим краткую характеристику основных типов ионных каналов миокардиальных клеток.
I. Каналы для ионов К+:
а) Потенциалзависимые:
1. Каналы входящего прямого К+ тока (англ. inward rectifier – входящие выпрямляющие), IK+1, способны проводить ионы калия внутрь клетки при изменении потенциала мембраны. Однако в основном эти каналы обеспечивают выходящий ток, то есть движение ионов калия из клетки, в результате чего возникает мембранный потенциал покоя. Блокируются ионами бария Ba2+ и цезия Cs+.
2. Быстро инактивируемые каналы выходящего K+-тока (англ. transient outward – быстро выводящие), Ito. Эти каналы по скорости прохождения через них ионов калия разделяются на два подвида: быстрые (англ. fast), Ito, f, и медленные (англ. slow), Ito, s.
3. Каналы задержанного выходящего тока (англ. delayed rectifier – задержанные выпрямляющие), IK+. В современной электрофизиологической литературе эти каналы разделяют на три подвида: медленно активируемые (IKS), быстро активируемые (IKR) и сверхбыстро активируемые (IKUR).
4. Кальций-регулируемые калиевые каналы, IK+, Ca2+ .
б) Лиганд-активируемые калиевые каналы выходящего тока:
1. Ацетилхолин-зависимые, IK+, Ach.
2. АТФ-активируемые, IK+, ATP.
II. Каналы для ионов Nа+ – потенциалзависимые. Эти каналы по скорости прохождения через них ионов натрия в клетку разделяются на два подвида:
1. Быстрые, блокируемые тетродотоксином, открытие которых формирует входящий ток INa+.
2. Гиперполяризационно-активируемые смешанные Na+/ K+-каналы, открытие которых формирует входящий ток If (от англ. funny – смешной, забавный). Обнаружены в основном в пейсмекерных клетках синусового узла. Особенностью этих каналов является их способность к проведению ионов как натрия, так и калия при гиперполяризации мембраны.
III. Каналы для ионов Са2+ (входящего Са2+-тока) – потенциалзависимые:
1. Т-тип (англ. transient – изменчивые, быстро инактивируемые), ICaT, открываются при величине мембранного потенциала –80… –60 мВ и блокируются ионами Mg2+. Эти каналы обнаружены, в частности, в пейсмекерных клетках синусового и атриовентрикулярного узлов, активируются во время диастолической деполяризации.
2. L-тип (англ. long lasting – долгодействующие), медленно инактивируемые, ICaL, открываются при величине мембранного потенциала –60… –40 мВ и блокируются верапамилом. Эти каналы проницаемы в основном для ионов Са2+ и лишь в минимальной степени Na+ (в соотношении примерно 1000: 1). Обнаружены в клетках рабочего миокарда, а также пейсмекерных клетках, обеспечивают входящий ток кальция во время потенциала действия. Ток через эти каналы усиливается в присутствии агонистов β-адренорецепторов, например адреналина.
3. Поддерживающие каналы входящего Ca2+-тока (англ. sustained inward current – поддерживающий входящий ток), Ist, сходные по свойствам с каналами L-типа. Эти каналы также обнаружены в пейсмекерных клетках синусового и атриовентрикулярного узлов, активируются во время диастолической деполяризации, блокируются антагонистом кальция никардипином.
4. DHPR-типа – дигидропиридиновые, блокируются дигидропиридинами, обнаружены в Т-трубочках мембран рабочих кардиомиоцитов, активируются во время фазы плато потенциала действия, обеспечивая усиление входа кальция. 5. RyaR-типа (рианодиновые), модулируются растительным алкалоидом рианодином, обнаружены в мембранах цистерн саркоплазматического ретикулума (СПР) рабочих кардиомиоцитов, обеспечивают выход кальция из СПР в цитоплазму при электромеханическом сопряжении.
IV. Каналы для ионов Сl:
– неспецифические хлорные каналы ICl;
– кальций-активируемые хлорные каналы ICa2+,Cl.
V. Неспецифические ионные каналы (англ. background), Ibg, могут проводить различные виды положительно заряженных ионов (К+, Na+) внутрь клетки при изменениях мембранного потенциала в лабораторных условиях.
VI. Механически активируемые (англ. stretch-activated) каналы смешанного Ca2+/Na+-тока активируются, например, в ответ на растяжение волокон миокарда.
Наиболее изученными являются натриевые каналы, которые широко представлены во всех возбудимых тканях, включая миокард. Исследованиями установлено, что каждый натриевый канал может находиться в трех состояниях: активированном, или открытом (О), и двух закрытых: инактивированном (И) и реактивированном (Р). Реактивированный канал в ответ на электрический стимул может перейти в открытое состояние, тогда как инактивированный – нет. Инактивированное состояние каналов отмечено при положительных значениях мембранного потенциала +20… +30 мВ, а реактивация возможна лишь при отрицательном значении мембранного потенциала, около –60 мВ. При более выраженной гиперполяризации мембраны (до –75… –80 мВ) вероятность открытия натриевого канала резко возрастает. Открытие и закрытие ионных каналов, обеспечивая движение трансмембранных ионных токов, формирует сдвиги мембранного потенциала кардиомиоцитов. Кроме того, эти процессы имеют значение в изменениях возбудимости и формировании рефрактерности миокарда.
Мембранные потенциалы клеток – водителей ритма в течение диастолы нестабильны, поскольку наблюдается самопроизвольное отклонение мембранного потенциала от максимального отрицательного уровня в сторону деполяризации – так называемая спонтанная (медленная) диастолическая деполяризация. Поэтому для этих клеток термин «потенциал покоя» не применяется, а максимальное отрицательное значение мембранного потенциала (примерно –65… – 50 мВ) называется максимальным диастолическим потенциалом. В сократительных кардиомиоцитах во время диастолы мембранный потенциал практически стабилен, и поэтому называется мембранным потенциалом покоя. Его происхождение в указанных клетках принципиально не отличается от генеза потенциала покоя в любых клетках как возбудимых, так и невозбудимых тканей, например эритроцитах. Напомним кратко ионные механизмы происхождения мембранного потенциала покоя.
Концентрация ионов калия внутри клетки (140 ммоль/л) многократно превышает содержание калия вне ее (5 ммоль/л). Кроме того, внутри клетки имеются отрицательно заряженные органические и в меньшем количестве неорганические анионы, которые уравновешивают заряд положительных ионов калия. Однако в покое проницаемость мембраны для ионов K+ больше, чем для отрицательно заряженных органических анионов, которые практически не могут выйти из клетки. Ионы же калия стремятся (по градиенту концентрации) выйти из клетки, и поэтому по мере их выхода на мембране возникает заряд – отрицательный по отношению к наружной поверхности клетки. При этом определенный момент времени осмотическая сила, способствующая выходу ионов калия, будет уравновешиваться электростатической силой притяжения разноименных (положительных и отрицательных) ионов. В результате на мембране установится динамическое равновесие между ионами К+, которые выходят из клетки, и теми ионами К+, которые притягиваются отрицательными анионами и частично возвращаются в клетку. Таким образом, возникает так называемый равновесный калиевый потенциал, который может быть рассчитан по уравнению Нернста:
где –59 – коэффициент, отражающий заряд и валентность иона; в числителе дроби – концентрация ионов внутри клетки; в знаменателе – снаружи. Рассчитанная таким образом величина калиевого равновесного потенциала составляет около –85…–90 мВ.
Измерения, выполненные с помощью микроэлектродной техники, показали, что величина мембранного потенциала покоя сократительных кардиомиоцитов составляет около – 90 мВ, то есть практически полностью соответствует таковой, рассчитанной по уравнению Нернста. Следовательно, во время диастолы именно выходящий калиевый ток (IK+1) и является определяющим в формировании мембранного потенциала покоя сократительных кардиомиоцитов.
В формировании мембранного потенциала покоя клеток является значимым и ионный ток, создаваемый К+/Nа+насосом. При работе последнего обмен ионов не эквивалентен (на каждые 2 иона К+, введенных в клетку, переносится наружу 3 иона Na+). В результате на мембране возникает дополнительный выходящий из клетки ток положительно заряженных ионов натрия – «насосный ток», который увеличивает отрицательный внутриклеточный заряд примерно на –10 мВ. Активность К+/Nа+ АТФ-азы и величина насосного тока зависят от изменений концентрации ионов, усиливаясь при увеличении внеклеточной концентрации ионов К+ и внутриклеточной концентрации ионов Na+. Следовательно, при увеличении внеклеточной концентрации калия будет усиливаться активный перенос калия внутрь клетки, в результате чего концентрация калия внутри клетки будет возрастать. В соответствии с уравнением Нернста, отрицательный мембранный потенциал покоя в этих условиях увеличится (гиперполяризация мембраны), что может привести к остановке сердца в диастолу. Вот почему в организме человека и теплокровных животных концентрация калия и натрия в плазме крови поддерживается на постоянном уровне (водно-электролитный баланс). При необходимости применения препаратов калия в клинической практике, например в случае желудочковой экстрасистолии, внутривенное введение калийных растворов должно производиться капельно, медленно при контроле изменений электрокардиограммы.
Несколько ионных токов вносят вклад в медленную диастолическую деполяризацию, которая характерна для клеток – водителей сердечного ритма, обладающих автоматией. В клетках синоатриального узла медленную диастолическую деполяризацию опосредуют три ионных тока: входящий ток Na, If, вызванный гиперполяризацией; входящий Ca2+-ток, ICa; и выходящий K+-ток, IK.
В возникновении потенциала действия, или спайка (англ. spike – острие), клеток – водителей ритма основная роль принадлежит входящему току ионов Са2+, а в сократительных кардиомиоцитах – Nа+. Сила данных токов зависит от степени открытия потенциалзависимых ионных каналов, которая особенно возрастает при достижении мембраной порогового потенциала, или критического уровня деполяризации. Этот уровень в клетках – водителях ритма достигается в результате спонтанной диастолической деполяризации. Поскольку скорость последней в пейсмекерах синоатриального узла выше, чем в кардиомиоцитах атриовентрикулярного соединения и проводящей системы желудочков, то в норме эти клетки возбуждаются не спонтанно, а лишь под влиянием импульсов, поступающих от синоатриального узла. В сократительных кардиомиоцитах в норме спонтанная диастолическая деполяризация отсутствует, и поэтому достижение критического уровня деполяризации возможно только после проведения к ним по проводящей системе импульсов от синусового узла. Однако пусковыми стимулами для возбуждения сократительных кардиомиоцитов могут явиться и внешние электрические импульсы, получаемые от искусственных водителей ритма (кардиостимуляторов), а также механическое раздражение, например сильный удар в область грудины при остановке сердца или же прямой его массаж при вскрытой грудной клетке в условиях клиники.
При достижении мембраной кардиомиоцитов критического уровня деполяризации количество открытых ионных каналов резко возрастает, мембрана еще более деполяризуется, что приводит к еще большему открытию ионных каналов. Иными словами, возникает положительная обратная связь: «деполяризация → открытие ионных каналов → усиление входящего тока → возрастание деполяризации». В результате возникает лавинообразный, самоподдерживаемый процесс усиления входящего тока положительно заряженных ионов в клетку. Этот ток не только уменьшает отрицательный заряд мембраны, но и перезаряжает ее до положительных значений, то есть вызывает реверсию потенциала, или овершут (англ. overshoot – перелет). Однако на этом фоне каналы входящего тока натрия и кальция начинают закрываться, и его сила уменьшается, тогда как выходящий ток (ионов калия), напротив, усиливается. В результате положительная величина мембранного потенциала уменьшается до нуля, и в дальнейшем вновь происходит перезарядка мембраны клетки до отрицательных значений, то есть мембранный потенциал возвращается к диастолическому уровню. Таким образом, взаимодействие входящего и выходящих ионных токов формирует потенциал действия кардиомиоцитов.
В 1975 г. П. Крейнфилд предложил классифицировать кардиомиоциты по скорости развития фазы деполяризации потенциала действия на клетки с медленным и быстрым ответом. Соответственно, в сердце можно выделить два основных типа потенциалов действия – быстрый и медленный ответы.
Клетки с медленным ответом представлены в основном пейсмекерными клетками синоатриального узла и атриовентрикулярного соединения, а также специализированными клетками проводящей системы.
К клеткам с быстрым ответом относятся все сократительные кардиомиоциты, а также проводящие кардиомиоциты предсердий и некоторые элементы проводящей системы желудочков (волокна Пуркинье).
В «медленных» клетках в возникновении, а также поддержании потенциала действия основное участие принимает входящий через кальциевые каналы L-типа медленный ток I Ca2+L. В возникновении же потенциала действия клеток с быстрым ответом ведущая роль принадлежит входящему натриевому току I Na+, протекающему через быстрые натриевые каналы. Однако для поддержания длительной (250–300 мс) деполяризации мембраны в клетках с быстрым ответом необходимы также активация кальциевых каналов L-типа и возникновение входящего тока I Ca2+L. Блокада указанных каналов приводит к тому, что потенциал действия «быстрых» клеток становится коротким по продолжительности и сопоставим с таковым в скелетных мышцах (10–20 мс). Рассмотрим более подробно фазы потенциала действия «медленных» и «быстрых» клеток.
Клетки с медленным ответом. Для этого типа кардиомиоцитов характерны меньшая амплитуда потенциала действия и скорость его распространения по сравнению с «быстрыми» клетками. Фазы деполяризации и реполяризации потенциала действия «медленных» клеток протекают более плавно, чем в «быстрых» клетках (рис. 4).
Фаза быстрой деполяризации (0) характеризуется небольшой по сравнению с «быстрыми» клетками скоростью (до 20 В/с) нарастания и обеспечивается входящим током I Са2+L. Пороговый потенциал, при котором активируется достаточное для обеспечения этого тока количество Са2+-каналов L-типа, составляет около –40 мВ. Во время этой фазы отрицательный мембранный потенциал медленных клеток уменьшается до нуля, а затем происходит перезарядка мембраны (реверсия потенциала) до положительных значений, примерно +5… +10 мВ.
Рис. 4. Потенциал действия «медленных» клеток
Далее следует конечная реполяризация (3). По сравнению с «быстрыми» клетками в «медленных» клетках начальная быстрая реполяризация и фаза плато отсутствуют, а вершина потенциала действия сглажена (см. рис. 4). Величина мембранного потенциала в фазу конечной реполяризации определяется соотношением между усиливающимися выходящими токами ионов калия (IKS, IKR и IKUR) и уменьшающимся входящим током ионов кальция (I Са2+L) на фоне медленной инактивации Са2+-каналов L-типа. Завершается реполяризация достижением мембраной уровня максимального диастолического потенциала (–65…–50 мВ).
В пейсмекерных клетках синусового узла в результате спонтанной диастолической деполяризации (4) мембранный потенциал достигает порогового уровня и далее генерируется очередной потенциал действия. Следует подчеркнуть, что в пейсмекерах синоатриального узла скорость спонтанной диастолической деполяризации больше, чем в аналогичных кардиомиоцитах атриовентрикулярного соединения. Поэтому в условиях работающего сердца в пейсмекерных клетках атриовентрикулярного соединения эта фаза прерывается импульсом, приходящим от синоатриального узла, что и обусловливает возникновение в них потенциала действия. В изолированных клетках – водителях ритма атриовентрикулярного соединения спонтанная диастолическая деполяризация, развиваясь с меньшей скоростью, чем в синусовом узле, обеспечивает достижение критического уровня деполяризации и генерацию потенциалов действия, однако с меньшей частотой (40–60 в 1 мин), чем в синусовом узле (70–80 в 1 мин).
Исследования, проведенные в 1980–1990-х гг. с использованием методики patch-clamp, позволили установить, что возникновение спонтанной диастолической деполяризации в клетках – водителях ритма обусловлено сложным взаимодействием различных ионных токов в результате активации ионных каналов. Считается, что в пейсмекерных клетках синусового и атриовентрикулярного узлов уменьшение мембранного потенциала от его максимального отрицательного значения до критического уровня деполяризации обусловлено взаимодействием по крайней мере трех токов:
1) времязависимая задержка калиевой проводимости в результате инактивации каналов задержанного выходящего K+-тока, которая приводит к уменьшению выходящих калиевых токов IKS и IKR;
2) увеличение входящего натриевого тока If через f-каналы;
3) усиление входящего тока ионов Ca2+ (ICaT) через каналы T-типа и «поддерживающего» кальциевого тока Ist.
Можно полагать, что эти события происходят последовательно: вначале уменьшаются выходящие калиевые токи IKS и IKR, которые ранее обеспечивали фазу 3 (конечной реполяризации) потенциала действия пейсмекерной клетки; затем увеличивается входящий натриевый ток If, и на заключительном этапе спонтанной диастолической деполяризации усиливаются входящие кальциевые токи ICa2+T и Ist. В результате мембранный потенциал клетки достигает критического уровня деполяризации (около –40 мВ), что приводит к активации кальциевых каналов L-типа, усилению входящего тока ICa2+L и развитию фазы 0 (быстрой деполяризации) потенциала действия.
Как блокада кальциевых каналов T-типа (препарат верапамил), так и селективная блокада If-каналов (препарат ивабрадин) приводят к снижению частоты генерации импульсов синусовым узлом и, следовательно, частоты сердечных сокращений. На этом эффекте основано применение некоторых (не всех!) антагонистов кальция для лечения аритмий. К брадикардии приводит также усиление выходящего калиевого тока, например, в ответ на применение агониста М-холинорецепторов – ацетилхолина. Более того, резкое усиление выходящего калиевого тока вызывает выраженную гиперполяризацию мембраны и может привести к прекращению спонтанной диастолической деполяризации в пейсмекерных клетках синусового узла, то есть остановке сердца. Эти данные доказывают роль взаимодействия торможения выходящих калиевых токов и усиления входящих – натриевого и кальциевого – в возникновении спонтанной диастолической деполяризации в пейсмекерных клетках синусового и атриовентрикулярного узлов.
Трансмембранный потенциал в покоящейся клетке намного менее негативен у клеток синоатриального и атриовентрикулярного узлов, чем у предсердных или желудочковых кардиомиоцитов. В этих условиях по крайней мере три ионных тока опосредуют медленную диастолическую деполяризацию: (1) входящий ток If, вызванный гиперполяризацией; (2) входящий Ca2+-ток ICa; и (3) выходящий K+-ток IK.
Входящий ток If (англ. funny) активируется ближе к концу фазы реполяризации. Этот «странный» ток обеспечивается главным образом ионами Na+ через специфические каналы, которые отличаются от быстрых Na+-каналов. Ток назвали «странным», потому что ранее не предполагалось наличия входящего Na+ тока в пейсмекерных клетках после завершения реполяризации. Этот ток активируется по мере того, как мембранный потенциал становится более негативным, чем приблизительно –50 mV. Чем более негативен мембранный потенциал, тем больше If.
Второй ток, ответственный за диастолическую деполяризацию, – входящий Ca2+-ток ICa. Он активируется к концу фазы медленной диастолической деполяризации по мере того, как трансмембранный потенциал достигает величины примерно –55 mV. Прогрессивной диастолической деполяризации, опосредованной двумя входящими токами If и ICa, противодействует выходящий калиевый ток задержанного аномального выпрямления. Эта утечка K+ способствует реполяризации после нарастания потенциала действия. K+ продолжает выходить наружу в течение значительного времени после максимальной реполяризации, но этот выход уменьшается на всем протяжении фазы медленной диастолической деполяризации. По мере того как этот ток уменьшается, его противодействие деполяризующим влияниям двух входящих токов (ICa и If) также постепенно уменьшается.
Ионные основы автоматии в пейсмекерных клетках атриовентрикулярного узла аналогичны таковым в клетках синоатриального узла и волокнах Пуркинье желудочков, за исключением того, что в последних не участвует Ca2+-ток.
Частота разрядов пейсмекерных клеток может варьировать при изменении степени деполяризации клетки, величины негативного диастолического потенциала или величины порога возбуждения. Когда скорость медленной диастолической деполяризации увеличивается, величина критического потенциала достигается раньше, и частота сердечных сокращений увеличивается. Повышение порога возбуждения задерживает начало фазы деполяризации, и частота сердечных сокращений соответственно уменьшается. Аналогично, если максимальный диастолический потенциал увеличен, требуется больше времени, чтобы достигнуть порога. Если при этом крутизна фазы медленной диастолической деполяризации остается неизменной, частота сердечных сокращений уменьшается.
Клетки с быстрым ответом. Потенциал действия возникает и нарастает, когда стимул выше порогового быстро деполяризует мембрану, активируя быстрые Na+-каналы. Кроме высокой скорости деполяризации (до 1000 В/с) эти клетки характеризуются большой амплитудой потенциала действия, а также высокой скоростью проведения возбуждения. В потенциале действия этих клеток различают пять фаз (рис. 5).
Фаза 0 – быстрая деполяризация – обеспечивается вначале (при деполяризации мембраны до пороговой величины около –80… –70 мВ) входящим током ионов натрия (INa+) в ответ на активацию «быстрых» Nа+-каналов. Поэтому фаза быстрой деполяризации связана с входом Na+ в кардиомиоцит. Входящий Na+-ток, осуществляемый через потенциалуправляемые Na+-каналы, не только очень быстро активируется, но и также быстро инактивируется. Инактивация Na+-каналов потенциалзависима и происходит, когда фаза деполяризации достигает значений от +25 до +30 мВ. Именно такая динамика входящего Na+-тока определяет практически вертикальную форму кривой фазы деполяризации потенциала действия.
Рис. 5. Потенциал действия «быстрых» клеток
Когда мембранный потенциал достигает примерно –65…
– 50 мВ, начинают открываться Са2+-каналы L-типа, и к входящему натриевому току (INa+) добавляется входящий кальциевый ток (ICa2+L). В результате отрицательный потенциал мембраны быстро уменьшается от –90 мВ до 0 и происходит перезарядка мембраны (реверсия потенциала) до положительных значений +20…+30 мВ. На протяжении всей фазы 0 регистрируется и выходящий ток ионов К+ (IK+L), однако сила этого тока мала по сравнению с натриевым и кальциевым токами, так как количество открытых каналов для ионов К+ в эту фазу значительно меньше, чем ионных каналов для Nа+ и Ca2+.
Когда величина мембранного потенциала достигает примерно +20… +30 мВ, «быстрые» натриевые каналы инактивируются, и входящий Nа+-ток практически прекращается. Входящий же ток ионов кальция (IСа2+L) при этом сохраняется, так как Са2+-каналы L-типа инактивируются позже (в фазу 3). В результате реверсии мембранного потенциала открываются быстро инактивируемые калиевые каналы, что вызывает усиление выходящих токов ионов К+ (Ito, f и Ito, s). Фаза 1 – начальная быстрая реполяризация – происходит за счет выхода K+ через ионные каналы мембраны, проводящие транзиторный выходящий ток (Ito). Активация этих каналов вызывает кратковременный выход калия из клетки, потому что внутренняя часть клетки заряжена положительно, а внутренняя концентрация калия значительно превосходит внешнюю. В результате выхода положительно заряженных ионов клетка на короткое время частично реполяризуется. Усиление выходящих калиевых токов Ito, f и Ito, s на фоне меньшего по величине входящего тока ионов кальция (IСа2+L) приводит к уменьшению положительного заряда внутри клетки до +5… +10 мВ. В клетках волокон Пуркинье в эту фазу отмечена также кратковременная активация потенциалзависимых хлорных каналов, что вызывает формирование входящего тока ионов хлора (ICa2+, Cl), и поэтому начальная быстрая реполяризация происходит с большей скоростью, чем в сократительных кардиомиоцитах.
Фаза 2 – медленная реполяризация, или платó (фр. plateau – плоскогорье). Развитие фазы плато связано с равновесием между входом в кардиомиоцит ионов Ca2+ через Ca2+каналы и выходом ионов калия через K+-каналы нескольких видов. Фаза плато характеризуется динамическим равновесием между входящим током ионов Са2+ (IСа2+L) и выходящими токами ионов К+ через каналы задержанного выходящего тока (IKS, IKR), что обеспечивает длительное (до 200 мс) время реверсии мембранного потенциала и продолжительность (до 300 мс) всего потенциала действия «быстрых» клеток. Особо значимой фаза 2 является для сократительных кардиомиоцитов, в которых входящий ток ионов кальция запускает процесс сопряжения возбуждения и сокращения. Поэтому максимальное сокращение кардиомиоцита примерно соответствует окончанию фазы плато. Кроме того, от длительности фазы плато зависит продолжительность рефрактерности рабочего миокарда.
Фаза 3 – конечная быстрая реполяризация – начинается в конце фазы плато, когда выход K+ из клетки сердца начинает превышать вход Ca2+. Примерно через 200 мс после начала потенциала действия Са2+-каналы L-типа практически полностью инактивируются, и входящий ионный ток IСа2+L прекращается. Сохраняющиеся же выходящие токи ионов К+ (IKS, IKR) обеспечивают возвращение мембранного потенциала к максимальному диастолическому уровню.
В сократительных кардиомиоцитах левого желудочка в фазу конечной быстрой реполяризации имеет место и усиление выходящего калиевого тока (IK+, ATP) в результате активации АТФ-активируемых калиевых каналов. Таким образом, в названных клетках фаза 3 обеспечивается усилением по крайней мере трех типов выходящих калиевых токов: IKS, IKR и IK+, ATP. Восстановление исходного состояния клетки происходит в следующем порядке. Избыток натрия, который входит в клетку в течение фазы быстрой деполяризации, удаляется Na+/K+-ATФ-азой. Этот фермент переносит 3 Na+ в обмен на 2 K+, который вышел из клетки в ходе быстрой реполяризации и реполяризации. Аналогичным образом большая часть излишка кальция, который вошел в клетку в течение фазы плато, удаляется Na+/Ca2+-обменником, который обменивает 3 Na+ на 1 Ca2+.
Фаза 4 – мембранный потенциал покоя (в сократительных кардиомиоцитах), или спонтанная диастолическая деполяризация (в изолированных клетках Пуркинье). Механизмы возникновения мембранного потенциала покоя рассмотрены выше, и в сократительных кардимиоцитах они обеспечиваются в основном выходящим током калия IK+1. В условиях патологии сердца сократительные кардиомиоциты могут также приобрести способность к спонтанной диастолической деполяризации и генерации потенциалов действия, что является одной из причин возникновения экстрасистолии и других нарушений сердечного ритма.
В изолированных клетках волокон Пуркинье спонтанная диастолическая деполяризация обусловлена в основном уменьшением выходящих калиевых токов IKS и IKR в результате инактивации K+-каналов задержанного выходящего тока, а также усилением входящего тока ионов натрия (If). О роли изменений силы этих токов в возникновении спонтанной диастолической деполяризации в данных клетках свидетельствуют опыты с применением агониста М-холинорецепторов ацетилхолина и блокатора натриевых каналов лидокаина. Применение ацетилхолина, вызывая усиление выходящего калиевого тока и в результате гиперполяризацию мембраны, приводит к выраженному уменьшению скорости спонтанной диастолической деполяризации и даже ее прекращению. Блокада натриевых каналов лидокаином также приводит к снижению скорости спонтанной диастолической деполяризации в изолированных клетках волокон Пуркинье.
В настоящее время пока невозможно ответить на вопрос о причинах спонтанного открытия и закрытия ионных каналов, поскольку нет общей гипотезы и модели возникновения самогенерации электрических колебаний в живых системах, равно как и гипотезы возникновения биоритмов. Поэтому электрофизиологические процессы, происходящие в кардиомиоцитах при возбуждении, требуют дальнейшего изучения. Знание процессов, лежащих в основе нормальной электрофизиологии сердца, позволяет понять механизмы развития различных видов нарушений ритма и проводимости миокарда, а также синтезировать новые антиаритмические препараты. Таким образом, сложные процессы вероятностного открытия и закрытия ионных каналов, вызывающие усиление или уменьшение входящих и выходящих ионных токов, определяют особенности потенциалов действия и электрофизиологические свойства «медленных» и «быстрых» кардиомиоцитов, сравнительная характеристика которых представлена в табл. 1 и 2.
Таблица 1
Сравнительная характеристика кардиомиоцитов с медленным и быстрым ответом
Таблица 2
Основные типы кардиомиоцитов и их свойства
* Длительность потенциала действия в предсердиях – 100–300 мс.
** Скорость проведения в AN-зоне атриовентрикулярного соединения – около 0,05 м/с, в пучке Гиса – меньше, чем в волокнах Пуркинье, а в сократительных миоцитах предсердий – меньше, чем в желудочках.
*** Сократительные кардиомиоциты не обладают автоматией.
1.5. Изменения возбудимости при генерации потенциалов действия и механизмы возникновения рефрактерности миокарда
Исследованиями Б. Гоффмана и П. Крейнфилда, выполненными в середине XX в. на изолированных кардиомиоцитах с применением микроэлектродной техники, показано, что возбудимость миокарда изменяется в процессе развития потенциала действия. Ими было выявлено несколько фаз изменений возбудимости, которые особенно четко соотносятся с фазами потенциала действия у клеток с быстрым ответом (рис. 6).
Рис. 6. Изменение возбудимости клеток рабочего миокарда (б) в процессе сокращения (а)
Время, в течение которого кардиомиоцит неспособен генерировать потенциал действия в ответ на применение стимула любой силы, называется периодом абсолютной рефрактерности, или эффективным рефрактерным периодом (ЭРП). Он совпадает по времени с фазами быстрой деполяризации, начальной быстрой реполяризации, плато и началом фазы конечной реполяризации потенциала действия «быстрых» кардиомиоцитов. Во второй половине фазы конечной реполяризации кардиомиоцит в течение 50 мс находится в таком состоянии, когда стимул, превышающий величину порогового, может вызвать новый потенциал действия. При этом также снижена скорость распространения возбуждения по миокарду. Указанный временной интервал называется относительным рефрактерным периодом (ОРП). Суммарная продолжительность эффективного и относительного рефрактерных периодов, то есть общее время восстановления нормальной возбудимости, у «быстрых» кардиомиоцитов практически равна длительности потенциала действия (300 мс). В завершении фазы 3 – конечной реполяризации – во время возвращения мембранного потенциала к диастолическому уровню примерно в течение 50 мс возбудимость миокарда резко возрастает, и даже подпороговый стимул может вызвать генерацию потенциала действия. Этот период получил название сверхнормальной возбудимости (СНВ), а в клинической литературе он называется также уязвимым периодом.
Рефрактерность кардиомиоцитов с быстрым ответом во время генерации потенциала действия и восстановление нормальной возбудимости после его окончания обусловлены, в основном, изменениями свойств «быстрых» натриевых ионных каналов. Так, после реверсии мембранного потенциала в фазу 0 и достижения положительного заряда на мембране +20… +30 мВ натриевые каналы закрываются и инактивируются, становясь неспособными к открытию. Поэтому возникновение у них нового потенциала действия в это время, в принципе, невозможно, и кардиомиоцит находится в состоянии абсолютной рефрактерности. Другой причиной рефрактерности миокарда, его неспособности к слитному сокращению является медленный входящий ток кальция в фазу плато, благодаря чему общая длительность деполяризации рабочих кардиомиоцитов и клеток волокон Пуркинье растягивается до 400–500 мс.
Когда в процессе реполяризации мембранный потенциал достигает примерно –60 мВ, натриевые каналы переходят в реактивированное состояние, и к открытию оказывается способным такое количество Nа+-каналов, что становится возможным развитие нового потенциала действия. Однако он возникает только в ответ на более сильные, чем обычно, сверхпороговые раздражители, что и обеспечивает возникновение относительного рефрактерного периода. При достижении мембраной потенциала около –75 мВ, что имеет место при завершении фазы 3 (конечной реполяризации), вероятность открытия натриевых каналов резко возрастает. Поэтому именно в этот период отмечен период сверхнормальной возбудимости.
Сдвиги возбудимости клеток с медленным ответом обусловлены в основном инактивацией и реактивацией кальциевых каналов L-типа. При генерации потенциала действия и деполяризации мембраны до –40 мВ кальциевые каналы инактивируются и развивается абсолютная рефрактерность. Поскольку скорость реактивации у кальциевых каналов гораздо медленнее, чем у натриевых, полное восстановление возбудимости в «медленных» клетках возможно не ранее чем через 100 мс после окончания реполяризации. Таким образом, состояние абсолютной рефрактерности у клеток с медленным ответом длится не только в течение всего потенциала действия, но и некоторое время после него. Отмеченные свойства «медленных» клеток обеспечивают нормальное развитие в них спонтанной диастолической деполяризации и исключают в норме возникновение преждевременных импульсов.
Таким образом, свойство рефрактерности миокарда играет важную роль в обеспечении нормальной деятельности сердца. Рефрактерный период рабочего миокарда практически соответствует по времени всему потенциалу действия и длительности сокращения. В результате в миокарде невозможна суммация сокращений, то есть развитие тетануса, как это имеет место в скелетной мышце, что могло бы привести к нарушению сокращения и остановке сердца. Более того, даже при очень высокой частоте искусственной стимуляции миокарда частота его сокращений не может превысить уровень, определяемый длительностью рефрактерного периода. Благодаря этому сохраняется резерв времени, необходимый для расслабления камер сердца и наполнения их кровью.
Рефрактерность обеспечивает нормальную последовательность распространения возбуждения в миокарде и его электрическую стабильность при возникновении патологических участков возбуждения в проводящей системе сердца. Например, при возникновении преждевременного импульса в ножке Гиса он может распространяться не только в направлении желудочков, но и к миокарду предсердий, навстречу нормальному импульсу, исходящему из синусового узла. Однако область миокарда, по которой уже прошло электрическое возбуждение, на некоторое время становится невозбудимой, и поэтому повторный вход возбуждения в нее невозможен. Благодаря этому имеет место «взаимогашение» встречных волн возбуждения в миокарде, что препятствует, в частности, возникновению циркуляции возбуждения.
Увеличение продолжительности рефрактерного периода в отдельном участке проводящей системы может привести к однонаправленной блокаде проведения. Последнее является предпосылкой для развития нарушений нормального распространения возбуждения по типу повторного входа (англ. reentry). Выделяют макро- и микро-re-entry-механизмы. Чаще всего по механизму re-entry возникают экстрасистолы и – при наличии дополнительных путей проведения – пароксизмальная тахикардия. Возникновение множественных очагов микро-re-entry приводит к тому, что в результате возникает десинхронизация и дискоординация возбуждения и сокращения волокон миокарда. Они начинают возбуждаться и сокращаться независимо друг от друга. В клинической литературе такое состояние миокарда называется фибрилляцией.
Для обозначения фибрилляции предсердий в отечественной литературе применяется термин «мерцательная аритмия». При этом хаотическое возбуждение предсердий (с частотой от 300 до 600 имп./мин) случайным образом проводится через атриовентрикулярное соединение и далее распространяется по проводящей системе Гиса – Пуркинье к желудочкам.
Однако атриовентрикулярный узел не способен проводить более 180–200 имп./мин, а рабочему миокарду желудочков свойственна продолжительная (до 300 мс) рефрактерность. Поэтому в условиях мерцания предсердий миокард желудочков возбуждается синхронно, хотя и с разной частотой (от 80 до 160 в 1 мин), и в результате при каждом сокращении желудочков из них выбрасывается различное количество крови. Следовательно, при данной патологии насосная функция сердца позволяет в какой-то мере обеспечивать кровообращение. Нарушение внутрисердечной гемодинамики на фоне мерцательной аритмии часто приводит к формированию тромба в предсердиях, отрыв которого может привести к тромбоэмболии легочной или коронарной артерии либо мозговому инсульту.
Фибрилляция желудочков представляет собой наиболее опасное для жизни человека нарушение сердечного ритма. В этих условиях нормальная сократительная функция сердца невозможна, что приводит к остановке кровообращения и клинической смерти. Для предупреждения биологической смерти требуется проведение немедленных экстренных реанимационных мероприятий в первые четыре минуты после остановки кровообращения. Наиболее эффективно при этой патологии проведение электроимпульсной терапии, или электрической дефибрилляции, с помощью специального аппарата – дефибриллятора. При этом один из электродов может располагаться под левой лопаткой больного, а второй – прижиматься к грудной клетке над областью сердца. (Существуют и иные способы расположения электродов, о которых подробно изложено в учебниках по реаниматологии.) Короткий (десятки миллисекунд) электрический разряд дефибриллятора напряжением в 6000–7000 В и мощностью 200–360 Дж вызывает возбуждение большей части кардиомиоцитов и их синхронизацию по рефрактерности, после чего возможно восстановление нормального сердечного ритма, сократительной активности желудочков и кровообращения. При отсутствии дефибриллятора электроимпульсная терапия может быть проведена разрядом из обычной электросети напряжением 220 В. Более того, в клинической литературе отмечены случаи восстановления сердечной деятельности после резкого удара кулаком в область грудины. Наряду с этим обязательно выполняются закрытый массаж сердца и искусственная вентиляция легких. Даже при такой грозной патологии сердца, как фибрилляция желудочков, при четкой и быстрой организации реанимационных мероприятий существует высокая вероятность (до 80 %) возвращения больного к жизни.
1.6. Сопряжение возбуждения и сокращения в миокарде
Фундаментальные свойства миокарда (возбудимость, проводимость и автоматия) обеспечивают его сократимость – способность мышечных волокон укорачиваться или увеличивать свое напряжение. В соответствии с теорией «скользящих нитей», предложенной X. Хаксли и А. Хаксли еще в 1950-х гг., при сокращении миофибрилл происходит укорочение саркомера, то есть уменьшение его продольного размера вследствие активного перемещения актиновых нитей относительно миозиновых. При этом длина нитей не изменяется. Молекулярными исследованиями 1970–1980-х гг. установлено, что актиновые нити скользят вдоль миозиновых благодаря «гребковым» движениям головок миозина. Головка прикрепляется к участку связывания на актине, потом наклоняется, вызывая укорочение саркомера, и отсоединяется от актина. Далее головка прикрепляется к следующему участку связывания на актиновой нити, и цикл повторяется. При этом сила сокращения определяется количеством связей (мостиков) между миозином и актином.
В расслабленном миокарде соединению миозина и актина препятствуют молекулы тропонина, «закрывающие» участки связывания на актиновой нити. Однако при повышении концентрации кальция в цитоплазме, что имеет место во время возбуждения кардиомиоцита, ионы кальция соединяются с тропонином С. Присоединение Са2+ к этому белку приводит к конформационным изменениям тропонин-тропомиозинового комплекса. В результате молекулы тропомиозина смещаются, миозиновые и актиновые нити вступают во взаимодействие, и начинается процесс сокращения. Чем больше ионов Са2+ поступит к миофибриллам при возбуждении, тем большее количество актомиозиновых мостиков будет образовываться, и тем сильнее, следовательно, будет сокращение. Таким образом, повышение концентрации ионов Са2+ в цитоплазме кардиомиоцита является ключевым фактором, обеспечивающим электромеханическое сопряжение – связь между возбуждением и сокращением миокарда.
Исследования, проведенные в 1980–1990-е гг., позволили установить, что на мембране Т-трубочек поверхностной мембраны кардиомиоцитов имеется кальциевый потенциалзависимый канал, который блокируется препаратами из группы дигидропиридинов. Поэтому он получил название дигидропиридинового рецептора (DHPR). На мембране терминальных цистерн саркоплазматического ретикулума расположен другой потенциалзависимый кальциевый канал, проницаемость которого модулируется растительным алкалоидом рианодином, поэтому он получил название рианодинового рецептора (RyaR). Кроме того, с последним, возможно, связан белок кальмодулин, конформационные изменения которого могут приводить к активации рианодинового рецептора и выходу ионов кальция из цистерн саркоплазматического ретикулума. По другим данным, рианодиновые рецепторы непосредственно активируются ионами кальция (рис. 7).
Рис. 7. Транспорт ионов кальция в процессах сопряжения возбуждения и сокращения в сердечной мышце
Электромеханическое сопряжение в кардиомиоците начинается с возникновения фазы 0 потенциала действия на плазматической мембране. Когда мембранный потенциал достигает уровня –65 мВ, открываются потенциалзависимые Са2+-каналы L-типа, обеспечивающие формирование входящего ICa2+L тока, который ускоряет деполяризацию кардиомиоцитов. В результате активируются потенциалзависимые кальциевые ионные каналы мембраны T-трубочек (дигидропиридиновый рецептор), через которые ионы кальция поступают внутрь кардиомиоцитов. «Внешние» ионы кальция взаимодействуют (прямо или через посредство кальмодулина) с рианодиновыми рецепторами саркоплазматического ретикулума. Вследствие этого кальциевые ионные каналы саркоплазматического ретикулума открываются, и кальций начинает поступать из мембранных цистерн в цитоплазму кардиомиоцита. В результате концентрация кальция в цитоплазме клетки возрастает с менее чем 10-7 М/л до 10-5 М/л. Резкое повышение концентрации ионов Са2+ в саркоплазме устраняет тропомиозиновую блокаду взаимодействия актина и миозина и запускает процесс сокращения кардиомиоцитов.
Таким образом, поступление «внешних», или триггерных, ионов кальция вызывает высвобождение «внутренних» ионов кальция из саркоплазматического ретикулума. Такой процесс получил название кальций-индуцированного высвобождения кальция. Важно подчеркнуть, что чем более выраженным будет поступление внешних ионов кальция в цитоплазму кардиомиоцита, тем в большей степени будет возрастать количество ионов кальция, выходящих из саркоплазматического ретикулума. Поскольку входящий кальциевый ток ICa2+L достигает максимальной величины во время фазы 2 (плато) потенциала действия рабочего кардиомиоцита, длительность именно этой фазы в норме определяет силу сокращения миокарда. Следовательно, сократимость сердечной мышцы непосредственно зависит от силы входящего кальциевого тока (ICa2+L), которая может возрастать, например, под влиянием катехоламинов, влияющих на степень открытия кальциевых каналов L-типа. Наряду с этим поступление в цитоплазму внешних ионов кальция восполняет запасы кальция в цистернах саркоплазматического ретикулума, что в итоге также влияет на сократимость миокарда.
Существует и другой механизм поступления больших количеств ионов Са2+ в цитоплазму рабочего кардиомиоцита при его возбуждении. Он обеспечивается сопряженным транспортом ионов кальция и натрия через мембрану, то есть Са2+/Na+-обменом. Во время диастолы Са2+/Na+-насос активно удаляет из клетки ионы Са2+ в обмен на ионы Na+. При возбуждении кардиомиоцита направление Са2+/Na+-обмена меняется на противоположное: ионы Са2+ активно переносятся в клетку, тогда как ионы Na+, напротив, удаляются, и в результате концентрация ионов кальция в цитоплазме кардиомиоцита возрастает.
Нарушение процесса электромеханического сопряжения при патологии сердца может привести к тому, что потенциалы действия, продолжая возникать в синусовом узле и распространяться по проводящей системе к рабочему миокарду, не вызывают его сокращения. Отсутствие сократительной функции миокарда приводит к остановке кровообращения. Однако электрическая активность сердца может быть выявлена, например, с помощью регистрации электрокардиограммы. Такое состояние называется электромеханической диссоциацией и может явиться одной из непосредственных причин смерти, например при инфаркте миокарда.
Снижение сократимости миокарда является одной из основных причин развития сердечной недостаточности – состояния, при котором нарушаются гемодинамическая функция сердца и нормальное кровоснабжение органов и тканей. В клинической практике для лечения сердечной недостаточности применяют сердечные гликозиды – вещества, выделенные из таких растений, как наперстянка (дигиталис), строфант, ландыш и др. (Впервые в клиническую практику препараты наперстянки были внедрены английским врачом В. Уитерингом еще в 1785 г.) Как показали физиологические и фармакологические исследования, проведенные в середине 1970–1980-х гг., механизм действия этих препаратов обусловлен их способностью влиять на работу К+/Na+-насоса мембран кардиомиоцитов, а также метаболизм миокарда. В малых терапевтических дозах сердечные гликозиды усиливают работу К+/Na+-насоса, что отчасти увеличивает концентрацию ионов калия в клетках, вызывая увеличение его сократимости.
В средних и высоких терапевтических дозах данные препараты, напротив, угнетают К+/Na+-насос мембраны кардиомиоцитов, что приводит к возрастанию внутриклеточной концентрации Na+ и усилению поступления ионов Са2+ в клетку по механизму Са2+/Na+-обмена (как в покое, так и при возбуждении). В результате увеличивается продолжительность фазы плато потенциала действия рабочего кардиомиоцита, а следовательно, еще больше возрастает сократимость миокарда.
1.7. Особенности сократимости и биомеханики сердечной мышцы
Работа сердца как насоса обеспечивается прежде всего нормальной сократительной функцией миокарда. В исследованиях, проведенных в 1970–1980-х гг. на сосочковой (папиллярной) мышце миокарда млекопитающих, были предприняты попытки, во-первых, создать биофизические модели для описания параметров сократительной активности миокарда, таких как сила и скорость сокращения, а во-вторых, выявить взаимосвязь между указанными параметрами и показателями насосной функции сердца, например ударным объемом желудочков и сердечным выбросом. Эти модели сначала опирались на теорию сокращения скелетной мышцы, предложенную английским физиологом, лауреатом Нобелевской премии А. Хиллом еще в 1922 г. Однако, как оказалось, по ряду фундаментальных характеристик сократимости сердечная мышца отличается от скелетной.
Закон «все или ничего». Поскольку миокард представляет собой функциональный синцитий, то при развитии потенциала действия в одном кардиомиоците процесс возбуждения с высокой скоростью (до 0,5 м/с) распространяется на соседние невозбужденные клетки. Таким образом, происходит быстрый охват возбуждением всех рабочих кардиомиоцитов, что обеспечивает синхронность и практически одновременность их сокращения. Вследствие этого сила сокращения сердца не зависит от силы сверхпорогового раздражителя (закон «все или ничего»). Этот закон был впервые сформулирован американским физиологом X. Боудичем в опытах с электростимуляцией изолированного сердца в конце XIX в.
Невозможность суммации сокращений (тетануса). Как указано выше, продолжительность рефрактерного периода (абсолютного и относительного) рабочего миокарда примерно соответствует времени всего потенциала действия (300 мс). Принципиально важно, что длительность потенциала действия рабочих кардиомиоцитов практически совпадает по времени с продолжительностью их сокращения. Поэтому последующий импульс может вызвать сокращение миокарда только после его расслабления, что соответствует окончанию предыдущего потенциала действия. В результате в миокарде невозможна суммация сокращений при увеличении частоты стимуляции, то есть развитие тетануса, как в скелетной мышце, что могло бы привести к нарушению сокращения и остановке сердца. (Напомним, что продолжительность потенциала действия скелетной мышцы составляет около 5–10 мс, а длительность ее сокращения – 40–50 мс.) В скелетной мышце следующий импульс уже через 10 мс после первого может вызвать новое сокращение, когда мышца еще не расслабилась, что приводит к суммации сокращений. В миокарде этого не происходит в силу значительной продолжительности рефрактерного периода.
Зависимость силы сокращений от величины входящего тока кальция. Выше говорилось, что сокращение миокарда возникает в ответ на поступление «внешних» ионов кальция, которые вызывают высвобождение «внутреннего» кальция из саркоплазматического ретикулума. Поэтому чем более выраженным будет входящий ток ICa2+L, тем большее количество ионов кальция будет выходить в цитоплазму через рианодиновый кальциевый канал-рецептор из саркоплазматического ретикулума, и тем большее количество актомиозиновых мостиков будет образовываться. Таким образом, именно величина входящего тока кальция ICa2+L и определяет силу сокращения рабочих кардиомиоцитов и миокарда в целом. Поскольку входящий кальциевый ток ICa2+L в норме достигает максимальной величины во время фазы 2 потенциала действия рабочего кардиомиоцита, длительность именно этой фазы определяет силу сокращения миокарда. Продолжительность фазы 2 может возрастать под влиянием агонистов β-адренорецепторов, – катехоламинов, выделяющихся из симпатических нервов сердца или циркулирующих в крови. Поэтому возбуждение таких рецепторов сопровождается усилением сократимости миокарда, что играет важную роль в нервной и гуморальной регуляции сердечной деятельности.
Зависимость «частота – сила». Как уже отмечалось, даже при очень высоких частотах стимуляции миокард не способен к развитию тетануса (суммированного сокращения), характерного для скелетной мышцы. Такая особенность является следствием длительного рефрактерного периода кардиомиоцитов, совпадающего по времени с продолжительностью сокращения, и защищает сердце от преждевременных возбуждений и утомления. Однако еще в XIX в. американский физиолог X. Боудич в экспериментах с электростимуляцией изолированного сердца наблюдал увеличение силы сердечных сокращений при увеличении частоты стимуляции. Данная зависимость «частота – сила» получила название «лестницы Боудича», или хроноинотропного эффекта (греч. chronos – время, inos – сила). Возникновение хроноинотропного эффекта, возможно, связано с тем, что при высокой частоте стимуляции промежутки времени между сокращениями укорачиваются, вследствие чего не происходит полного удаления ионов Са2+ , поступивших в саркоплазму при очередном сокращении. В результате с каждым последующим сокращением концентрация внутриклеточного ионизированного Са2+ возрастает, и соответственно возрастает сила сокращений. Хроноинотропный эффект можно рассматривать как разновидность гомеометрической регуляции сердца, и она будет рассмотрена далее вместе с другими миогенными механизмами.
Зависимость «длина – сила». Исследования на папиллярной мышце миокарда кошки показали, что при растяжении саркомера происходит выдвижение актиновых и миозиновых нитей из промежутков между ними. В результате увеличивается количество актин-миозиновых мостиков, которые могут образоваться при сокращении, и, следовательно, создаются условия для возрастания силы сокращения при большем растяжении миофибрилл. Максимальная сила сокращения достигается при исходной длине саркомера около 2,2 мкм. Вместе с тем при растяжении волокон миокарда имеет место и увеличение входящего кальциевого тока в ответ на активацию так называемых кальциевых каналов растяжения (англ.
stretch-activated channels), которые были обнаружены не только в гладких мышцах, но и в миокарде.
Увеличение входящего кальциевого тока непосредственно вызывает повышение сократимости миокарда. Кроме того, в ответ на изменение исходной длины волокон миокарда возрастает чувствительность тропонина C к ионам кальция, что способствует активации большего количества актомиозиновых мостиков.
Таким образом, исходная длина волокон миокарда является ключевой детерминантой регуляции силы его сокращения. В интактном сердце об исходном растяжении волокон миокарда могут свидетельствовать такие показатели, как конечно-диастолическое давление и объем желудочков. Зависимость силы сокращения от степени предварительного растяжения миокарда была отмечена немецким физиологом О. Франком на сердце лягушки в 1895 г. и детально исследована на сердечно-легочном препарате собаки английскими физиологами С. Паттерсоном и Е. Старлингом в 1914 г. Значение «закона сердца» Франка – Старлинга для регуляции его насосной функции (гетерометрическая регуляция) будет подробно рассмотрено в связи с миогенной регуляцией деятельности сердца.
Зависимость «скорость – сила». Исследования, проведенные А. Хиллом на скелетной мышце, позволили установить графическую гиперболическую зависимость между нагрузкой и скоростью мышечного сокращения, которая выражается уравнением Хилла:
где V – скорость сокращения, см/с; Р – сила мышечного сокращения (нагрузка), гс; Р0 – максимальная возможная сила сокращения; а – константа, которая характеризует тепло, выделяющееся при укорочении мышцы, и зависит от КПД работы мышцы; b – константа, характеризующая скорость перехода химической энергии в механическую (константы а и b имеют соответственно размерности нагрузки и скорости).
Из этого уравнения следует, что если нагрузка на мышцу равна нулю (Р = 0), то скорость ее сокращения максимальна и равна Vmax = bР0/а. Режим сокращения мышцы с постоянной силой (при постоянной нагрузке) называется изотоническим (греч. isos – равный, tonos – напряжение). Если же нагрузка на мышцу максимальна (Р = P0), то укорочение отсутствует, то есть V = 0, что соответствует состоянию максимального изометрического сокращения (греч. isos – равный, metron – мера, размер сокращения (напряжения)).
Однако исследования, выполненные на папиллярной мышце, показали, что в миокарде наблюдается отклонение гиперболической зависимости «сила – скорость», установленной для скелетной мышцы. Это обусловлено многими причинами. Во-первых, даже при постоянном объеме камер сердца при сокращении миокарда имеет место внутреннее укорочение центральных и одновременное растяжение периферических участков сердечной мышцы. Следовательно, в сердце отсутствует классическое изометрическое сокращение, при котором длина мышечных волокон остается постоянной. Вовторых, миокард как функциональный синцитий обладает неоднородностью строения, и поэтому одни саркомеры могут быть растянуты в большей или меньшей степени, чем другие. В-третьих, на характер зависимости «сила – скорость» в миокарде в большей мере, чем в скелетной мышце, влияют процессы активной релаксации (подробнее см. подразд. 1.10). Наконец, изменение гиперболической зависимости «сила – скорость» вызывают многие вещества, действующие на сердце, например адреналин, ионы кальция, препараты дигиталиса.
1.8. Сердечный цикл и его фазовая структура
Деятельность сердца как насоса представляет собой непрерывное в течение всей жизни человека последовательное чередование периодов сокращения (систолы) и расслабления (диастолы) предсердий и желудочков. Сменяющие друг друга систола и диастола составляют сердечный цикл. В покое частота сокращений сердца (ЧСС) у взрослого человека составляет 60–80 циклов в 1 мин, то есть каждый цикл продолжается около 0,8 с. Из этого времени около 0,1 с продолжается систола предсердий, около 0,3 с – систола желудочков, а остальное время (примерно 0,4 с) – общая диастола, или пауза сердца.
Впервые детальный фазовый анализ деятельности сердца был проведен американским физиологом К. Уиггерсом в первой трети XX в. Им были получены одновременные записи кривых изменения давления крови в аорте, левом желудочке и предсердии, а также объема левого желудочка. Сердечный цикл удобно рассматривать на диаграмме «давление – объем», которая получается при одновременной регистрации давления и объема в полости левого желудочка и их сопоставления на одном графике (рис. 8).
Во время общей паузы миокард расслаблен, и сердечные камеры заполняются кровью, поступающей из магистральных вен. Атриовентрикулярные клапаны в это время раскрыты, и кровь свободно поступает из предсердий в желудочки. Напротив, полулунные клапаны аорты и легочного ствола закрыты, поскольку диастолическое давление в этих сосудах значительно выше, чем в желудочках (давление в желудочках во время их диастолы близко к нулю) (участок А – В).
Генерация очередного импульса в синоатриальном узле вызывает электрическое возбуждение предсердий, что приводит к их сокращению. Клапаны между магистральными венами и предсердиями отсутствуют, поэтому для препятствия оттоку крови из предсердий обратно в вены во время систолы предсердий происходит сокращение кольцевой мускулатуры, окружающей устья полых и легочных вен. В течение систолы предсердий давление крови в них повышается и становится больше, чем в желудочках, которые в это время еще расслаблены (рис. 9).
За счет разности давлений из предсердий в желудочки переходит дополнительная порция крови, объем которой не превышает 15 % от общего наполнения желудочков за время диастолы. Движение крови при этом является турбулентным вследствие отражения от стенок желудочков. Такой характер потока крови облегчает закрытие атриовентрикулярных клапанов в начале систолы желудочков. С окончанием систолы предсердий заканчивается и диастола желудочков.
Рис. 8. Изменения давления и объема крови в желудочках на протяжении сердечного цикла:
а – в координатах «давление – время»; б – в координатах «давление – объем» (PV-диаграмма левого желудочка) А – В – период напряжения; В – С – период изгнания; C – D – период расслабления; D – A – период наполнения. Моменты времени: А – закрытия, С – открытия левого атриовентрикулярного клапана; В – открытия, D – закрытия аортального клапана. АДд – диастолическое артериальное давление, АДс – систолическое давление в аорте; КСД – конечно-систолическое, КДД – конечно-диастолическое давление в левом желудочке; КСО – конечно-систолический, КДО – конечно-диастолический объем желудочка; УОС – ударный объем сердца
Рис. 9. Давление в сердечных полостях в разные фазы сердечного цикла:
а – правая половина сердца; б – левая половина; верхние цифры – давление в предсердиях, нижние – давление в желудочках
К этому моменту в желудочках имеется определенное количество крови, которое образует конечно-диастолический объем и создает отличное от нуля конечно-диастолическое давление, определяющее преднагрузку сердца (нагрузка объемом).
Из предсердий возбуждение после атриовентрикулярной задержки с большой скоростью распространяется по проводящей системе желудочков, достигая рабочих кардиомиоцитов.
Начинается первый период систолы желудочков – период напряжения. Начальная фаза этого периода – фаза асинхронного сокращения – соответствует последовательному «включению» сократительных кардиомиоцитов. Внутрижелудочковое давление в эту фазу систолы растет незначительно. С момента охвата возбуждением всего миокарда желудочков начинается фаза изоволюмического сокращения, режим которого близок к изометрическому. Однако, как уже отмечалось, классического изометрического сокращения, при котором длина мышечных волокон остается постоянной, в интактном сердце не наблюдается. Даже при неизменном объеме камер сердца происходит внутреннее укорочение центральных и одновременное растяжение периферических участков сердечной мышцы. Кроме того, при сокращении сердца его стенки подвергаются деформации, что приводит к изменению длины мышечных волокон. Поэтому термин «изоволюмическое сокращение» применительно к этой фазе является более правильным и точным (рис. 10).
Оно характеризуется синхронным сокращением всех кардиомиоцитов в условиях, когда атриовентрикулярные клапаны уже закрыты, а полулунные еще не открылись, поскольку давление в аорте и легочном стволе в этот момент больше, чем в желудочках. Таким образом, желудочки оказываются изолированными с одной стороны от предсердий, а с другой – от сосудов. При этом объем желудочков остается постоянным. Фаза изоволюмического сокращения является важнейшей в деятельности сердца, поскольку именно в этот период сокращающийся миокард сообщает крови потенциальную энергию. Внутрижелудочковое давление в фазе изоволюмического сокращения нарастает с максимальной скоростью до 2000 мм рт. ст./с, и когда оно становится выше диастолического давления в аорте и легочном стволе, открываются полулунные клапаны, и начинается период изгнания крови из желудочков в магистральные артерии.
Рис. 10. Изменение формы сердца при сокращении его отделов:
а – разрез в поперечной плоскости. Пунктиром показаны контуры желудочков и отверстий; б – разрез во фронтальной плоскости; 1 – полулунные клапаны аорты; 2 – трехстворчатый клапан; 3 – двустворчатый клапан; 4 – полулунные клапаны легочной артерии; 5 – систола предсердий; 6 – систола желудочков
При изгнании крови потенциальная энергия, сообщенная ей миокардом, переходит в кинетическую. Вначале кровь в аорте и легочном стволе движется с большой скоростью (фаза быстрого изгнания), затем скорость движения крови уменьшается (фаза медленного изгнания). Это происходит потому, что кровь из сердца попадает в уже заполненные кровью аорту и легочный ствол; при изгнании крови из сердца она растягивает стенки данных сосудов (например, диаметр аорты увеличивается на 25 %). Кроме того, по мере изгнания крови уменьшается скорость сокращения миокарда. В фазе быстрого изгнания желудочки сокращаются в режиме, близком к изотоническому (с постоянной силой), давление крови в них возрастает незначительно по сравнению с периодом изоволюмического сокращения, тогда как их объем быстро уменьшается. По мере увеличения кровенаполнения аорты и легочных артерий давление в этих сосудах возрастает, достигая к концу систолы максимальной величины, которая называется систолическим давлением. Скорость движения крови из сердца после этого уменьшается, поэтому конечная фаза периода изгнания, как отмечалось ранее, называется фазой медленного изгнания. Иногда для обозначения фаз быстрого и медленного изгнания применяют термины фазы максимального и редуцированного изгнания соответственно.
К концу систолы желудочков в них остается некоторое количество крови (конечно-систолический, или остаточный, объем), которому соответствует и определенное давление крови (конечно-систолическое давление). После окончания сокращения желудочков начинается период расслабления. При этом давление в них, а также в аорте и легочном стволе начинает снижаться, причем в магистральных артериях за счет их эластических свойств, а также гидравлического сопротивления сосудов это происходит медленнее, чем в желудочках. Как только давление крови в желудочках становится меньше давления в аорте и легочном стволе, закрываются полулунные клапаны. Время от начала периода расслабления до закрытия полулунных клапанов называется протодиастолическим периодом (интервалом).
С момента закрытия полулунных клапанов желудочки, продолжая расслабляться, вновь становятся изолированными от аорты и легочного ствола, а также от предсердий, поскольку атриовентрикулярные клапаны в этот период еще закрыты. Это связано с тем, что давление в расслабляющихся желудочках пока еще выше, чем в предсердиях. Такой период диастолы получил название фазы изометрического, или изоволюмического, расслабления. Когда давление в желудочках снизится настолько, что станет меньше, чем в предсердиях, открываются атриовентрикулярные клапаны и начинается период наполнения желудочков, во время которого в них поступает кровь из предсердий. При этом давление, как в предсердиях, так и в желудочках, продолжает снижаться. Вначале кровь движется быстро (фаза быстрого наполнения). Именно в это время происходит основное кровенаполнение желудочков (около 85 %). Затем по мере наполнения желудочков давление в них возрастает, и движение крови замедляется (фаза медленного наполнения). Завершающая фаза периода наполнения желудочков ограничена наступающей систолой предсердий.
Правые и левые отделы здорового сердца сокращаются и расслабляются практически синхронно, то есть систола правого и левого предсердий, а также правого и левого желудочков начинается одновременно. При точном измерении временных характеристик фаз сердечного цикла в условиях эксперимента на животных и в клинике у человека можно наблюдать некоторый асинхронизм в работе правых и левых отделов здорового сердца. Так, систола правого предсердия начинается несколько раньше, а длится дольше, чем систола левого предсердия. Систола обоих желудочков начинается одновременно, но у правого желудочка она более длительная, чем у левого (за счет увеличения продолжительности фазы асинхронного сокращения), в то время как период расслабления, наоборот, дольше у левого желудочка. В норме эти расхождения в длительности фаз разных отделов сердца не превышают сотых долей секунды, однако могут заметно увеличиваться, например при нарушении проводимости миокарда.
Временные соотношения между описанными фазами приведены в табл. 3 и на рис. 11.
Рис. 11. Схема двух последовательных сердечных циклов длительностью 0,8 с. Черным цветом обозначены периоды систолы предсердий и желудочков; заштрихованные участки соответствуют закрытию атриовентрикулярных и полулунных клапанов
Таблица 3
Примерная длительность (с) основных фаз сердечного цикла при частоте сердечных сокращений 75 мин– 1
1.9. Механизмы закрытия клапанов сердца и их патологические изменения
Оптимальная в физиологическом отношении деятельность сердца как насоса невозможна без нормальной работы клапанного аппарата. Периодическое закрытие и открытие клапанов сердца обеспечивает нормальную кардиогемодинамику, нормальные величины конечно-диастолического, конечно-систолического и ударного объемов желудочков и, следовательно, сердечного выброса.
Еще в 1912 г. исследованиями А. Гендерсона и С. Джонсона было показано, что в нормальных условиях сердечного цикла, когда систола предсердий предшествует систоле желудочков, закрытие митрального и трикуспидального клапанов происходит до начала сокращений желудочков и обусловлено гидродинамическими факторами. Во время систолы предсердий из них в желудочки устремляется поток крови, который обладает инерцией. Когда сокращение предсердий (во время начала их диастолы) резко прекращается, то по инерции кровь еще движется в желудочки, и при этом в задней части потока возникает отрицательное давление. В результате формируются вихри, направленные вверх (к предсердиям) и сзади створок клапанов, которые и вызывают закрытие последних. Причем первой начинает движение часть клапанов, ближайшая к их основанию, а концы створок клапанов приходят в соприкосновение последними. Поэтому в таких условиях обратный ток (регургитация) крови из желудочков во время их сокращения в предсердия практически отсутствует. В случае если желудочки сокращаются преждевременно (без предшествующей систолы предсердий), например при желудочковой экстрасистолии, давление в желудочках возрастает и приводит к возникновению ретроградного тока крови из желудочков в предсердия, который и захлопывает створки клапанов.
В начале изоволюмического периода сокращения желудочков давление в них возрастает настолько быстро, что передается на закрытые створчатые клапаны и вызывает даже в норме некоторое прогибание последних в полость предсердий. Это приводит к повышению предсердного давления (подробнее см. в подразд. 1.10). Однако раскрытию створок атриовентрикулярных клапанов во время систолы желудочков препятствуют сухожильные нити (хорды), которые отходят от папиллярных мышц и прикрепляются к концам створчатых клапанов. При сокращении желудочков сосочковые мышцы сокращаются раньше, чем основная масса миокарда. В результате сухожильные нити натягиваются и удерживают створчатые клапаны от раскрытия при их прогибании в полость предсердий. В случае недостаточности этой функции во время систолы желудочков створки атриовентрикулярных клапанов раскрываются внутрь предсердий, то есть обратно, что приводит к регургитации крови из желудочков в предсердия. Подобная патология клапанов сердца называется пролапсом. В клинической практике чаще встречается пролапс митрального клапана. У детей и подростков часто имеют место функциональные нарушения закрытия створчатых клапанов, что обусловлено опережением роста миокарда над развитием эндокарда. В результате при эхокардиографических исследованиях можно обнаружить незначительную регургитацию крови из желудочков в предсердия в покое, которая прекращается при физической нагрузке. Подобные изменения внутрисердечной гемодинамики сопровождаются также так называемыми функциональными шумами сердца и проходят по мере развития и взросления подростков. Эхокардиографические исследования выявляют также незначительную регургитацию крови через трикуспидальный клапан у большинства здоровых людей, что обусловлено неполным смыканием его створок в силу особенностей строения.
Полулунные клапаны расположены в проксимальных отделах аорты и легочного ствола. Каждый такой клапан представляет собой три карманообразные складки, направленные свободными краями в просвет сосудов. Во время расслабления желудочков давление в них резко снижается. Когда оно становится меньше, чем в аорте и легочном стволе, кровь с ускорением движется обратно, в сторону желудочков, и наполняет кармашки полулунных клапанов. В результате клапаны полностью закрывают просвет сосудов, что препятствует обратному току крови из аорты и легочного ствола в желудочки. Во время же систолы желудочков, когда давление в них превысит давление в аорте и легочной артерии, мощный поток крови раздвигает кармашки полулунных клапанов и устремляется в артерии.
Как отмечено ранее, нарушения работы клапанного аппарата вызывают изменения внутрисердечной гемодинамики. Анатомические изменения клапанов, возникшие либо в результате нарушения эмбриогенеза (врожденные), либо в результате заболеваний (приобретенные), в клинической кардиологии называются пороками сердца. В случае неполного смыкания створок клапана возникает его недостаточность, а сужение отверстия между предсердиями и желудочками или между желудочками и аортой (легочным стволом) называется стенозом.
Примерно до середины 1980-х гг. основную группу приобретенных пороков сердца составляла патология клапанного аппарата вследствие эндокардита, вызванного ревматизмом.
Особенно часто в клинической практике у больных ревматизмом встречался стеноз митрального отверстия – изолированный или в сочетании с недостаточностью клапана. Однако профилактика ревматизма, улучшение общего благосостояния населения привели к практической ликвидации ревматических пороков сердца. Вместе с тем в конце 1990-х гг. в России угрожающими темпами стали нарастать неблагоприятные тенденции ухудшения здоровья населения: прогрессирующее старение, высокая заболеваемость атеросклерозом и ишемической болезнью сердца, артериальной гипертензией и др. Поэтому в клинической практике у пожилых людей чаще, чем ранее, отмечается аортальный стеноз, который развивается при развитии кальциноза аорты.
Следует также особо подчеркнуть, что с конца XX и начала XXI вв. все чаще стали встречаться врожденные пороки сердца, обусловленные нарушениями эмбриогенеза. Этому способствуют многие факторы нездорового образа жизни: ранние беременности, курение, алкоголизм, наркомания и др. Наряду с простыми дефектами эмбрионального развития сердца (незаращение артериального протока, дефект межпредсердной перегородки) все чаще диагностируются сложные пороки, например триада Фалло: сужение легочной артерии, незаращение межпредсердной перегородки и гипертрофия правого желудочка. При эхокардиографических исследованиях у детей и подростков все чаще выявляются пролапсы митрального и трикуспидального клапанов, что сопровождается ретроградным током крови из желудочков в предсердия, то есть развитием картины недостаточности атриовентрикулярных клапанов. Однако компенсация последней возможна длительное время (20–30 лет) благодаря в первую очередь миогенным механизмам саморегуляции деятельности сердца
1.10. Диастолическая функция сердца
Термин «диастолическая функция сердца», который получил особенно широкое распространение в клинической литературе начала XXI в., характеризует механизмы расслабления миокарда и кровенаполнения сердца во время диастолы. Способность миокарда к быстрому расслаблению получила название люзитропного эффекта (англ. lusitropic effect).
Исследованиями 1980–1990-х гг. установлено, что скорость релаксации миокарда непосредственно зависит от скорости удаления ионов кальция из цитоплазмы кардиомиоцитов. Ключевым и ведущим механизмом является энергозависимый транспорт Ca2+ в саркоплазматический ретикулум (СПР), который осуществляется с помощью специализированного кальциевого насоса – Са2+-АТФ-азы СПР, или SЕRСА (от англ. Sarco-Endoplasmatic-Reticulum-Calcium-ATPase). Поэтому скорость релаксации миокарда во многом определяется активностью именно этого фермента. Основным же регулятором активности Са2+-АТФ-азы СПР является белок фосфоламбан, расположенный на мембране СПР в непосредственной близости от Са2+-АТФ-азы. В фосфорилированном состоянии фосфоламбан увеличивает активность этой помпы, и в результате процесс релаксации возрастает. Реакции фосфорилирования фосфоламбана ускоряются, например, под влиянием катехоламинов (положительный люзитропный эффект катехоламинов).
Вторым по значимости механизмом удаления ионов Са2+ из цитоплазмы кардиомиоцитов во время диастолы является работа Na+/Ca2+-обменника, расположенного на поверхности сарколеммы и выводящего ионы Са2+ во внеклеточную жидкость в обмен на ионы Nа+. В норме относительное участие этих двух Са2+-выводящих систем расценивается как 4:1 в пользу Сa2+-АТФ-азы СПР, однако при патологии сердца данное соотношение уменьшается вплоть до 1:1.
Третьим механизмом релаксации является модификация сократительных белков кардиомиоцитов. Примером такого вида регуляции также может служить положительный люзитропный эффект катехоламинов. Помимо ускорения фосфорилирования фосфоламбана, катехоламины ускоряют фосфорилирование тропонина I в результате активации протеинкиназы за счет накопления ц-АМФ. Фосфорилирование тропонина I уменьшает чувствительность контрактильных белков к ионам кальция и тем самым ускоряет развитие релаксации. Этот процесс увеличивает скорость расслабления миокарда в ответ на укорочение диастолы в условиях тахикардии, вызванной применением катехоламинов.
На скорость расслабления миокарда влияет также аффинность (сродство) связи Са2+-тропонин С и АТФ-азная активность головок миозина. Очевидно, что при повышении сродства тропонина С к ионам Са2+ для высвобождения и удаления этого Са2+ из цитозоля клетки будет затрачено больше времени, что обусловит замедление релаксации.
АТФ-азная активность головок миозина влияет на скорость процесса расхождения нитей актина и миозина, что является необходимым условием возврата длины саркомера к исходной величине. Диастолическое расхождение нитей актина и миозина начнется не раньше того, как произойдет разрыв поперечных мостиков «последней волны», то есть тех мостиков, которые образовались непосредственно перед высвобождением Са2+ от связи с тропонином С. Скорость разрыва этих мостиков, определяемая АТФ-азной активностью головок миозина, зависит от:
– количества поступивших ионов кальция;
– сродства (аффинности) сократительных белков к ионам кальция;
– степени растяжения волокон миокарда (зависимость от преднагрузки);
– взаимодействия сократительных белков с АТФ;
– вязко-эластических свойств миокарда.
Исследования, проведенные в 1990-х гг., показали, что скорость расслабления миокарда тем больше, чем меньше остаточный (конечно-систолический) объем сердца. Это обусловлено как большим сохранением потенциальной энергии сердечного сокращения в случае низкого остаточного объема, так и выраженным укорочением миокардиальных волокон в конце систолы. Если остаточный объем сердца невелик, то в миокарде возникают так называемые восстанавливающие силы (по типу сжатой пружины), обусловленные, в частности, эластическими свойствами несократительных белков миокарда (коннектина, или титина, десмина, виментина и винкулина). Поскольку остаточный объем сердца зависит от сократимости миокарда, то увеличение сократимости миокарда, определяемое производной dP/dt, например, под влиянием катехоламинов, также вызывает увеличение скорости расслабления миокарда. Таким образом, остаточный объем сердца является одним из ключевых кардиогемодинамических факторов, определяющих скорость расслабления миокарда в диастолическом периоде.
Помимо расслабления миокарда к диастолической функции сердца относятся механизмы наполнения сердца кровью. В течение длительного времени в физиологической литературе считалось, что наполнение сердца кровью осуществляется пассивно, лишь под действием остаточной энергии крови, притекающей к сердцу. Однако исследования по биомеханике миокарда, проведенные в 1980–1990-х гг., позволили установить, что это представление верно лишь отчасти. На скорость наполнения желудочков кровью во время диастолы влияют следующие «сердечные» факторы:
1) пассивные эластические свойства миокарда, определяющие его жесткость;
2) скорость расслабления миокарда, влияющая на остаточное напряжение миокарда;
3) активное присасывающее действие желудочков во время диастолы;
4) вязко-упругие свойства миокарда;
5) функция предсердий.
Пассивные эластические свойства миокарда. Даже в условиях полного расслабления миокард обладает определенной жесткостью или эластичностью. При построении зависимости «давление – объем» на остановленном сердце наблюдается экспоненциальная зависимость давления в желудочках от объема крови, то есть по мере увеличения объема желудочков давление в них возрастает. Однако в условиях работающего сердца, особенно в раннюю фазу диастолического наполнения желудочков, жесткость последних может значительно изменяться, и кривая «давление – объем» смещается. Поэтому в норме даже при высоких объемах диастолическое давление в желудочках будет низким. При увеличении жесткости миокарда, что бывает, например, при так называемой диастолической форме сердечной недостаточности, или при гипертрофии миокарда, даже при низких величинах конечно-диастолического объема желудочков отмечается резкое повышение конечно-диастолического давления в их полостях. Особенно выражено это при рестриктивных формах кардиомиопатий.
На пассивные эластические свойства миокарда влияют свойства его «каркаса», то есть соединительнотканных элементов и несократительных белков (белки цитоскелета), свойства перикарда, коронарный кровоток, влияющий на процессы фильтрации и реабсорбции межклеточной жидкости.
В состав соединительнотканных элементов миокарда входят различные волокна и нити (коллагеновые волокна, волокнистая паутинообразная сеть, короткие нити и др.). К фибриллярным белкам цитоскелета относятся десмин, виментин и винкулин. Кроме того, между нитями собственно сократительного белка актина располагаются так называемые S-нити, а миозин и актин соединены между собой С-нитями. Между Z-пластинками саркомера, подобно пружинке, «растянут» белок коннектин, или титин. Считается, что этот белок вносит существенный вклад в процессы расслабления миокарда.
Экспериментальные данные о пассивных свойствах миокарда свидетельствуют о том, что ведущая роль в повышении жестко-упругих характеристик миокарда принадлежит избыточному накоплению коллагена в интерстициальном пространстве, а не гипертрофии миоцитов (хотя она также участвует в увеличении жесткости миокарда). Если в условиях гипертрофии миокарда удается предотвратить появление фиброза, то жесткость остается в пределах нормы, а регрессия фиброза (но не гипертрофии) сопровождается нормализацией эластических свойств. Избыточное накопление коллагена и развитие фиброза получило название ремоделирования миокарда.
На жесткость миокарда в определенной степени влияет перикард, который ограничивает перерастяжение камер сердца притекающей кровью. Кроме того, перикард обеспечивает механическую взаимосвязь желудочков при объемных перегрузках сердца, а также «присасывающую» функцию желудочков. Поскольку желудочки связаны общей перегородкой и заключены в малорастяжимый перикард, механическое напряжение в одном желудочке влияет на диастолические свойства другого. Так, при увеличении объема правого желудочка имеет место увеличение конечно-диастолического давления в левом желудочке при низком диастолическом объеме. В опытах с перфузией коронарных артерий показано, что при снижении коронарного перфузионного давления менее 60 мм рт. ст. и повышении его более 150 мм рт. ст. также происходит увеличение жесткости миокарда. В случае же поддержания перфузионного давления в пределах от 60 до 150 мм рт. ст., то есть в условиях нормальных диапазонов ауторегуляции коронарного кровотока, жесткость миокарда практически не изменяется.
Влияние скорости расслабления на жесткость миокарда. Диастолическая жесткость миокарда возрастает в случае его неполного расслабления. Степень влияния неполного расслабления миокарда на его жесткость определяется в основном скоростью изоволюмического расслабления, которая может также зависеть и от частоты сердечных сокращений. Следовательно, при увеличении частоты сердечных сокращений диастолическое расслабление миокарда будет неполным, то есть жесткость миокарда повышается.
Присасывающее действие желудочков сердца. Еще в 1914 г. английский физиолог Э. Старлинг при регистрации давления в левом желудочке у собаки с вскрытой грудной клеткой отметил наличие отрицательного давления в левом желудочке в начале фазы быстрого наполнения. Особенно выражен этот эффект при низких остаточных объемах желудочков. Из сказанного следует, что скорость расслабления миокарда превышает скорость наполнения желудочка, что и создает отрицательное давление. Можно предположить, что присасывающий эффект желудочков в определенной степени обусловлен конструктивными особенностями сердца. Так, во время систолы сердце смещается в сторону, противоположную выбросу крови (своего рода «реактивный эффект»), тогда как во время расслабления оно как бы подтягивается навстречу поступающей крови, что и создает ее «подсасывание». Кроме того, при этом создается дополнительное отрицательное давление в полости перикарда. Во время систолы желудочков их объем уменьшается, а объем перикардиальной полости в силу жесткости перикарда остается постоянным.
Следовательно, в полости перикарда создается отрицательное давление, которое способствует венозному возврату и создает дополнительный градиент давления для наполнения предсердий и желудочков.
Вязко-эластические свойства миокарда. Эксперименты, проведенные на остановленном сердце, показали, что миокард обладает вязко-упругими свойствами, то есть напряжение в стенке желудочков зависит не только от объема крови, но и от скорости их наполнения. Вязко-упругие свойства миокарда приводят к снижению жесткости миокарда, особенно во время фазы быстрого наполнения желудочков, что способствует снижению диастолического давления в желудочках.
Роль предсердий в кровенаполнении желудочков. Как отмечалось, во время систолы предсердий в желудочки поступает лишь незначительная часть (до 15 %) от конечно-диастолического объема крови желудочков, то есть роль систолы предсердий в кровенаполнении желудочков в условиях покоя невелика. Даже при отсутствии упорядоченного сокращения предсердий, например при мерцательной аритмии, если частота сокращений желудочков при этом невысока (до 90 уд/мин) (нормосистолическая форма мерцательной аритмии), кровенаполнение желудочков остается удовлетворительным, и сердечный выброс не снижается. В случае же мерцательной аритмии с увеличением частоты сокращений желудочков до 120–150 уд/мин (тахисистолическая форма) их кровенаполнение и сердечный выброс резко снижаются. Следовательно, роль нормальной систолы предсердий в кровенаполнении желудочков возрастает при увеличении частоты сердечных сокращений. Кроме того, вихревое движение крови из предсердий в желудочки во время систолы предсердий создает предпосылки для быстрого закрывания створок атриовентрикулярных клапанов, которые захлопываются еще до начала систолы желудочков. Поэтому в случае отсутствия нормального сокращения предсердий и неполного закрывания атриовентрикулярных клапанов может происходить обратное движение крови из желудочков в предсердия, что сопровождается уменьшением ударного объема сердца. В случае же преждевременного сокращения желудочков, которое при патологии может происходить одновременно с систолой предсердий, их кровенаполнение также снижается. При этом имеет место регургитация венозного кровотока из предсердий в полые вены. Таким образом, несмотря на незначительный «объемный» вклад, сокращение предсердий имеет важное значение в обеспечении нормальной внутрисердечной гемодинамики и наполнения желудочков, особенно при увеличении частоты сердечных сокращений.
Поскольку систола предсердий длится всего 0,1 с (при ЧСС 75 уд/мин), то, следовательно, большая длительность диастолы предсердий (0,7 с) обеспечивает практически непрерывное поступление крови из вен в предсердия. В силу этого вместимость и растяжимость предсердий достаточно высоки. Помимо основных камер в предсердиях имеются ушки, которые увеличивают объем предсердий. Таким образом, предсердия выполняют резервуарную функцию, которая обеспечивает быстрое поступление крови в желудочки во время их диастолы, особенно в ее начале.
Фазная кривая изменения давления в предсердиях напоминает кривую венозного пульса (флебограмма) и имеет несколько максимумов и минимумов (см. рис. 12, б). Во время систолы предсердий давление в них резко повышается (первый максимум – а (от лат. аtrium)), устья полых вен перекрываются, и поступление крови из полых вен в предсердия прекращается. В это время кровь из предсердий поступает в уже практически заполненные кровью (до 80 % конечно-диастолического объема) желудочки. В начале диастолы предсердий давление в них понижается, однако это уменьшение приостанавливается с началом систолы желудочков и прогибания внутрь полости предсердий створок атриовентрикулярных клапанов. Вследствие этого давление в предсердиях (в которые кровь еще не поступает) вновь повышается (волна с). Затем, в период изгнания крови из желудочков и смещения атриовентрикулярной перегородки вниз, в сторону верхушки сердца, происходит резкое снижение давления в предсердиях (систолический коллапс, первый минимум – волна x) при расслабленных предсердиях. Первый минимум давления в предсердиях способствует «присасыванию» крови из вен, в результате чего давление в предсердиях начинает медленно повышаться и вновь достигает максимума (второй максимум – волна v), тогда как в желудочках начинается диастолический период. Когда давление в желудочках становится меньше давления в предсердиях, атриовентрикулярные клапаны открываются, и кровь с ускорением поступает из предсердий в желудочки. В результате давление в предсердиях вновь снижается (диастолический коллапс, второй минимум – волна y), что также способствует поступлению в них крови из вен. С этого момента снова начинается систола предсердий. Таким образом, характер фазных изменений давления в предсердиях оказывается связанным с мгновенными значениями венозного кровотока и колебаниями давления в центральных венах. Очевидно, что приток крови из вен в предсердия обеспечивается низкой величиной предсердного давления (первый минимум), а поступление крови в желудочки достигается за счет градиента давления в предсердиях (второй максимум) и начального диастолического давления в желудочках. Следовательно, уровень давления в предсердиях должен быть не выше центрального венозного давления и не ниже начального диастолического давления в желудочках. В противном случае будет нарушено их нормальное кровенаполнение.
Итак, работа сердца как насоса обеспечивается прежде всего сократительной функцией миокарда, механизмами его расслабления и наполнения, а также работой клапанного аппарата. В свою очередь, адекватная сократительная активность осуществляется благодаря свойствам автоматии, возбудимости и проводимости.
1.11. Артериальный и венный пульс как внешние проявления деятельности сердца
Ритмическая деятельность сердца приводит к появлению пульса – периодических колебаний кровенаполнения и кровяного давления в кровеносных сосудах. Происхождение артериального пульса обусловлено распространением пульсовой волны со скоростью 10–15 м/с по эластическим стенкам артерий. Пульсовая волна возникает в момент изгнания крови из сердца в аорту и крупные артерии, растяжения их стенок и возникновения в результате колебаний.
Для регистрации пульса механоэлектрический датчик давления (пьезоэлектрический или другого типа) закрепляют на поверхности кожи исследуемого в местах проекции крупных артерий или вен. Методика графической регистрации артериального пульса называется сфигмографией (греч. sphygmos – пульс), а венозного пульса – флебосфигмографией, или просто флебографией (греч. phlebos – вена). Центральный артериальный пульс чаще всего регистрируют над сонными артериями (каротидная сфигмография), а центральный венозный пульс – над яремными венами (югулярная флебография).
Сфигмограмма была впервые зарегистрирована К. Виерордтом еще в 1855 г., а более точные записи произведены в 1905 г. О. Франком. Сфигмограмма сонной артерии (рис. 12) начинается низкоамплитудной предсистолической волной (1), происхождение которой, вероятно, связано с изометрическим сокращением левого желудочка. Далее следует высокоамплитудная главная волна, крутой восходящий участок которой называется анакротой (2). Этот участок отражает ускоренное поступление крови в артерии из левого желудочка в начале фазы быстрого изгнания, что приводит к увеличению давления в артериях и их растяжению (время между открытием клапана аорты и появлением пульсового колебания сонной артерии составляет около 0,02 с). Пологая вершина главной волны, отражающая примерное равенство между притоком крови в магистральные артерии и ее оттоком в периферические сосуды, переходит в нисходящее колено – катакроту. Катакрота (3) соответствует по времени фазе медленного изгнания, когда отток крови из растянутых эластических артерий начинает преобладать над притоком. Заканчивается катакрота формированием остроконечного, направленного вниз зубца сфигмограммы (4). Этот зубец называется инцизурой (вырезкой) и соответствует окончанию систолы левого желудочка, когда давление в желудочке становится ниже, чем в аорте. В этот момент объем аорты резко уменьшается за счет того количества крови, которое необходимо для заполнения кармашков аортального клапана. Самая низкая точка инцизуры соответствует полному закрытию аортального клапана.
Рис. 12. Артериальный и венный пульс как отражение деятельности сердца:
а – каротидная сфигмограмма; б – югулярная флебограмма
Диастолическая часть центральной сфигмограммы начинается дикротической волной (5), которая возникает в результате отражения гидравлической волны от замкнутых кармашков аортального клапана. Последующий плавный спуск кривой соответствует равномерному оттоку крови из центральных артерий в периферические сосуды во время диастолы. Следует подчеркнуть, что каротидная сфигмограмма свидетельствует о наличии нагнетательной функции левого желудочка, но сама по себе не отражает состояние внутрисердечной и тем более системной гемодинамики. Но существуют биофизические методы построения, позволяющие использовать данные сфигмографии для оценки величины сердечного выброса.
Косвенная характеристика процессов, происходящих в правых отделах сердца, может быть получена при помощи югулярной флебографии, отражающей динамику оттока крови из полых вен в правое предсердие. Поэтому волны венного пульса практически полностью соответствуют колебаниям давления в предсердиях.
Каждый сердечный цикл на югулярной флебограмме (рис. 12, б), как правило, представлен тремя положительными (а, с, v) и двумя отрицательными (х, у) волнами. При этом колебания флебограммы отстают от соответствующих им внутрисердечных процессов примерно на 0,04 с. Систола правого предсердия сопровождается замедлением оттока крови из вен, что приводит к формированию положительной волны флебограммы, обозначаемой символом «а» (лат. аtrium). Следующая, также положительная волна возникает в начале систолы правого желудочка при закрытии трехстворчатого клапана. Эта волна обозначается символом «с» (лат. сarotis), так как ее появление совпадает с началом подъема каротидной сфигмограммы. Далее следует отрицательная волна х, которая отражает ускоренный отток крови из магистральных вен в расслабляющееся предсердие. Самая глубокая точка этой волны совпадает по времени с закрытием полулунных клапанов. Наличие отрицательной волны х, которая называется также волной систолического коллапса, обозначается как отрицательный венный пульс. Наполнение правого предсердия при закрытом трехстворчатом клапане приводит к повышению предсердного давления и затруднению оттока крови из вен, что отражается на флебограмме появлением положительной волны v (лат. ventriculus). Вершина этой волны соответствует максимальному кровенаполнению предсердия к концу систолы желудочков и регистрируется в момент открытия трехстворчатого клапана. Последующее быстрое поступление крови из правого предсердия в желудочек во время общей диастолы сердца вызывает образование заключительной, отрицательной волны флебограммы, которая называется волной диастолического коллапса и обозначается символом «у».
Оценка венного пульса помогает различить в клинической практике предсердные и желудочковые экстрасистолы. При предсердной экстрасистоле, когда внеочередной импульс вызывает сокращение вначале предсердий, а потом желудочков, отмечается волна а венного пульса. При желудочковой экстрасистоле сокращений предсердий не происходит, и поэтому волна а отсутствует. Характерные изменения параметров югулярной флебограммы отмечены и для других нарушений сердечной деятельности. Например, при недостаточности трехстворчатого клапана во время систолы желудочков происходит повышение давления в магистральных венах, что сопровождается появлением инвертированной положительной волны х на флебограмме (положительный венный пульс). Аналогичная ситуация может наблюдаться вследствие повышения давления крови в венах большого круга при снижении сократимости правого желудочка, например при тромбоэмболии легочной артерии.
Конец ознакомительного фрагмента.