Вы здесь

Основы общей и экологической токсикологии. Глава 2. ОСНОВНЫЕ ИСТОЧНИКИ И ВИДЫ АНТРОПОГЕННОГО ЗАГРЯЗНЕНИЯ БИОСФЕРЫ (В. Н. Базылев, 2009)

Глава 2

ОСНОВНЫЕ ИСТОЧНИКИ И ВИДЫ АНТРОПОГЕННОГО ЗАГРЯЗНЕНИЯ БИОСФЕРЫ

2.1. Понятие о биосфере

Автором термина «биосфера» был французский естествоиспытатель Жан Батист Ламарк, который употребил его в 1803 г. в труде по гидрогеологии Франции для обозначения совокупности организмов, обитающих на земном шаре. Затем на длительное время этот термин был забыт. В 1875 г. он был «воскрешен» профессором Венского университета геологом Эдуардом Зюссом в работе о строении Альп. Он ввел в науку представление о биосфере как особой оболочке земной коры, охваченной жизнью. В таком общем смысле впервые в 1914 г. использовал этот термин и выдающийся русский ученый-геохимик В. И. Вернадский в статье об истории рубидия в земной коре.

Согласно В. И. Вернадскому, биосфера – нижняя часть атмосферы, вся гидросфера и верхняя часть литосферы Земли, населенные живыми организмами, «область существования живого вещества»; оболочка Земли, в которой совокупная деятельность живых организмов проявляется как геохимический фактор планетарного масштаба. Биосфера – самая крупная (глобальная) экосистема Земли – область системного взаимодействия живого и косного вещества на планете. Мысль о жизни как о космическом явлении впервые высказал голландский ученый Х. Гюйгенс в конце XVIII в.: «…жизнь есть космическое явление, в чем-то резко отличное от косной материи». Это высказывание было названо В. И. Вернадским «принципом Гюйгенса».

Биосфера занимает особое место по отношению к геосферам. Биосфера – это своеобразная оболочка Земли, или область распространения жизни. От геосфер она отличается и тем, что в ее пределах проявляется геологическая деятельность живых существ: растений, животных, микроорганизмов и человека. Биосфера охватывает поверхность земли, верхнюю часть литосферы, всю гидросферу и нижнюю часть атмосферы – тропосферу. Границы биосферы определяются наличием условий, необходимых для жизни различных организмов. Верхний предел жизни биосферы ограничен интенсивной концентрацией ультрафиолетовых лучей. Физическим пределом распространения жизни в атмосфере является озоновый слой. Поэтому его нижнюю границу можно рассматривать как верхнюю границу биосферы. Озоновый слой ограничивает распространение жизни, ибо выше него концентрация ультрафиолетовых лучей превосходит допустимую для живых организмов норму, а концентрация содержащегося там озона губительна для всех живых организмов, для которых критическим считается содержание озона в 0,0005 об. %. В озоновом слое на высоте 15 – 26 км от поверхности Земли концентрация его достигает 0,001 %, у земной поверхности содержание озона составляет 0,000007 %.

Нижний предел существования жизни традиционно определяют дном океана (максимум 11 022 м – глубина Марианской впадины) и глубиной литосферы, характеризующейся температурой 100 °C (около 6 км, по данным сверхглубокого бурения на Кольском полуострове). В основном жизнь в литосфере распространена лишь на несколько метров вглубь, ограничиваясь почвенным слоем. Однако по отдельным трещинам и пещерам она распространяется на сотни метров, достигая в ряде случаев глубин от 3000 до 4000 м. По некоторым оценкам, пределы биосферы, возможно, намного шире, так как в гидротермах дна океана на глубинах около 3000 м при температуре 250 °C обнаружены организмы. На таких глубинах давление составляет около 30 МПа (300 атм), что позволяет воде находиться в жидком состоянии, в то время как пределы жизни ограничены точками перехода ее в пар и сворачивания белков. Теоретически на глубинах 25 км относительно уровня моря должна иметь место критическая температура 460 °C, при которой при любом давлении вода находится только в виде паров, а значит, жизнь невозможна (Николайкин Н. И. [и др.], 2006).

По поверхности Земли жизнь распределена неравномерно. Существуют области ее повышенной концентрации: на границе раздела воды, воздуха и почвы. В. И. Вернадский назвал их «пленками жизни».

Как следует из приведенных данных (табл. 2.1), основную часть биомассы суши составляют зеленые растения (99,2 %), а в океане – животные (93,7 %).

Общая биомасса планеты составляет более двух триллионов тонн. Строение растений во много раз сложнее строения бактерий, а строение животных сложнее, чем у растений. Как правило, с усложнением строения организмов увеличивается их видовое разнообразие. Биомасса организмов, напротив, уменьшается с увеличением их сложности. Соотношение масс организмов принято называть «пирамидой биомассы».


Таблица 2.1

Распределение биомассы растений, животных и микроорганизмов


В результате последовательных превращений энергии в пищевых цепях каждое сообщество живых организмов в экосистеме приобретает определенную трофическую структуру. Трофическая структура сообщества отражает соотношение между продуцентами, консументами (отдельно первого, второго и т. д. порядков) и редуцентами, выраженное или количеством особей живых организмов, или их биомассой, или заключенной в них энергией, рассчитанных на единицу площади в единицу времени.

Напомним, что продуценты – это автотрофные организмы, способные строить свои тела за счет неорганических соединений, используя солнечную энергию (зеленые растения, микроскопические водоросли и др.). Они составляют первое звено пищевой цепи. Консументы — это гетеротрофные организмы, которые потребляют первичную продукцию и накопленную в ней энергию, т. е. для них продуценты представляют собой единственный источник питания. Они бывают I порядка (растительноядные), II порядка (плотоядные), III порядка (хищники, питающиеся более слабыми хищниками) и т. д. Редуценты (деструкторы) — это организмы, разлагающие органические остатки (бактерии, грибы, микроорганизмы) и служащие частично завершающим звеном биологического круговорота.

Основанием экологической пирамиды служит первый трофический уровень – уровень продуцентов, а последующие уровни образуют следующие этажи пирамиды. При этом высота всех блоков-этажей одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне (рис. 2.1).


Рис. 2.1. Экологическая пирамида


В зависимости от того, количественные соотношения каких величин отражает пирамида, она носит название пирамиды чисел, биомасс или энергий. Подобные пирамиды-соотношения используют для практических расчетов при обосновании, например, необходимых площадей под сельскохозяйственные культуры, с тем чтобы обеспечить кормами выращиваемое поголовье скота и далее реализовать определенный объем мясной продукции.

Из количественных оценок, связанных с энергией, для трофических цепей установлено «правило десяти процентов» (закон Линдемана): с одного трофического уровня экологической пирамиды энергий на другой в среднем переходит 10 % энергии, поступающей на предыдущий уровень (Дедю И. И., 1990).

Например, количество энергии, которая доходит до третичных плотоядных (трофический уровень биоценоза V), составляет около 10– 4 энергии, поглощенной продуцентами. Это объясняет ограниченное количество (5 – 6) звеньев (уровней) в пищевой цепи независимо от рассматриваемого биоценоза.

Биосфера является единственным местом обитания человека и других живых организмов, причем из концепции В. И. Вернадского и ряда других ученых следует закон незаменимости биосферы:

Биосфера – это единственная система, обеспечивающая устойчивость среды обитания при любых возникающих возмущениях. Нет никаких оснований надеяться на построение искусственных сообществ, обеспечивающих стабилизацию окружающей среды в той же степени, что и естественные сообщества.

Приведенный закон утверждает, что конечная задача охраны природы – это сохранение биосферы как естественного и единственного места обитания человеческого общества.

Поучительным и наглядным примером является история острова Пасхи. На одном из полинезийских островов, носящем название остров Пасхи, в результате сложных миграционных процессов в VII в. возникла замкнутая изолированная от всего мира цивилизация. В весьма благоприятном субтропическом климате она за сотни лет существования достигла существенных высот развития, создав самобытную культуру и письменность. А в XVII в. она без остатка погибла, уничтожив вначале растительный и животный мир острова, а затем погубив себя в прогрессирующей дикости и каннибализме. У последних островитян не осталось уже воли и материала, чтобы построить спасительные «Ноевы ковчеги» – плоты и лодки. В память о себе исчезнувшее сообщество оставило полупустынный остров с гигантскими каменными фигурами – свидетелями былого могущества.

Наукой установлено, что потоки биологического синтеза и разложения вещества в биосфере с высокой точностью, до десятых долей процента, совпадают друг с другом, образуя сложную систему биологических циклов. Эта система подчиняется принципу Ле Шателье – Брауна: при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, равновесие смещается в том направлении, при котором эффект внешнего воздействия ослабляется. Физический принцип Ле Шателье – Брауна, основанный на моделях неживой природы, справедлив и для условно-равновесных (квазистационарных) природных систем, в том числе экологических (Смирнов Н. П., 2006). Этот же принцип объясняет причину негативного действия закона снижения энергетической эффективности природопользования – чем больше отклонение от состояния экологического равновесия, тем значительнее должны быть энергетические затраты для ослабления противодействия природных систем этому отклонению.

Нарушения цикличности и действия рассматриваемого принципа проявляются в истории биосферы в форме экологических кризисов: локальных, региональных, глобальных. Современный кризис определяется как неразрешимое в настоящее время противоречие между утвердившейся в истории цивилизации практикой природопокорительного отношения общества к окружающей среде и способностью биосферы поддерживать систему естественных биохимических циклов самовосстановления.

Развитие экологического кризиса в значительной степени связано с техногенными процессами, с увеличением объемов и темпов хозяйственной деятельности. Действительно, хозяйственная деятельность современного человечества в течение последнего столетия привела к серьезному загрязнению нашей планеты разнообразными отходами производства. Воздушный бассейн, водные объекты и почвы в районах крупных промышленных центров часто содержат токсичные вещества, концентрации которых существенно превышают предельно допустимые значения.

2.2. Основные источники и виды антропогенного загрязнения атмосферного воздуха

Источниками антропогенного загрязнения атмосферы служат различные объекты производственной и бытовой деятельности людей (табл. 2.2).

Пока масштабы антропогенного загрязнения атмосферы уступают глобальной естественной эмиссии (выделению). Данные о глобальной эмиссии из природных источников и в результате деятельности человека приведены в табл. 2.3.


Таблица 2.2

Виды загрязнений атмосферы


Техногенные источники отличаются большой скученностью, что приводит к высоким локальным загрязнениям воздушной среды.

Естественное загрязнение воздуха происходит в результате извержения вулканов, которых на планете насчитывается свыше 500, а также вследствие пыльных бурь, особенно в степных районах.

Антропогенные факторы предопределяют существенные изменения в нормальном функционировании атмосферы, причем как в самых нижних, так и в высотных ее частях. Имеется множество различных источников антропогенного характера, вызывающих загрязнение атмосферы, а вместе с тем и серьезные нарушения экологических равновесий в биосфере. По своим масштабам заслуживают внимания, прежде всего, два таких источника – транспорт и индустрия. В среднем на долю транспорта (например, в США) приходится 60 % общего количества загрязнений, поступающих в атмосферу, промышленности – 17 %, энергетики – 14 %, на отопление и уничтожение отходов – 9 %.


Таблица 2.3

Глобальные эмиссии из природных источников и в результате человеческой деятельности


Если говорить о транспорте, и, прежде всего, автотранспорте, то следует отметить, что при работе двигателя на этилированном бензине в выхлопах появляются оксиды азота, свинец и его соединения. Количество свинца в воздухе находится в прямой зависимости от интенсивности движения. При работе на серосодержащем топливе в выхлопах появляется также диоксид серы (SO2). Как правило, содержание токсичных веществ в выхлопе бензиновых и дизельных двигателей превышает предельно допустимые концентрации в десятки и сотни раз.

Большой вклад в загрязнение атмосферы вносит и индустрия. Проведенный в России анализ состава промышленных выбросов и автотранспорта в 100 городах показал, что 85 % общего выброса вредных веществ в атмосферу составляют сернистый газ, оксид и диоксид углерода и аэрозольная пыль. Половина остальных 15 % специфических вредных веществ приходится на углеводороды, другая половина – на аммиак, сероводород, фенол, хлор, сероуглерод, фтористые соединения, серную кислоту.

Коксохимические, нефтехимические и металлургические заводы служат источниками поступления в атмосферу полиароматических углеводородов (ПАУ), в частности бенз(а)пирена. Концентрация бенз(а)пирена, как одного из наиболее опасных канцерогенов, на таких предприятиях достигает сотен мкг/м3 (ПДК = 5 ⋅ 10– 6 мг/л).

Особенно большое локальное загрязнение воздуха ПАУ связано с переработкой угля в кокс, а также при разливе стали. Высокий уровень загрязнения воздушной среды ПАУ имеет место в производстве алюминия и сажи. Значительными источниками ПАУ служат тепловая электрическая станция (ТЭС) и тепловая электроцентраль (ТЭЦ).

Существенный вклад в загрязнение воздушной среды вносят предприятия по крупномасштабному производству галогенсодержащих соединений (CHCl3 , CCl4 ,CH2Cl2 , CF2Cl2 ,CF2Cl2 ,CH3CCl3 и др.). Специфика использования многих летучих галогенсодержащих соединений такова, что б„ольшая часть их поступает в атмосферу. Так, 95 % фторхлоруглеводородов попадает в атмосферу в течение 1 – 2 лет, причем около 40 % (а это сотни тысяч тонн в год) наиболее опасных для озонового слоя фреонов (как считают некоторые специалисты) просачиваются в стратосферу.

Глобальное распределение общего содержания озона характеризуется пространственно-временной асимметрией. Толщина озонового слоя измеряется в единицах Добсона (ЕД). 1 единица Добсона равна 1/100 мм толщины сжатого слоя озона при нуле градусов Цельсия; дырой считается участок атмосферы с уровнем озона меньше 220 ЕД.

При средней величине общего содержания озона около 300 ЕД общее количество озона в атмосфере меняется от 120 до 760 ЕД.

Минимальная концентрация наблюдается над экваториальным поясом, и она возрастает в направлении полюсов. При этом в стратосфере Северного полушария содержится больше озона, чем в южной стратосфере, а годовой ход концентраций O3 в них носит зеркальный характер. Общая закономерность глобального распределения озона сформулирована в форме принципа Дютша – Добсона. Суть этого принципа состоит в том, что средняя стратосфера над экваториальным поясом находится в состоянии фотохимического равновесия, при котором скорость образования и скорости стока озона уравниваются и выполняется условие d[O3]/dt = 0. Перенос озона в нижнюю стратосферу высоких широт приводит к его накоплению до количеств, намного превосходящих равновесные.

Уменьшение озонового слоя позволит большему количеству повреждающих клетки ультрафиолетовых лучей достигать Земли, что почти наверняка будет вредным для живых организмов, так как значительная доля раковых опухолей кожи вызывается воздействием солнечного света на протяжении длительного времени. Полагают, что каждое уменьшение озонового слоя на 1 % приводит к 2 %-ному усилению ультрафиолетового излучения и к 2 – 5 %-ному учащению случаев рака кожи.

Наиболее опасные для человека последствия истощения озонового слоя – увеличение числа заболеваний раком кожи и катарактой глаз. Согласно данным ООН, сокращение озонового слоя всего на 1 % означает появление в мире 100 тыс. новых случаев катаракты и 10 тыс. случаев рака кожи.

Средства массовой информации, а также некоторые учебно-методические пособия активно распространяют теорию разрушения озонового слоя (Фрумин Г. Т., 2006). Суть этой теории в следующем. Фреоны (фторхлоруглеводороды) широко используются в качестве хладоагентов, вспенивателей пластмасс, газов-носителей в аэрозольных баллончиках, средств пожаротушения и т. п. Выполнив свою рабочую функцию, б„ольшая часть фреонов попадает в верхнюю часть атмосферы, где под действием света разрушается с образованием свободных атомов хлора по реакции:




Далее атомы хлора интенсивно взаимодействуют с озоном по реакции:




и регенерируются по реакции:




При указанных превращениях один атом хлора может разрушить не менее 10 000 молекул озона. Однако следует заметить, что представления о роли фреонов в разрушении озонового слоя (экрана) нашей планеты являются всего лишь гипотезой. С ее помощью трудно объяснить причины периодического убывания концентрации озона над Антарктидой, тогда как не менее 90 % фреонов попадают в атмосферу в Европе и США. Другая гипотеза появления озоновых дыр основана на взаимодействии озона с потоками водорода и метана, поступающими в тропосферу через разломы в земной коре. Она основана на том, что географические координаты озоновых дыр очень близки к координатам зон разломов в земной коре. В том случае, если это справедливо, то колебания концентрации озона следует отнести к природным факторам.

Согласно гипотезе геохимика В. Л. Сывороткина, разрушение озонового слоя Земли – это естественный процесс, связанный с водородной дегазацией Земли. Именно водород – «главный газ Земли». Основные его запасы сосредоточены в ядре планеты и через систему глубинных разломов (рифтов) поступают в атмосферу. По примерным оценкам, природного водорода в десятки раз больше, чем хлора в техногенных фреонах. Однако решающим фактором в пользу водородной гипотезы следует считать то, что очаги озоновых аномалий всегда располагаются над центрами водородной дегазации Земли. В этой связи постоянство озоновой дыры над Антарктидой объясняется тем, что главные каналы дегазации – срединно-океанские рифты – сближаются вокруг Антарктиды и увеличивают «водородную продувку атмосферы» в этом районе. Кроме того, на Антарктиде расположен действующий вулкан Эребус с наибольшими газовыми выбросами в атмосферу.

И все же нельзя не отметить, что во второй половине XX в. замечено все усиливающееся разрушение озонового слоя вплоть до появления так называемых «озоновых дыр» не только над полярными, но и другими, в том числе густонаселенными, областями Земли. Наибольшие потери стратосферного озона раньше приходились на каждую антарктическую весну (октябрь), но сейчас и в северных широтах исчезает около 10 % озона стратосферы зимой и весной и около 5 % летом и осенью. Ежегодно вся Земля теряет около 0,5 % озонового слоя. За последние 10 – 15 лет его утрата составила примерно 7 %, и этот процесс идет с нарастающей интенсивностью.

В первой половине 1997 г. впервые возникла огромная по своим размерам озоновая «дыра» площадью около 30 млн км2 над всей Арктикой, включая север Европы, Канады, Гренландию, Балтийское море, северные области Сибири вплоть до Урала и Байкала.

В связи с этим к началу 1980-х гг. ряд стран прекратили или резко сократили производство фторхлоруглеводородов. В настоящее время темп загрязнения атмосферы CCl4, CFCl3,CF2Cl2 заметно спал.

Здесь уместно отметить, что отечественная холодильная промышленность была практически разрушена потому, что СССР подписал Монреальский протокол (1987), предусматривающий прекращение производства фреонов, якобы разрушающих озоновый слой. Гипотеза об их вредоносности до сих пор не подтвердилась, но фреоновые холодильники уже не могут составить конкуренции агрегатам нового поколения от фирмы «Дюпон» даже с учетом того, что заменители фреонов дороги, токсичны и обладают сильным парниковым эффектом.

Если в стратосфере наблюдается уменьшение озона, то в приземном тропосферном слое происходит его повышенный синтез, особенно в загазованной атмосфере городов под влиянием солнечного ультрафиолетового излучения. При высокой концентрации озон является сильнейшим окислителем, который по своей токсичности превосходит цианистую кислоту и угарный газ. Стандартами ВОЗ установлены предельно допустимые концентрации озона в воздухе 100 мкг/м3.

По данным немецких ученых, в густонаселенных областях Европы содержание озона в настоящее время в 5 – 10 раз превышает эти нормы, а ведь даже при 200 мкг/м3 озона в воздухе начинают гибнуть лиственницы, сосны и другие растения, в том числе злаковые (рожь, ячмень и т. д.).

Источником опасных долгоживущих загрязнений атмосферы служат некоторые объекты коммунального хозяйства. Например, вентиляционные выбросы мусоропроводов содержат более 40 токсичных и дурнопахнущих веществ. При сжигании в быту природного газа в продуктах его сгорания обнаружено 22 различных компонента, в частности большое количество формальдегида (Н – СOH) (до 150 мг формальдегида при сжигании 1 м3 природного газа).

Опасным элементом загрязнения атмосферы являются аэрозольные образования. Аэрозоли — это дисперсные системы, в которых дисперсионной средой служит газ, а дисперсными фазами являются твердые или жидкие частицы. Обычно размеры частиц аэрозолей ограничивают интервалом 0,001 – 10 мкм. По агрегатному состоянию и размерам частиц дисперсной фазы аэрозоли делят на: туманы – системы с жидкой дисперсной фазой (размер частиц 10 – 0,1 мкм); пыли – системы с твердыми частицами размером более 10 мкм; и дымы, размеры твердых частиц которых находятся в пределах 10 – 0,001 мкм.

В физиологическом отношении особое внимание следует уделить частицам менее 5 мкм, так как с уменьшением частиц их поведение становится все более характерным для поведения газообразного состояния, т. е. они не задерживаются в бронхах при дыхании (не отфильтровываются из воздуха), а также не вымываются из воздуха дождями. Это увеличивает время их пребывания в атмосфере по сравнению с более крупными частицами – обстоятельство, играющее особо важную роль при распространении пыли и аэрозолей в атмосфере.

Попутно заметим, что продукты питания – хлеб, молоко, мясо, масло, рыба, сахар и другие – также представляют собой дисперсные системы. Да и сам человек состоит из частиц, образующих кровь, кости и ткани, которые являются сложными дисперсными системами. Поэтому не без основания известный ученый-коллоидник И. И. Жуков отмечал, что «человек – ходячий коллоид».

От дымов и туманов происходит смог. Согласно одному из последних международных экологических словарей, смог – это «туман, ставший более тяжелым и более темным благодаря городской копоти – дыму».

Встречается смог лондонского или лос-анджелесского типа. В первом случае причиной возникновения смога служит сжигание угля и мазута. При высокой влажности атмосферы образуется густой туман с примесью частиц SO2. Свое название этот смог получил после трагедии зимой 1952 г., когда в Лондоне в результате образования инверсионного тумана умерло 3200 человек. В 1956 г. «туман-убийца» унес там еще несколько тысяч жителей.

Инверсия представляет собой необычное состояние атмосферы, при котором температура воздуха в тропосфере не убывает с высотой. В результате более холодный воздух располагается ниже более теплого. В подобной ситуации более холодный, а потому и более тяжелый воздух не может подняться вверх и рассеяться в атмосфере. Этим объясняется скапливание загрязнений ниже «крышки» из теплого воздуха.

Фотохимический смог был впервые отмечен в 1944 г. в Лос-Анджелесе, когда в результате большого скопления автомобилей была парализована жизнь одного из крупнейших городов США. Фотохимический смог возникает под действием солнечного света в отсутствии ветра при низкой влажности воздуха. Наблюдается сильное раздражение слизистых оболочек дыхательных путей и глаз. Сохранение смоговой ситуации в течение длительного времени приводит к повышению заболеваемости и смертности среди населения.

Особенно сильно смог влияет на детей и пожилых людей. Он оказывает вредное воздействие и на растительность, вызывая увядание и гибель листьев. Кроме того, фотохимический смог усиливает коррозию металлов, разрушение строительных сооружений, резины и других материалов.

Окислительный характер фотохимическому смогу придают озон и пероксилацетилнитраты (ПАН). ПАН – название группы соединений типа




где R – CH3, C6H5 и т.д.

Из многочисленных органических соединений, попадающих в атмосферу, наибольшую склонность к образованию аэрозолей проявляют терпеновые углеводороды. Так, наблюдаемая над хвойными лесами в летнее время голубоватая дымка представляет собой аэрозоль, возникающий в результате фотохимического окисления терпенов.

Образование аэрозольных частиц в воздухе городов часто связывают с SO2, который при окислении дает H2SO4, превращающуюся при наличии в атмосфере аммиака в сульфат аммония.

Число твердых частиц в воздухе сильно варьирует в зависимости от местности. В нижней тропосфере на высотах менее 2 км, в сельских районах концентрация частиц составляет около 104 см– 3, а над городами превышает 105 см– 3. В фоновых районах в отсутствие антропогенной деятельности в воздухе содержится всего 200 – 500 см– 3 аэрозольных частиц. Особо отметим, что антропогенная нагрузка в условиях продолжающейся концентрации промышленного потенциала в ряде городов Российской Федерации давно перешла все допустимые пределы. Рост промышленного производства сопровождался также резким увеличением городского населения. Промышленность и жилищно-коммунальное хозяйство городов Восточной и Западной Сибири, Уральского, Поволжского, Центрального, Северного и Северо-Западного районов Российской Федерации являются одними из главных источников загрязнения атмосферного воздуха (табл. 2.4). Согласно статистике, до 95 % всего времени человек пребывает в закрытом помещении: место работы, транспорт, квартира, место досуга или отдыха. В этой связи в 1970-е гг. во время энергетического кризиса внимание было привлечено к эколого-химическим проблемам воздушной среды квартиры, офиса и других закрытых помещений. В то время для обогрева жилища использовали далеко не чистые в экологическом отношении энергоносители, и при неблагоприятных метеорологических условиях качество воздушной среды, как в атмосфере города, так и в закрытых помещениях, зачастую было существенно ниже допустимых норм.


Таблица 2.4

Двадцать самых «грязных» регионов России


Как правило, в воздухе жилых и производственных помещений постоянно присутствуют бытовая пыль, оксиды углерода, азота и серы, озон, радон, компоненты табачного дыма, десятки различных летучих органических соединений (ЛОС), микроорганизмы. В результате различных химических реакций между этими веществами могут образовываться более токсичные соединения, что приводит в итоге к неконтролируемому ухудшению самочувствия людей и повышает степень риска возникновения различных заболеваний. Комплекс факторов, обусловленных высокой загрязненностью воздуха помещений и связанный вследствие этого с жалобами населения, получил название «синдром больных зданий».

Известно множество источников загрязнения воздушной среды в замкнутом объеме помещений. К основным относятся: строительно-отделочные материалы; внутренняя обстановка помещения (предметы быта, приборы, мебель, ковры); высокотемпературные источники; продукты жизнедеятельности человека.

Из источников эмиссии загрязняющих веществ неорганической природы, имеющих потенциальную экологическую опасность, следует обратить особое внимание на радон и асбест в виде мельчайших частиц пыли. В замкнутом объеме радон, поднимающийся из разломов земной коры и попадающий из подвалов в вышележащие этажи по лестничным клеткам или вентиляционным каналам, становится опасным вследствие своей радиоактивности. Источниками радона могут быть и строительные материалы, например гранит, используемый в фундаментах или облицовках зданий. Широко применявшийся ранее в качестве компонента строительно-отделочных материалов асбест в настоящее время повсеместно запрещен к применению из-за своих канцерогенных свойств.

Загрязнение воздушной среды закрытого помещения происходит еще и естественным путем. Причиной этого является человек, выделяющий в процессе жизнедеятельности продукты обмена веществ. Так, выдыхаемый воздух содержит азот, кислород, воду, диоксид азота и небольшое количество оксида углерода. Кроме этих веществ в выдыхаемом человеком воздухе содержится более ста различных летучих соединений, присутствующих в ничтожно малых количествах. Так как многие из этих соединений проявляют определенную токсичность, они получили название антропотоксикантов. В обычных условиях антропотоксиканты, как правило, не снижают самочувствие и работоспособность человека, так как при достаточном разбавлении атмосферным воздухом их концентрация в окружающей среде невысока. Однако в закрытом пространстве накопление антропотоксикантов ведет к снижению работоспособности человека, появлению тягостных ощущений, снижению функциональных возможностей организма. Накопление некоторых антропотоксикантов в закрытых помещениях и при большом скоплении людей может привести к самоотравлению. Подобные явления отмечались, в частности, при длительном пребывании человека в космических аппаратах и подводных лодках.

Пыль и грязь проникают в наш дом и впитываются коврами, стенами, шторами. Было выявлено, что пыль является колоссальным источником инфекции для человека. Микробы используют частицы пыли для передвижения и контакта. Эксперты предостерегают: моющие и чистящие средства, которые мы обильно используем дома, наполняют воздух ядовитыми испарениями и частицами. Причем их концентрации в тысячи раз выше, чем в открытом воздухе. В воздухе, которым мы дышим, обнаружен микроскопический пылевой клещ и его экскременты, которые являются источником сильных аллергических реакций. Основным источником пищи этих микроскопических существ являются частички мертвой человеческой кожи. Наши спальни – идеальное место для обеда и размножения пылевого клеща. Установлено, что 10 % простудных и инфекционных заболеваний приобретены вне помещений, а 90 % – внутри помещений. В природной среде микробы и пыль разрушаются, а в помещениях почти все способствует их сохранению, накоплению и размножению.

2.3. Основные источники и виды антропогенного загрязнения почв

В почве протекают разнообразные физические, химические и биологические процессы, которые в результате загрязнений нарушаются. Загрязнение почв связано с загрязнением атмосферы и вод. В почву попадают твердые и жидкие промышленные, сельскохозяйственные и бытовые отходы (Скурлатов Ю. И. [и др.], 1994; Фелленберг Г., 1997; Лозановская И. Н. [и др.], 1998).

В настоящее время возникла серьезная проблема, связанная с нитратами. Образно говоря, возник своеобразный «нитратный бум». Создаются и уже созданы специальные индикаторы нитратов, которые внедряются в обиход. При этом широкое распространение получило мнение, что причина накопления нитратов в овощных культурах обусловлена применением азотных удобрений. Конечно, нет сомнений в том, что внесение высоких доз азота может приводить к загрязнению этих культур, однако это не единственная причина загрязнения. Имеется целый ряд факторов, влияние которых на накопление нитратов в растениях может быть более существенным, чем действие азотных удобрений. К числу таких факторов относятся видовые и сортовые особенности, фаза развития растений, уровень освещенности, обеспеченность почвы кроме азота и другими питательными веществами и т. п. Установлено, например, что на накопление нитратов в растениях весьма существенно влияет освещенность. Овощные культуры, выращенные в теплицах, как правило, отличаются более высоким содержанием нитратов, чем выращенные на открытом грунте. Уровень накопления нитратов в значительной степени определяется также фазой развития. Овощные культуры с коротким периодом вегетации, а также на ранних стадиях развития могут накапливать значительное количество нитратов. Источниками антропогенного загрязнения почв служат различные объекты производственной и бытовой деятельности людей (табл. 2.5).


Таблица 2.5

Виды и источники загрязнений почв

Кислотные загрязнения и их химические последствия для почвы

Большой ущерб почвам наносят антропогенные кислотные загрязнения. В течение десятилетий кислотные загрязнения действуют на буферную емкость почвы. В отношении многих почв отмечается вымывание ионов, важных для роста и развития растений. Попадающие в почву протоны замещают катионы, сорбционно-связанные с коллоидными частицами почвы, и в результате эти катионы мигрируют в глубинные слои, становясь недосягаемыми для корней деревьев (рис. 2.2).

В ходе закисления не все почвы одинаково выделяют токсичные ионы Al3+, так как не все почвы содержат одинаковое количество минералов, содержащих алюминий. Это связано также с различным значением рН у различных почв. Болотные почвы имеют оптимальный рН 4,0 – 4,5; песчаные – 4,5 – 5,0; глинистые – около 7,0.

Независимо от выделения ионов Al3+ и других катионов, в том числе и тяжелых металлов, изменение рН почвы может сказываться на ее свойствах и иным образом. Например, снижение рН препятствует развитию микроорганизмов, которые способствуют усвоению минеральных веществ корнями растений. Ощутимым результатом гибели микроорганизмов в почве является нарушение ее нормального дыхания.


Рис. 2.2. Ионный обмен на коллоидных частицах почвы (катионы, адсорбированные на коллоидных частицах почвы, вытесняются избытком ионов Н+)


Все изменения состава почвы, связанные с увеличением ее кислотности, подавляют рост растений. Этот эффект характерен не только для лесных пород, он проявляется также и у культурных растений. Так, опыт показал, что кислотные осадки с рН 3,3 снижают образование стручков бобовых растений на 7 %.

Загрязнение почв тяжелыми металлами

Тяжелые металлы антропогенного происхождения попадают в почву из воздуха в виде твердых или жидких осадков. Лесные массивы с их развитой контактирующей поверхностью особенно интенсивно задерживают тяжелые металлы, при этом, в первую очередь, удерживают наиболее мелкие частицы.

Опасность загрязнения тяжелыми металлами из воздуха в равной степени значима для любых почв. Особо отметим следующее.

1. Для каждого химического элемента существует свой определенный средний уровень концентрации в различных компонентах географической оболочки – горных породах, водах, живом веществе, атмосферном воздухе, почвах. При превышении этого уровня в деятельности организмов появляются заметные нарушения.

2. На общем фоне выделяются территории, для которых характерно избыточное или недостаточное содержание тех или иных элементов в среде. Это геохимические аномалии, которые так или иначе воздействуют на растения, животных, человека.

Основными источниками загрязнения почв металлами являются: орошение водами с повышенным содержанием тяжелых металлов; внесение осадков бытовых сточных вод в почвы в качестве удобрения; вторичное загрязнение вследствие выноса металлов из отвалов рудников или металлургических предприятий водными или воздушными потоками; поступление больших количеств тяжелых металлов при постоянном внесении высоких доз органических, минеральных удобрений и пестицидов, содержащих тяжелые металлы (Бондарев Л. Г., 1976; Алексеев Ю. В., 1987).

Ионы тяжелых металлов способны специфически адсорбироваться почвами с образованием относительно прочных связей с некоторыми поверхностными функциональными группами. Так, при взаимодействии ионов тяжелых металлов с поверхностными ОН-группами алюмосиликатов или гидроксида алюминия возможно образование следующих соединений:




где МZ+ – ион металла с зарядом z+.

Образование комплексных соединений металлов с органическим веществом почвы способствует выведению излишних масс металлов из миграционных циклов на длительное время. Прочность фиксации разных металлов в органическом веществе почв неодинакова. Наиболее прочно закрепляется ртуть, прочно связывается свинец, менее прочно – медь, еще менее прочно – цинк и кадмий.

Загрязнение почв металлами приводит к изменению видового состава комплекса микроорганизмов. Происходит значительное сокращение видового разнообразия комплекса почвенных микромицетов и появление устойчивых к тяжелым металлам микромицетов. Процесс трансформации поступивших в почву в процессе техногенеза тяжелых металлов включает следующие стадии: 1) преобразование оксидов тяжелых металлов в гидроксиды (карбонаты, гидрокарбонаты); 2) растворение гидроксидов (карбонатов, гидрокарбонатов) тяжелых металлов и адсорбция соответствующих катионов тяжелых металлов твердыми фазами почв; 3) образование фосфатов тяжелых металлов и их соединений с органическими веществами почвы.

Загрязнение почв пестицидами

Пестициды (лат. pestis – зараза; caedo — убиваю) – собирательный термин, охватывающий химические соединения различного строения и применяемые для борьбы с вредными организмами в сельском хозяйстве, здравоохранении, промышленности, нефтедобыче и во многих других случаях. В здравоохранении пестициды применяют для борьбы с членистоногими – переносчиками таких опасных заболеваний, как малярия, туляремия, чума, энцефалит, сонная и слоновая болезни, многих кишечных заболеваний. Кроме того, в здравоохранении и ветеринарии пестициды используют в качестве дезинфицирующих средств, в промышленности – для предохранения неметаллических материалов (полимеров, древесины, текстильных изделий), борьбы с обрастанием морских судов, особенно в южных морях, для борьбы с сероводородобразующими бактериями, для предохранения труб от коррозии.

В настоящее время пестициды являются основными средствами защиты растений, животных и различных материалов от повреждений разнообразными организмами. Так, например, в 1992 г. в России пришлось вести борьбу с саранчой на площади около 2 млн га, что потребовало применения большого количества пестицида децис, а также использования военных самолетов, так как саранча за один день способна уничтожить растительность на огромных территориях. В 1995 г. в Красноярском крае сибирским шелкопрядом было повреждено 600 тыс. га леса. Борьба с шелкопрядом велась с привлечением сил Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий (МЧС РФ). В 1996 г. в России из-за недостаточной борьбы с клопом-черепашкой 5 млн т пшеницы потеряло хлебопекарные качества, и ее можно было использовать лишь на корм скоту, что нанесло стране убыток в 2 трлн рублей.

В последние годы развернулась широкая дискуссия о целесообразности применения пестицидов в сельском и лесном хозяйствах. Применением пестицидов наносится огромный вред почвам и биоценозам из-за содержащихся в них соли меди и арсениды.

По оценкам специалистов, в экономически слабых странах до 50 % урожая погибает от сорняков и вредителей, а в промышленно развитых – 15 – 25 %. Ежегодные потери урожая в мировом сельском хозяйстве составляют 30 – 40 % от потенциально возможного урожая, убытки оцениваются в 75 млрд долларов в год.

Исходя из этих числовых оценок, сторонники глобальной химизации сельского хозяйства ставят задачу расширения масштабов применения пестицидов с целью снижения потерь сельскохозяйственной продукции. В то же время среди государственных задач по охране окружающей среды и здоровья человека одной из важнейших является предупреждение загрязнения среды обитания и пищевых продуктов пестицидами и токсичными продуктами их трансформации.

Широкое применение пестицидов в сельском хозяйстве началось незадолго до Второй мировой войны, когда были обнаружены инсектицидные свойства ДДТ (дихлордифенилтрихлорэтана). Этот препарат был впервые синтезирован в 1874 г. немецким химиком Зайдлером, но массовое его производство и применение началось с середины прошлого столетия. С 1950 по 1970 г. на земном шаре было использовано около 4,5 млн т этого одного из наиболее стойких и сильнодействующих пестицидов.

Использование пестицидов отрицательно влияет на экосистемы любого уровня и на здоровье человека, так как многие пестициды обладают мутагенными и канцерогенными свойствами. Опасность пестицидов состоит еще и в том, что они распространяются далеко за пределы тех агросистем, где они применяются.

Существуют сотни различных пестицидов, однако широкое распространение в мире получили около 180 пестицидов, которые делятся на следующие основные группы:

инсектициды предназначены для уничтожения насекомых (лат. insectum – насекомое);

фунгициды используются для борьбы с фитопатогенными грибками и бактериями (лат. fungus — гриб);

– гербициды применяются для уничтожения растительности, прежде всего сорняков (лат. herba – трава, растение);

По масштабам применения (40 – 50 %) и по ассортименту выпускаемых препаратов (около 40 %) гербициды составляют самую большую группу пестицидов.

родентициды служат для уничтожения грызунов (лат. rodentis – грызущий);

нематоциды предназначены для уничтожения нематод – паразитов растений и животных (класс низших червей, тело которых имеет нитевидную или веретенообразную форму).

Пестициды могут быть классифицированы по химическим признакам. К числу наиболее распространенных относятся:

хлорорганические пестициды – галоидопроизводные алициклических и ароматических углеводородов, углеводородов алифатического ряда;

фосфорорганические пестициды – сложные эфиры фосфорных кислот;

карбаматы — производные карбаминовой, тио- и дитиокарбаминовой кислот;

азотсодержащие пестициды – производные мочевины, гуанидина, фенола.

Следует отметить, что пестициды разрабатывались без учета экологических особенностей их применения.

1. Пестициды имеют широкий спектр токсических воздействий. Так, в Молдавии отмечается прямая зависимость между территориальной нагрузкой пестицидов и поражаемостью населения туберкулезом, детской смертностью, а также смертностью от цирроза печени и хронического гепатита.

2. Человек использует пестициды для ограниченного числа видов, в то время как пестициды влияют на все организмы. Так, пестициды влияют на насекомых-опылителей. Около 80 % цветковых растений опыляются насекомыми и около 20 % всех насекомых являются опылителями.

3. Как правило, используют большее количество пестицидов, чем необходимо (для надежности). Точная дозировка практически отсутствует.

4. Площади опыления (обработки) пестицидами весьма значительны – около 10 млн га.

5. Пестициды долго сохраняются в почве (табл. 2.6).


Таблица 2.6

Период полураспада хлорорганических инсектицидов в почве


Устойчивость отдельных представителей важнейших классов пестицидов в почвах может быть схематически охарактеризована следующим рядом уменьшения устойчивости: хлорсодержащие углеводороды – от 2 до 5 лет; производные мочевины, S-триазины – от 2 до 18 месяцев; карбаматы, сложные эфиры фосфорной кислоты – от 2 до 12 недель.

Различают небиотическое и биотическое разложение пестицидов в почве. Небиотическое разложение протекает за счет гидролиза, на скорость которого существенное влияние оказывают рН среды, температура и влажность почвы, ее минеральный состав. Оно осуществляется также за счет фотолиза пестицидов под действием солнечной радиации, что особенно важно для токсикантов, вносимых на поверхность почвы.

6. Благодаря естественному отбору происходят генетические перестройки, и вредители относительно адаптируются к ядам. Срок выработки устойчивости к пестицидам у видов, с которыми ведется борьба, примерно совпадает со временем разработки нового препарата (как правило, около 10 лет). Кстати, синтез и внедрение препарата в производство требует затрат в размере 20 – 45 млн долларов.

7. Эксперименты показывают, что большинство современных пестицидов значительно безопаснее, чем многие лекарственные средства. Например, средняя летальная доза (ЛД50) поваренной соли – 3750 мг/кг, кофеина – 200 мг/кг, аспирина – 1750 мг/кг, а современных гербицидов – производных сульфонилмочевины – 5000 мг/кг. По статистике отравлений, в США наибольшее число смертельных случаев отмечено при отравлении алкоголем и менее 2 % – отпестицидов и минеральных удобрений. Но с другой стороны, по данным Института всемирного наблюдения (Вашингтон), ежегодно в мире регистрируются от 400 тыс. до 2 млн случаев отравлений пестицидами, большинство которых приходится на сельских жителей развивающихся стран. Так, в Индии вследствие отравления пестицидами ежегодно погибают 20 – 40 тыс. человек. В этой связи надежды связывают с биологическими методами защиты растений. В качестве таких средств применяются паразиты членистоногих и хищники. В настоящее время ведется интенсивная работа по поиску и созданию новых эффективных биологических средств и способов биологической защиты растений.

В последние десятилетия проблема загрязнения окружающей среды пестицидами привлекает самое широкое внимание, причем одна группа специалистов резко выступает против практики широкого применения пестицидов, учитывая те ошибки, которые наделало человечество с их применением, а другая (это в основном работники сельского хозяйства) утверждает, что без применения различных групп пестицидов невозможно кардинально решить продовольственную проблему на земном шаре, а также вопросы борьбы с малярией, шистоматозом и другими заболеваниями. По сообщению Б. Коммонера, «в Гватемале спустя двадцать лет после начала „программы искоренения малярии“, основанной на интенсивном использовании инсектицидов, малярийные комары приобрели иммунитет против них, и заболеваемость малярией стала выше, чем до начала кампании». Таким образом, пестициды играют весьма скромную роль в мероприятиях по борьбе с малярией.

Попытки борьбы с насекомыми, наносящими большой вред урожаю, предпринимались очень давно. Для этих целей без особого успеха использовали арсенат свинца, табачную пыль, мыло и бензин. Современная эра пестицидов началась в 1940 г. с открытием Паулем Мюллером инсектицидного действия ДДТ.

Впервые этот препарат был применен союзными армиями во время Второй мировой войны для борьбы с малярией и тифом. Однако во время войны данные о ДДТ практически не публиковались. В конце Второй мировой войны ДДТ вошел в практику как сельскохозяйственный и бытовой инсектицид и его начали широко применять во всем мире, так как считалось, что избирательность его действия очень высока. В результате этого значительно возросли урожаи сельскохозяйственных культур, что сыграло немаловажную роль в обеспечении потребностей растущего населения Земли. Однако в 1962 г. стало очевидно, что высокая устойчивость ДДТ к процессам биодеградации делает его применение опасным для животного мира и приводит к вредным последствиям для многих видов животных (особенно для рыб, птиц и пчел). При длительном применении ДДТ токсичен и для человека. Поэтому в настоящее время применение ДДТ запрещено или ограничено лишь теми случаями, когда отсутствуют приемлемые его заменители (в СССР применение ДДТ запрещено с 1970 г.).

В природе химические средства борьбы одних организмов против других используются почти со времени зарождения жизни, и без особой угрозы для окружающей среды. Все вещества, выделяемые организмами в окружающую среду (фитонциды, зооциды и т. п.), отличаются очень малой стабильностью и разрушаются, как только выполнят свою функцию. Это свидетельствует о том, что и проблему пестицидов можно разрешить, причем основное требование к разработке новых препаратов – соизмеримость сроков их действия со сроками детоксикации.

По скорости разложения в объектах окружающей среды пестициды разделяют в настоящее время на следующие шесть групп: 1) пестициды с периодом разложения более 18 мес.; 2) пестициды с периодом разложения около 18 мес.; 3) пестициды с периодом разложения около 12 мес.; 4) пестициды с периодом разложения до 6 мес.; 5) пестициды с периодом разложения до 3 мес.; 6) пестициды с периодом разложения менее 3 мес.

По продолжительности действия (персистентность – продолжительность сохранения пестицидами биологической активности в окружающей среде или ее отдельных объектах, в том числе в почве, атмосфере, гидросфере) пестициды разделяют на следующие группы: 1) препараты с продолжительностью сохранения биологической активности до 3 мес.; 2) препараты с продолжительностью действия до 6 мес.; 3) препараты с продолжительностью действия до 12 мес.; 4) препараты с продолжительностью действия до 18 мес.; 5) препараты с продолжительностью действия до 2 лет; 6) препараты с продолжительностью действия более 2 лет.

Чем выше продолжительность действия препарата в объектах окружающей среды, тем выше его персистентность. Необходимо отметить, что в различных объектах окружающей среды и в разных климатических зонах персистентность одного и того же препарата может существенно изменяться. Персистентность препаратов зависит также от активности живых организмов, обитающих в данной экосистеме. Наиболее быстро пестициды разрушаются под влиянием микроорганизмов почвы. Большинство пестицидов сравнительно быстро разрушается также под влиянием света, особенно в присутствии воды.

Появление устойчивости к действию инсектицидов у вредных насекомых, отравление полезных насекомых, опыляющих растения, а также рыб в реках и озерах, привели к возникновению широкого международного движения, завершившегося в 1976 г. разработкой «Интегрированной программы борьбы с вредителями», принятой всеми странами-членами ФАО (Food and Agriculture Organization of the United Nations – Продовольственная и сельскохозяйственная организация ООН). Было решено составить список наиболее избирательных инсектицидов и использовать из них только безвредные для природных врагов насекомых; при применении инсектицидов учитывать факторы окружающей среды, усиливающие их действие, а именно – время применения (суточный цикл), температуру и осадки, способные в некоторых случаях заменить применение инсектицидов; использовать минимальные количества инсектицидов, необходимые при данном типе заражения; следить за накоплением инсектицидов и продуктов их распада в окружающей среде.

На основании этих требований было рекомендовано применять 5 основных инсектицидов: трихлорфон, малатион, метоксихлор, карбарил и неорганическое соединение криолит (алюмофторид натрия).

Загрязнение почв твердыми бытовыми отходами

К твердым бытовым отходам (ТБО) относят смесь веществ и материалов, образующихся в результате жизнедеятельности населения, которые необходимо утилизировать или уничтожить как бесполезные, нежелательные или опасные.

По своему составу ТБО неоднородны и включают макулатуру (20 – 40 % по массе), черные и цветные металлы (2 – 5 % и более), пищевые отходы (20 – 40 %), пластмассу (1 – 5 %), стекло (4 – 6 %), текстиль (4 – 6 %) и др. Количество ТБО (мусора), образующееся в некоторых странах мира в среднем на душу населения (по различным источникам на начало 1980-х гг.) приведено в табл. 2.7.


Таблица 2.7

Количество ТБО в некоторых странах мира в среднем на душу населения

* Париж.

** Москва.


Для справки отметим, что ежегодно в Санкт-Петербурге образуется около 1 млн т (около 5 млн м3) ТБО и 0,4 млн м3 осадков городских очистных сооружений.

Объем ТБО по России составляет около 130 млн м3. В настоящее время около 124 млн м3 складируются на специальных полигонах, а остальные уничтожаются на мусороперерабатывающих заводах.

С точки зрения экологической безопасности все ТБО целесообразно разделить на следующие четыре группы: 1) токсичные отходы (отходы, содержащие токсичные тяжелые металлы и их соединения, радиоактивные изотопы, люминесцентные лампы и т. д.);

2) потенциально-токсичные (при переработке генерируют токсичные вещества, загрязняющие окружающую среду); 3) нетоксичные (биологически инертные) отходы (кость, стекло, камень и т. п.);

4) пищевые отходы.

Городские свалки вокруг городов не только занимают обширные территории (для захоронения 1 т ТБО требуется 3 м2), но и представляют опасность для здоровья людей и являются потенциальным источником загрязнения подземных вод и распространения неприятных запахов.

Наглядный пример возможных масштабов загрязнения грунтовых вод – случай с военным складом в Скалистых горах (штат Колорадо, США). Из-за протечки хранилищ отходов ряд синтетических веществ попал в грунтовые воды, загрязнив около 50 км2 территории, окружавшей склад. В этом районе пришлось закрыть множество водяных скважин. Армия США затратила более 200 млн долларов, чтобы очистить местность и предотвратить ее дальнейшее загрязнение. Полагают, что для завершения работы понадобится еще 1,8 млрд долларов.

Городские свалки опасны в отношении пожаров и распространения инфекций. Как правило, спустя год после начала складирования отходов на свалке, начинается интенсивное выделение биогаза, состоящего на 54 % из метана (СН4) и на 46 % из диоксида углерода. В процессе разложения 1 т отходов выделяется 11,4 м3 такого газа, неконтролируемые выбросы которого представляют опасность в отношении взрыва или воспламенения метана, содержащегося в биогазе.

Свалка «живет» долгие годы. Выделение газов из толщи отходов начинается вскоре после ее создания и достигает максимума спустя 25 – 30 лет, после чего газ идет еще около полувека. То есть выделение газов свалкой длится не менее 75 лет.

Среди выделяющихся газов многие имеют сильный неприятный запах (сероводород, меркаптаны, аммиак, летучие амины). Но наиболее негативное воздействие на природную среду оказывают не они, а не имеющий запаха метан. Этот газ обладает способностью задерживать длинноволновое излучение, идущее от поверхности Земли, и таким образом способствовать повышению температуры земной атмосферы (так называемый «парниковый эффект»). «Парниковое» влияние метана в 30 раз выше, чем диоксида углерода, что делает его выделение в атмосферу крайне нежелательным.

Образующиеся в Санкт-Петербурге за год бытовые отходы, если их полностью захоранивать на полигонах, дадут со временем 30 – 40 тыс. т метана (Единая… 2000).

В связи с выделением метана и других горючих газов свалки представляют значительную пожарную опасность. Загоревшуюся свалку погасить очень трудно. Так, весной 1996 г. свалка у пос. Северная Самарка во Всеволожском районе Ленинградской области горела несколько недель, застлав удушливым дымом окрестности на много километров вокруг.

Дополнительным источником ТБО являются городские очистные сооружения, в которых в больших количествах накапливается осадок (или ил), состоящий на 70 – 80 % из органических веществ. Он имеет неприятный запах и содержит патогенную микрофлору. Обезвреживание осадка является обязательным условием системы очистки сточных вод, однако в ряде случаев осадок может содержать трудноудаляемые примеси (например, тяжелые металлы).

2.4. Основные источники и виды антропогенного загрязнения гидросферы

Гидросфера служит естественным аккумулятором большинства загрязняющих веществ, поступающих непосредственно в атмосферу или литосферу. Это связано с наличием глобального цикла круговорота воды, со способностью воды к растворению различных газов и минеральных солей, а также с тем, что любой водоем служит своего рода ямой, куда вместе с потоками воды смываются с суши всевозможные твердые частицы. Кроме того, вода в силу своего широкого использования в промышленности, сельском хозяйстве, в быту подвержена и непосредственному антропогенному загрязнению. Вместе с тем, будучи естественной средой обитания живых организмов (гидробионтов), вода находится в динамически равновесном состоянии обмена биогенными веществами с водной биотой. Присутствие загрязняющих веществ в водной среде, чуждых живой природе, оказывает влияние на процессы жизнедеятельности отдельных живых организмов и на функционирование всей водной экосистемы.

При изучении процессов загрязнения водных объектов установлены определенные закономерности: 1) неравномерность загрязнения водных объектов на территории страны; 2) периодически возникающие аварийные ситуации, сопровождающиеся массовыми выбросами загрязняющих веществ в водные объекты; 3) формирование устойчивых областей загрязнения, обусловленных постоянным поступлением в водные объекты промышленных, сельскохозяйственных и бытовых сточных вод.

Принято считать, что в промышленно развитых регионах на долю промышленных сточных вод приходится 70 – 80 %, примерно 20 % – нахозяйственно-бытовые (коммунальные) стоки, а остальное падает на долю сельскохозяйственных стоков. Основные виды и источники загрязнений водных объектов приведены в табл. 2.8.


Таблица 2.8

Основные виды и источники загрязнений водных объектов


По данным экологического инспектирования, оказалось, что по количеству сбрасываемых сточных вод и степени их загрязнения отрасли промышленности могут быть ранжированы следующим образом:

– целлюлозно-бумажная → химическая → цветная металлургия → черная металлургия → угольная → машиностроение → нефтедобывающая → нефтехимическая → электроэнергетика (Красовский Г. Н., Егорова Н. А., 1991).

Можно выделить шесть следующих наиболее существенных проблем, связанных с водными объектами: эвтрофирование, закисление, загрязнение токсичными химикатами, флуктуации уровня, заиливание и разрушение экосистем.

Антропогенное эвтрофирование водоемов

Понятие трофности водоемов сформулировано Тинеманном и Науманном в начале XX в. Под этим понятием понимают «кормность», «питательность» водоемов, т. е. обеспеченность пищей населяющих их гидробионтов. Само слово эвтрофный происходит от греческого слова «эвтрофос», что в переводе означает «тучность», «жирность».

Эвтрофирование — повышение биологической продуктивности водных объектов в результате накопления в воде биогенных элементов под действием антропогенных и естественных (природных) факторов.

Между эвтрофированием и загрязнением имеется существенная разница, заключающаяся, прежде всего, в том, что загрязнение обусловлено сбросом токсических веществ, подавляющих биологическую продуктивность водоемов, а эвтрофирование до известной степени повышает продуктивность.

Основными источниками загрязнения водоемов биогенными веществами служат смыв азотных и фосфорных удобрений с полей, строительство водохранилищ без надлежащей очистки ложа, сброс сточных вод, в том числе и прошедших биологическую очистку.

Биогенные компоненты поступают в природные экосистемы как водным, так и воздушным путем; сейчас, например, в мире используется свыше 30 млн т/год мыла и детергентов (основанных на фосфатах). В Канаде, например, одному из химиков была присуждена престижная национальная премия за разработку моющих средств (стиральных порошков), не содержащих фосфора.

В эвтрофировании водоемов принимают участие два главных биогенных элемента – азот и фосфор. Если Nmin :Pmin (отношение содержания минерального азота к содержанию минерального фосфора) меньше 10, то первичная продукция фитопланктона лимитируется азотом, при Nmin :Pmin > 17 – фосфором, при Nmin :Pmin = 10 – 17 – азотом и фосфором одновременно. Установлено также, что азот определяет развитие фитопланктона главным образом в олиготрофных океанических районах и в морских экосистемах, а фосфор во внутриконтинентальных водоемах.

Среди множества биогенных элементов, влияющих на процесс эвтрофирования (азот, кислород, углерод, сера, кальций, калий, хлор, железо, марганец, кремний и др.), для водоемов умеренной зоны решающую роль играет фосфор.

Эвтрофирование представляет собой естественный процесс эволюции водоема. С момента «рождения» водоем в естественных условиях проходит несколько стадий развития: на ранних стадиях – от ультраолиготрофного до олиготрофного, далее становится мезотрофным и в конце концов водоем превращается в эвтрофный и гиперэвтрофный – происходит «старение» и гибель водоема с образованием болота.

Однако под воздействием хозяйственной деятельности этот естественный процесс приобретает специфические черты, становится антропогенным. Резко возрастают скорость и интенсивность повышения продуктивности экосистем. Так, если в естественных условиях эвтрофирование какого-либо озера протекает за период 1000 лет и более, то в результате антропогенного воздействия это может произойти в сто и даже тысячу раз быстрее. Такие крупные водоемы, как Балтийское море, озера Эри, Тахо и Ладожское, перешли из одного трофического состояния в другое всего за 20 – 25 лет. Данный процесс охватил многие крупнейшие пресноводные озера Европы, США (Великие Американские озера), Канады и Японии.

По образному выражению Ю. Одума, антропогенное эвтрофирование есть злокачественное увеличение первичной продукции в водоеме. Развитие процесса антропогенного эвтрофирования приводит ко многим неблагоприятным последствиям с точки зрения водопользования и водопотребления (развитие «цветения» и ухудшение качества воды, появление анаэробных зон, нарушение структуры биоценозов и исчезновение многих видов гидробионтов, в том числе ценных промысловых рыб).

Первое научное упоминание токсического цветения в пресноводных водоемах Австралии, вызвавшего гибель овец, лошадей, свиней, собак, сделал в 1878 г. Дж. Френсис. С тех пор появилось множество свидетельств таких токсичных цветений в различных водоемах мира. Так, токсичность сине-зеленых водорослей во время их цветения установлена в Киевском водохранилище, на реке Днепр, в Куршском заливе Балтийского моря и т. д. Особенно им благоприятствуют в умеренных широтах подогрев воды в водохранилищах-охладителях и замедленный водообмен. Сине-зеленые водоросли в результате своей жизнедеятельности производят сильнейшие токсины (алкалоиды, низкомолекулярные пептиды и др.), которые сами не используют, но попадая в водную толщу, эти токсины представляют опасность для живых организмов и человека. Они могут вызывать цирроз печени, дерматиты у людей, отравление и гибель животных (Фрумин Г. Т., 2002).

Известны два типа токсинов, образуемых сине-зелеными водорослями (цианобактериями), – нейротоксины и гепатотоксины. Нейротоксины представляют собой алкалоиды, действующие на нервную систему. Цианобактерии, образующие нейротоксины, встречаются сравнительно редко. Гепатотоксины – это циклические гепто- или пентапептиды (то есть короткие цепи белковой природы, состоящие из пяти или шести аминокислот), содержащие необычные аминокислоты. Гепатотоксин, попавший в организм животного, вызывает разрушение печени, и через несколько часов наступает смерть. В литературе не описаны случаи гибели людей от гепатотоксинов цианобактерий, но считается совершенно очевидным, что некоторые люди, умершие от рака печени, убиты цианобактериями.

Токсины находятся в клетках цианобактерий и только после их разрушения поступают в воду. Они весьма устойчивы и не разрушаются при хлорировании воды. Более того, токсины сине-зеленых водорослей сохраняются и в сухих клетках.

По данным мировой статистики, примерно в 40 – 50 % случаев цветения происходит развитие токсигенных цианобактерий. В настоящее время развитие токсигенных цианобактерий приобретает глобальный характер, что обусловлено усилением антропогенного загрязнения водных объектов. Как национальную проблему рассматривают токсичные цветения озер в Англии, Финляндии, Норвегии. В этих странах созданы специальные центры для их изучения и контроля. В литературе описаны наблюдения токсигенных цианобактерий в ряде озер Карелии и в Невской губе.

Интересный пример токсического действия сине-зеленых планктонных водорослей описан для Южной Африки. Там эти явления привлекли особое внимание после сооружения большого водохранилища на реке Вааль в Трансваале, строительство которого было окончено в 1938 г. С 1940 г. по берегам водохранилища были отмечены случаи падежа скота, принявшие массовый характер в 1942 г. во время сильного цветения водохранилища сине-зелеными водорослями. Погибли тысячи голов крупного рогатого скота и овец, гибли также лошади, мулы, ослы, собаки, кролики и домашняя водоплавающая птица. Отмечалось, что слабым ветром водоросли сгонялись к берегу, где концентрировались, ивэтихместах животные гибли за считанные часы.

Токсины водорослей являются первопричиной загадочной гаффской болезни, эпидемии которой, начиная с 1924 г., несколько раз наблюдались в окрестностях города Кенигсберга (ныне Калининград), на побережье опресненного залива Балтийского моря Фришес-Гафф. Болезнь поражала рыбаков, занимавшихся промыслом в заливе, и не распространялась на выезжавших на лов в Балтийское море. Гаффская болезнь наступает внезапно, без продромальных симптомов, и выражается в острых мышечных болях при малейших движениях или при прикосновении, в результате чего больные падают и остаются неподвижными, создавая внешнюю картину паралича.

Основным ограничивающим фактором «цветения» сине-зеленых водорослей является уменьшение сброса биогенных веществ (в основном фосфора) в водные экосистемы.

Поскольку эвтрофирование водоемов стало серьезной глобальной экологической проблемой, по линии ЮНЕСКО начаты работы по мониторингу внутренних вод, контролю за эвтрофированием водоемов земного шара.

Основными критериями для характеристики процесса эвтрофирования водоемов являются:

– уменьшение концентрации растворенного кислорода в водной толще;

– увеличение концентрации биогенных веществ;

– увеличение содержания взвешенных частиц, особенно органического происхождения;

– последовательная смена популяций водорослей с преобладанием сине-зеленых и зеленых водорослей;

– уменьшение проникновения света (самозатенение, возрастание мутности воды);

– увеличение концентрации фосфора в донных отложениях;

– значительное увеличение биомассы фитопланктона (при уменьшении разнообразия видов) и т. д.

Отношение общего азота к общему фосфору в водоеме указывает на степень эвтрофирования его водной экосистемы. Для сильно гумифицированных внутренних водоемов Nобщ. :Pобщ. имеет порядок 100 и более; для самых чистых олиготрофных и мезотрофных озер – 30 – 40; для эвтрофных водоемов, находящихся под очевидным антропогенным воздействием, – 15 – 25; для гипертрофных водоемов – 12 – 18 (до 3 – 5).

Из множества индикаторов, которыми можно отразить трофическое состояние водоемов, наиболее приемлемы как для прямой спецификации соответствующих категорий трофности, так и для построения математических моделей, следующие:

1) Поступление специфических биогенных веществ.

2) Концентрация биогенных веществ. В настоящее время принятыми критическими концентрациями азота и фосфора (включая общий фосфор, ортофосфаты, общий азот и растворенный неорганический азот – аммоний, нитриты и нитраты) во время интенсивного перемешивания вод, при котором создаются потенциальные условия для цветения водорослей, являются следующие: для фосфора – 0,01 г/м3, для азота – 0,3 г/м3. При более низких концентрациях будет иметь место азотное лимитирование развития водорослей, однако такие концентрации трудно измерить точно.

3) Скорость истощения кислорода в гиполимнионе (гиполимнион – глубинный слой воды в водоеме, залегающий ниже слоя температурного скачка – термоклина). С развитием эвтрофирования пропорционально увеличиваются потери кислорода в водах гиполимниона. Скорость этого истощения используется как индикатор трофического состояния, так как она имеет короткопериодную изменчивость. Этот индикатор может применяться только для характеристики стратифицированных водоемов. Предложены следующие пределы этого индикатора для разных по трофности водоемов: олиготрофные – менее 250 мг/(м3 ⋅ сут); мезотрофные – 250 – 500 мг/(м3 ⋅ сут); эвтрофные – более 550 мг/(м3 ⋅ сут).

4) Глубина видимости диска Секки. Это наиболее широко используемый (из-за простоты оценки) самый старый метод приближенной оценки трофического состояния водоемов. Диск Секки – стандартный по размеру (200 мм в диаметре) диск с черно-белыми секторами, который опускают в воду до глубины исчезновения его видимости. Эта глубина регистрируется, и диск поднимают вверх;

глубина, на которой диск начинает быть снова видимым, также регистрируется. Глубина, соответствующая видимости диска Секки, является средней из двух ее вышеуказанных значений. Глубина видимости диска Секки обратно пропорциональна плотности популяций водорослей в воде, так как взвешенное вещество будет рассеивать падающий свет и увеличивать его ослабление. Таким образом, глубина видимости диска Секки в воде связана с первичной продуктивностью вод, которая является показателем трофического состояния водоема: олиготрофные водоемы – более 6,0 м; мезотрофные – от 3 до 6,0 м; эвтрофные – менее 3 м.

В качестве прямого индикатора трофического состояния обычно используется концентрация хлорофилла a. Хлорофилл а (C55H72O5N4Mg) является основным фотосинтетическим пигментом, поэтому измеренное значение его концентрации в пробе воды является репрезентативным индикатором биомассы водорослей. Он является полезной и точной мерой эвтрофирования водоемов и поэтому регулярно используется при измерении «откликов» водоемов на биогенную нагрузку с целью их восстановления.

Основная трудность заключается в том, что концентрация хлорофилла а увеличивается незначительно при его содержании свыше 100 мг/м3 независимо от увеличения концентрации биогенных веществ, так как самозатенение приостанавливает дальнейший рост первичных продуцентов.

Пять определений граничных концентраций хлорофилла a для олиготрофного, мезотрофного и эвтрофного состояний водоемов суммированы в табл. 2.9, а в табл. 2.10 приведена иная шкала трофических уровней.


Таблица 2.9

Фиксированные категории трофического состояния по литературным обобщениям

(Хендерсон-Селлерс Б., Маркленд Х. Р., 1990)


Таблица 2.10

Шкала трофических уровней по литературным обобщениям

Закисление (ацидификация) водоемов

Широко известный ныне термин «кислотные дожди» появился в 1872 г. Его ввел в практику английский инженер Роберт Смит, опубликовавший книгу «Воздух и дождь: начала химической климатологии». Детальными и по-настоящему научными исследованиями кислотных дождей стали заниматься только в конце 1960-х гг.

О вредном воздействии кислотных дождей свидетельствуют следующие примеры. В Канаде из-за частых кислотных дождей более 4000 озер превратились к кислотные водоемы, а 12 000 озер находятся на грани гибели. В Швеции в 18 000 озерах нарушено биологическое равновесие. Кислотные дожди наносят большой урон и лесам: в ФРГ и некоторых районах Швейцарии погибла 1/3 всех елей. При анализе соединений, которые являются предшественниками кислотных дождей, а также при определении интенсивности кислотных дождей необходимо учитывать не только антропогенные источники, т. е. обусловленные сознательной деятельностью человека, но и природные источники, например лесные массивы, поскольку они в процессе газообмена выделяют значительное количество органических веществ. Имеет значение и степень урбанизации отдельных регионов, например, выделяемый из антропогенных источников аммиак может существенно влиять на нейтрализацию кислотных компонентов. При этом вследствие загрязнения воздуха природными источниками сокращение промышленных выбросов не всегда может дать требуемый положительный эффект.

К основным загрязнениям атмосферы, которые являются источниками образования кислотных дождей, относятся диоксид серы (SO2), оксиды азота (в основном оксид азота NO и диоксид азота NO2) и летучие органические соединения.

В состав летучих органических соединений входят реакционноспособные алканы – 50 % (пропан, н-бутан и более высокомолекулярные), олефины – 23 % (этилен, пропилен и др.), ароматические углеводороды – 18 % (бензол, ксилолы и др.), альдегиды и кетоны – 8 %(формальдегид, ацетон и др.), органические кислоты – 1 % (муравьиная, уксусная и др.).

Летучие органические соединения, в отличие от оксидов серы и азота, поступают в атмосферу главным образом из природных источников (65 % от общего количества). Основной природный источник этих веществ – растения, в результате жизнедеятельности которых образуются непредельные соединения – терпеновые углеводороды и производные изопрена. Они активно участвуют в химических реакциях, протекающих в атмосфере, способны взаимодействовать с озоном и гидроксильными радикалами, инициируют химические реакции, в результате которых образуется целый ряд продуктов. Из природных источников выделяется более 90 % летучих органических соединений; количество их возрастает при повышении температуры и интенсивности солнечного освещения, т. е. летом их значительно больше, чем зимой. В некоторых районах, особенно в городских, загрязнения такого типа поступают в основном из антропогенных, а не из природных источников.

Атмосферу можно рассматривать как огромную окислительную систему с высоким содержанием основного окислителя – кислорода. Соединения, содержащие атомы C, H,SиNприродного и антропогенного происхождения, попадая в атмосферу, превращаются в стабильные долгоживущие соединения (например, СО2)иливкороткоживущие соединения кислотного характера (оксиды азота и серы), которые участвуют в жидкофазных процессах с образованием кислот, удаляемых из атмосферы с осадками. Это и есть кислотные дожди.

В этих превращениях кроме кислорода участвуют озон О3, гидроксильный радикал НО*, гидропероксидный радикал НО2*, органические пероксидные радикалы (ROO*), пероксиацетилнитрат (ПАН), пероксид водорода (Н2О2), нитрат-ион . Наиболее реакционноспособный гидроксильный радикал НО*, он участвует в окислении оксидов азота и серы в азотную и серную кислоты:




В Средней и Северной Европе, а также Северной Америке кислотные дожди стали важной международной проблемой и даже поводом для конфликтов.

Из всего количества кислот, выпавших с дождями над территорией Центральной Европы, в среднем 2/3 приходится на серную кислоту, 1/3 – на азотную.

Многие страны Европы, как бы «экспортирующие» и «импортирующие» серу (имеется в виду поступление и вынос серы через воздушные границы), можно условно разделить на государства с положительным и отрицательным балансом. Так, например, Норвегия, Швеция, Финляндия, Австрия и Швейцария больше получают от своих соседей, чем выпускают через собственные границы. Дания, Нидерланды, Бельгия, Великобритания, Германия и Франция больше направляют выбросов диоксида серы к соседям, чем получают от них.

При изучении кислотности водоемов возникает вопрос, в какой степени кислотность определяется выбросами из антропогенных источников и не связаны ли изменения кислотности с природными факторами. В США проведен глубокий геолого-палеонтологический анализ, результаты которого свидетельствуют о том, что кислотность большинства озер в послеледниковый период была не выше рН 8. В настоящее время для тех же зон кислотность гораздо выше (рН 4,6 – 5,0).

При анализе состава кислотного дождя основное внимание обращается на содержание катионов водорода (Н+), определяющих его кислотность (рН), а также анионов – сульфата , нитрата , хлорида (Cl), фосфата , катионов – аммония ,

натрия (Na+), калия (К+), кальция (Са2+), магния (Mg2+). Для суммарной характеристики растворенных ионов иногда используют электропроводность.

При рН 7 среда нейтральна (в дегазированном состоянии), при рН<7 – кислая. Однако это определение кислотности не столь очевидно для природной воды. Вода находится в равновесии с окружающим воздухом, насыщение диоксидом углерода приводит к образованию угольной кислоты с рН 5,6. Это состояние можно считать исходным для определения кислотности природной воды. Как правило, рН большинства рек и озер составляет 6 – 8, при высоком содержании минеральных и органических кислот рН заметно ниже – 3,2. Для засушливых регионов (Индия и другие страны Юго-Восточной Азии) характерны сильнощелочные почвы, и рН вод в них иногда выше 9.

В то же время в природных водах в больших количествах могут присутствовать растворимые карбонаты (обычно их пересчитывают на эквивалентное количество CaCO3), анионы органических кислот, которые образуются в результате микробиологических процессов, и растворимые гидроксиды металлов. Наличие таких соединений приводит к нейтрализации катионов Н+, поскольку органические анионы связываются в слабодиссоциирующие кислоты, а карбонат-анион переходит в бикарбонат-анион. Поэтому введен термин «кислото-нейтрализующая способность» (КНС) воды, который определяется в мг-экв катионов Н+, необходимых для достижения рН 5,6. Обычно кислото-нейтрализующая способность дистиллированной воды в равновесии с газообразным СО2 равна 0; при наличии указанных выше соединений она больше 0.

Показатель кислото-нейтрализующей способности является наиболее распространенным критерием закисления вод. Разница между суммой катионов (с коррекцией на морскую соль) и радикалами сильных кислот отражает запас или дефицит гидрокарбонатов, а в случае с водами, обогащенными гумусовыми кислотами, – их сумму, т. е. буферную способность системы. Кислото-нейтрализующая способность воды может быть рассчитана двумя способами:




Содержание элементов представляется в эквивалентах и корректируется на устранение доли морских аэрозолей по соотношению соответствующих элементов к хлору. Принимается, что хлориды в воде имеют морское происхождение. Содержание органического аниона (An-) рассчитывается по концентрации органического вещества (СРОВ):




Если химические анализы проведены корректно и баланс ионов сходится, то значения КНС1 и КНС2 совпадают. Американские исследователи экстремальным считают значение КНС – 50 мг-экв/дм3, норвежские специалисты – 20 мг-экв/дм3.

Изменение в соотношении молярной концентрации в сторону превалирующего положения сульфатов может являться симптомом закисления вод. – есть признак переходного состояния водных объектов к закислению.

Водоемы с различной естественной кислотностью водной среды населяют гидробионты, адаптированные к определенным интервалам концентраций водородных ионов (эвриионные организмы приспособлены к наиболее значительным колебаниям рН водной среды, стеноионные, наоборот, жизнеспособны при незначительных колебаниях рН). В соответствии с предложенной классификацией типов природных водоемов гумидной зоны России в зависимости от фактора рН водоемы различной трофности и состава флоры и фауны подразделяются на нейтрально-щелочные (рН = 6,8 – 8,5), олигоацидные (рН = 6,7 – 5,6), мезоацидные (рН = 5,5 – 4,0) и полиацидные (рН ≤ 4,0).

Антропогенное закисление пресноводных экосистем сопровождается глубокими перестройками водных биоценозов на всех трофических уровнях. По мере повышения кислотности водной среды уменьшается видовое разнообразие водных организмов, происходит смена доминантных видов, снижается интенсивность продукционных процессов. Общую направленность экологических изменений при закислении природных вод можно характеризовать как экологический регресс с присущей ему определенной направленностью развития целого комплекса общих по своему экологическому значению признаков: уменьшению видового разнообразия, устойчивости к внешним возмущениям, увеличению энтропии, упрощению межвидовых отношений, уменьшению пространственной гетерогенности, упрощению временной структуры популяций.

Отрицательные экологические последствия закисления пресноводных экосистем обусловлены воздействием на гидробионтов водородных ионов (Н+) токсичных металлов, концентрации которых при закислении возрастают. Кроме прямого воздействия, связанного с изменением химического состава воды, существенное значение имеет и косвенное воздействие, связанное с изменением межвидовых отношений. Активная реакция водной среды (рН) является одним из важнейших экологических факторов обитания гидробионтов. Кроме того, рН биологических жидкостей (крови, гемолимфы) является основой нормального функционирования всех систем организма на уровне биохимических (физико-химических) реакций, например ферментативных. Водородный показатель водной среды играет важнейшую роль в обмене веществ между организмом и средой в экологическом метаболизме. Когда среда подкислена, яйцеклетки, сперма и молодь водных обитателей погибают. Ущерб не ограничивается гибелью водных организмов. Многие пищевые цепи, охватывающие почти всех диких животных, начинаются в водоемах. Прежде всего, сокращается популяция птиц, питающихся рыбой или насекомыми, личинки которых развиваются в воде.

К основным компонентам водной биоты относятся редуценты, разлагающие органические вещества, фитопланктон, зоопланктон, бентос, макрофиты, амфибии и др. Активность фитопланктона снижается при рН ≤ 6; при сохранении или частичном увеличении суммарной биомассы одни типы замещаются другими.

Негативные изменения зоопланктона возникают при рН 5, причем особенно сильно они проявляются при повышенном содержании алюминия.

При рН 5 резко снижается популяция рыб (озерной форели). Развитие популяций рыб отражает суммарные функции экосистемы. При рН воды выше 6 развитие популяций рыб устойчиво, некоторые нарушения наблюдаются при рН 5,5. Поддержание популяции при рН менее 5 практически невозможно. Так, при рН ниже 4,5 не обнаруживаются никакие ракообразные, улитки, мидии, и при этом не может жить никакая, имеющая промысловое значение пресноводная рыба.

На развитие популяций рыб влияет содержание в воде кальция и алюминия. Физиологические нарушения при низких рН проявляются в изменении кровяной плазмы и ускоренном вымывании из тканей ионов Na+ и Cl. При повышенных концентрациях растворимых форм алюминия нарушаются ионный обмен и процесс дыхания. Как правило, высокая кислотность озер сопровождается повышенным содержанием алюминия, его влияние наиболее сильно при рН 5,2 – 5,5.

Для развития популяций рыб важен катион кальция, который регулирует функции мембран, их проницаемость и интенсивность ионного обмена. В водах с невысокой КНС концентрация Ca2+ невелика (менее 4 мг/л). Повышенное содержание Ca2+ компенсирует негативное действие Al3+ при низких рН. Представляют интерес данные обследования озер в южной части Норвегии: во всех озерах, где отсутствует рыба, отношение Ca2+ :H+ < 3, а в озерах с устойчивыми рыбными популяциями Ca2+ :H+ >4;pH≤ 5 для озер США – показатель отсутствия рыбы, кроме Флориды, где при высоких концентрациях кальция и малом содержании алюминия рыбные популяции устойчивы в озерах с рН 4,0 – 5,5.

На закисление воды болезненно реагируют раковинные моллюски. Если значение рН падает ниже 5,2, то Ca2+-обмен у них настолько нарушается, что им грозит гибель. При этих значениях рН раковины медленно разрушаются.

В процессах регулирования водной биоты важную роль играет изменение концентрации растворенного в воде пероксида водорода. Внимание к этой проблеме обусловлено массовой гибелью мальков севрюги в Волге при допустимых нормах основных гидрологических показателей. Молодь погибла в результате нарушения липидного обмена, что сопровождалось блокированием ферментной цепи окисления жира в гликоген. Исследования, проведенные в Институте химической физики, показали, что нарушения обусловлены изменением редокс-состояния природных вод, вследствие отсутствия пероксида водорода. Раньше в водах Волги концентрация пероксида водорода составляла 3 ⋅ 10– 5 моль/л, а в настоящее время следовые количества его обнаруживают только в небольших притоках. Установлена тесная корреляция между изменением концентрации пероксида водорода в воде и выживаемостью рыбы.

Химическое загрязнение водных объектов

Загрязнение водных объектов – сброс или поступление иным способом в поверхностные и подземные водные объекты, а также образование в них вредных веществ, которые ухудшают качество поверхностных и подземных вод, ограничивают (исключают) их использование либо негативно влияют на состояние дна и берегов водных объектов.

Загрязнение вод происходит главным образом под влиянием факторов, обусловленных хозяйственной деятельностью человека. В некоторых случаях ухудшение состава вод может обусловливаться процессами вымывания из недр Земли природных запасов минеральных и органических веществ, и тогда употребляется термин естественное загрязнение вод.

Антропогенными факторами загрязнения водных объектов являются: сточные воды промышленных предприятий, населенных пунктов, животноводческих комплексов; смывы с мест разработки полезных ископаемых, судоходство, дождевые и ливневые смывы с водосборных площадей (в том числе с территорий городов, поселков, сельскохозяйственных угодий), загрязненные атмосферные осадки, химизация сельского хозяйства.

Загрязнение вод выражается в изменении их химического и биологического состава и физических свойств. Загрязненными считаются воды, в которых содержание отдельных компонентов химического состава превышает их средние многолетние концентрации и количества, допустимые санитарными нормами, а также те воды, в которых обнаруживаются вещества, не свойственные им в естественном состоянии (нефтепродукты, фенолы, пестициды, поверхностно-активные вещества).

Загрязнение может быть прямым и вторичным. Прямое загрязнение происходит в результате непосредственного воздействия антропогенного фактора на водный объект при поступлении загрязненных поверхностных или подземных стоков, а также при загрязненных или кислых атмосферных осадках. Вторичное загрязнение является следствием первичного. Оно проявляется при десорбции из донных отложений загрязняющих веществ (ЗВ), попавших туда в результате прямого загрязнения; при попадании в водную среду или в илы продуктов распада ЗВ, более токсичных, чем они сами; как ответная реакция биологической системы на изменение состава водной среды, приводящая к бурному размножению водорослей («цветение» водоемов), патогенной микрофлоры и вирусов, ухудшению качества воды, изменению состава биоценозовикэвтрофированию.

Гидросфера служит своеобразным коллектором отходов хозяйственной деятельности человека. Уязвимость ее к химическому загрязнению обусловлена постоянно происходящим круговоротом воды в природе (осадки, испарение, трансграничные переносы, поверхностный и подземный стоки), в результате которого любое ЗВ, попадающее в атмосферу или вносимое в почву, рано или поздно оказывается в водоемах. Основная нагрузка ложится на пресноводную часть гидросферы – озера, водохранилища, реки, внутренние моря.

Тяжелые металлы, нефть и нефтяные углеводороды, пестициды, фенолы, полихлорированные бифенилы, диоксин и диоксиноподобные вещества, моющие средства – это далеко не полный и постоянно пополняющийся список веществ, попадающих в водную среду.

Нефть может попадать в водные объекты различными путями, например при бурении скважин на нефтяных месторождениях, при авариях танкеров или течи нефти в нефтепроводах, при транспортировке, при переработке сырой нефти, а также при очистке отстойников, танкеров и автоцистерн от старой нефти и нефтепродуктов.

Особо сильные загрязнения в результате утечки нефти происходят при бурении морских скважин и авариях танкеров.

Гидрофобная нефть образует тонкую пленку на поверхности воды; вода становится непригодной для использования при попадании 1 л нефти на 106 л воды. На открытых водных поверхностях с течением времени образуется эмульсионный слой нефть – вода, который частично препятствует газообмену между водой и воздухом. Этот эффект приводит к тому, что все живые организмы, находящиеся под этой пленкой, постепенно задыхаются. При этом, прежде всего при дыхании, в клетках накапливается диоксид углерода (СО2), что ведет к ацидозу, т. е. подкислению клеточной жидкости. У морских птиц контакт с нефтью приводит к склеиванию оперения; птицы утрачивают способность держаться на воде и быстро гибнут от переохлаждения. Растворимые в воде окисленные компоненты нефти обладают токсическим действием.

В отличие от загрязнений нефтью загрязнения фенолами происходит в значительно меньшей степени. Скорость распада фенолов в воде зависит как от их химического строения, так и от окружающих условий. Особую роль при этом играют УФ-излучение, микроорганизмы и концентрация кислорода в воде.

Фенолы используют для дезинфекции, а также для изготовления клеев и фенолформальдегидных смол. Кроме того, фенолы входят в состав выхлопных газов бензиновых и дизельных двигателей, образуются при сгорании и коксовании дерева и угля.

К долгоживущим вредным примесям в воде относится лигнингидросульфит. Это соединение образуется при обработке древесины гидросульфитом кальция при повышенных температуре и давлении. В результате этой реакции высокомолекулярный лигнин переходит в растворимую в воде форму и таким способом может быть отделен от целлюлозы. Кроме того, из древесины выделяют гемицеллюлозу и сахар. При изготовлении 1 т целлюлозы примерно такое же количество других составных частей древесины идет в отходы, остающиеся в растворе. В то время как гемицеллюлоза (гексозан и пентозан) и сахара сравнительно быстро разрушаются микробиологическим путем, лигнинсульфоновая кислота разрушается очень медленно. Вредное действие лигнинсульфоновой кислоты, прежде всего, сказывается в том, что она увеличивает вязкость воды, а также влияет на ее запах, цвет и вкус. Рыба также приобретает при этом неприятный вкус. Распад лигнинсульфоновой кислоты длится многие недели, поэтому сточные воды целлюлозной промышленности следует рассматривать как долговременный источник загрязнения. Сухую лигниновую кислоту можно сжечь, но при этом образуется большое количество диоксида серы (SO2), действие которого также необходимо устранять.

К числу химикатов, распад которых идет с трудом и длится более двух дней, относятся также хлорированные углеводороды, например органические растворители с одним – двумя атомами углерода, полихлорированные бифенилы и хлорорганические пестициды. Хлоруглеводороды могут образоваться уже в самой воде, когда хлорированная вода входит в контакт с продуктами распада гумуса. При этом в первую очередь образуется трихлорметан (CHCl3).

Устойчивость хлорсодержащих органических соединений к процессам распада повышается с увеличением содержания хлора. Устойчивость негалогенизированных соединений повышается с увеличением разветвленности углеродных цепей.

За последние пятьдесят лет появилась большая группа органических соединений, которые создали дополнительную проблему, связанную с загрязнением природных вод: это синтетические поверхностно-активные вещества или детергенты. Эти вещества используют как моющие средства, понижающие поверхностное натяжение воды; их использование часто сопровождается пенообразованием. Возросшая потребность в СПАВ на промышленных предприятиях, а также их использование в быту, прежде всего при стирке, привели к большим скоплениям пены в руслах рек и в водоемах. СПАВ – это моющие средства, флотореагенты, стабилизаторы эмульсий и пен, гидрофобизаторы, антистатики, ингибиторы коррозии и т. д. Естественно, что объем их производства постоянно растет.

В экономически развитых странах, где широко применяются детергенты, концентрация их в природных водах достигает 3,0 – 9,0 мг/дм3. При концентрациях в 1 – 2 мг/дм3 проявляется способность детергентов к пенообразованию. Они длительное время сохраняются в водной среде. Установлено, что через 3 нед. после загрязнения водоема детергентами, содержание их в воде составляло 50 %, а через 6 мес. – около 45 % от первоначального.

СПАВ представляют собой органические вещества с гидрофильными и гидрофобными участками различного химического строения. СПАВ – вещества с асимметричной структурой, молекулы которых содержат одну или несколько гидрофильных групп и один или несколько гидрофобных радикалов. Такая структура, называемая дифильной, обусловливает поверхностную (адсорбционную) активность СПАВ, т. е. способность концентрироваться на межфазных поверхностях раздела (адсорбироваться), изменяя их свойства.

К наиболее распространенным СПАВ относятся алкилсульфоновые кислоты, у которых остаток серной кислоты образует гидрофильный фрагмент молекулы:




У полиоксиэтиленов, соединений неионного характера, гидрофильная часть молекулы создается за счет спиртовых групп ОН. Полиоксиэтилен может образовать сложный эфир с остатком жирной кислоты или простой эфир с остатком высокомолекулярного спирта:




где R – остаток жирной кислоты или высшего спирта.

Алкиламмониевые соединения содержат в качестве полярного компонента положительно заряженную третичную аммониевую группу. Эти соединения проявляют бактерицидное действие:




Накопившийся отрицательный опыт заставил прибегнуть к использованию таких СПАВ, которые разрушаются под действием биологических факторов. К относительно легко разрушающимся относятся СПАВ с неразветвленной цепью, как, например, детергенты неионного характера и алкилбензолсульфонаты:




которые, кроме того, обладают малой токсичностью для человека и рыб. Биотический распад цепей в молекулах таких соединений осуществляется за счет β-окисления, т. е. отщепления остатков уксусной кислоты.

По характеру диссоциации все СПАВ делят на следующие группы: 1) анионные, функциональные группы которых в результате ионизации в растворе образуют отрицательно заряженные органические ионы, обусловливающие поверхностную активность; 2) катионные, функциональные группы которых в результате ионизации в растворе образуют положительно заряженные органические ионы, обусловливающие поверхностную активность; 3) неионогенные, практически не образующие в водном растворе ионов; 4) амфолитные, образующие в водном растворе в зависимости от условий (рН, растворитель и т. д.) или анионоактивные, или катионоактивные вещества.

В отдельную группу выделяют высокомолекулярные (полимерные) СПАВ, состоящие из большого числа повторяющихся звеньев, каждое из которых имеет полярные и неполярные группы.

Незначительные концентрации СПАВ 0,05 – 0,1 мг/дм3 в речной воде достаточны для активации токсичных веществ, адсорбированных донными отложениями. Кроме того, просачивание в почву и в скопления отбросов вод, содержащих СПАВ, также может привести к активации токсичных продуктов: в этом заключена большая угроза для грунтовых вод.

Токсический эффект воздействия ксенобиотиков на фотосинтез проявляется в виде «мертвых зон», «темных полей», «темных облаков» в толще загрязненной ими воды. Этот эффект является следствием экранирующего влияния ряда химических соединений на фотосинтез. Хорошими «экранами» могут быть лигнины, фенолы, гуминовые и другие вещества, содержащие в своем составе фенольные структуры и имеющие спектры поглощения в диапазоне фотосинтетической активной радиации (ФАР). Многие из перечисленных веществ обладают поверхностно-активными свойствами и в силу «эффекта перераспределения» концентрируются и концентрируют очень многие загрязняющие вещества и патогенные микроорганизмы в поверхностном слое воды в виде тонкой пленки. Эффект перераспределения и концентрирования существенно усиливается при загрязнении водных объектов СПАВ, токсикологическое значение эффекта перераспределения весьма значительно. Многие вещества при этом становятся существенно более токсичными.

Большую опасность представляет загрязнение водных объектов пестицидами. Так, по данным ВОЗ, ежегодно в мире происходит до 500 000 случаев тяжелых отравлений пестицидами.

Среди веществ, загрязняющих водные объекты, наибольший интерес для различных служб контроля качества воды представляют металлы, в первую очередь тяжелые. В значительной мере это обусловлено биологической активностью (токсичностью) многих из них. На организм человека и животных токсическое действие металлов различно и зависит от природы металла, типа соединения, в котором он существует в водной среде, а также его концентрации. В результате усилий химиков-аналитиков многих стран были разработаны методы, позволяющие определять тяжелые металлы на уровне фемтограммов (10 – 15 г) или в присутствии в анализируемом объеме пробы одного атома, например никеля в живой клетке.


Рис. 2.3. Формы существования металлов в водных объектах

(стрелкой указано направление снижения токсичности)


Металл-токсикант, попав в водный объект, распределяется между компонентами этой водной экосистемы. При этом он распределяется по следующим составляющим (рис. 2.3):

– металл в растворенной форме;

– сорбированный и аккумулированный фитопланктоном, т. е.

растительными микроорганизмами;

– удерживаемый донными отложениями в результате седиментации взвешенных органических и минеральных частиц из водной среды;

– адсорбированный на поверхности донных отложений непосредственно из водной среды в растворимой форме;

– находящийся в адсорбированной форме на частицах взвеси.

На формы нахождения металлов в водных объектах оказывают влияние гидробионты, например моллюски. Так, при исследовании поведения меди в поверхностных водах наблюдали сезонные колебания ее концентраций: в зимний период они максимальны, а летом снижаются вследствие активного роста биомассы. При осаждении взвешенных органических частиц, адсорбирующих ионы меди, последние переходят в донные отложения, что приводит к наблюдаемому эффекту. Следует учесть также, что в природных водах содержится множество органических веществ, из которых 80 % составляют высокоокисленные полимеры типа гумусовых веществ, поступающие в воду из почв. Основная часть органических веществ, растворимых в воде, представляет собой продукты жизнедеятельности организмов. Эти вещества являются комплексообразующими агентами, связывающими ионы металлов в комплексы и тем самым уменьшающими токсичность металлов (см. рис. 2.3).