Вы здесь

Операционные системы. 2 Процессы и потоки (А. Ю. Кручинин, 2009)

2 Процессы и потоки

2.1 Процессы

В многозадачной системе процессор переключается между программами, предоставляя каждой от десятков до сотен миллисекунд. В каждый конкретный момент времени процессор работает только с одной программой, создавая иллюзию параллельной работы, т.е. псевдопараллелизм [14]. Настоящая параллельная работа присутствует в многопроцессорных и многоядерных системах, таких как Core 2 Duo. Следить за работой параллельно идущих процессов достаточно трудно, поэтому со временем разработчики операционных систем создали концептуальную модель последовательных процессов, упрощающую эту работу.

В этой модели все функционирующее на компьютере программное обеспечение организовано в виде набора последовательных процессов. С позиции модели у каждого процесса есть собственный виртуальный центральный процессор. На рисунке 10, а представлена схема компьютера, работающего с 4 программами. На рисунке 10, б представлены 4 процесса каждый со своим логическим счетчиком команд, идущие независимо друг от друга. На самом деле существует только один физический счетчик команд, который загружается и сохраняется при переключении процессов. На рисунке 10, в видно, что за достаточно большой промежуток времени изменилось состояние всех 4 процессов.

Поскольку процессор переключается между программами, скорость, с которой процессор производит свои вычисления, будет непостоянной и, возможно, даже будет отличной при каждом новом запуске программы.

Существует четыре основных события, приводящие к созданию процессов:

• инициализация системы;

• выполнение изданного работающим процессом системного запроса на создание процесса;

• запрос пользователя на создание процесса;

• инициирование пакетного задания.

Программист для создания процесса в UNIX должен вызвать комбинацию из двух функций fork и execve, а в Windows – CreateProcess [12].

Процесс может завершиться благодаря одному из следующих действий:

• обычный выход (преднамеренно);

• выход по ошибке (преднамеренно);

• выход по неисправимой ошибке (непреднамеренно);

• уничтожение другим процессом (непреднамеренно).

Для завершения процесса программист в UNIX должен вызвать системный запрос kill, соответствующая функция в Win32 API – TerminateProcess.

Основным отличием структуры процессов в Windows и UNIX является связь между родительским и дочерним процессами. Так в UNIX существует иерархия процессов, а в Windows все процессы равноправны. Единственное, в чем проявляется что-то вроде иерархии процессов в Windows – создание процесса, в котором родительский процесс получает специальный маркер (так называемый дескриптор), позволяющий контролировать дочерний процесс. Но маркер можно передать другому процессу, нарушая иерархию.


Рисунок 10 – 4 программы в многозадачном режиме (а); модель 4 независимых последовательных процессов (б); в каждый момент времени активна только одна программа (в)


Процесс может находиться в 3 возможных состояниях (Рисунок 11):

• работающий (в конкретный момент времени использующий процессор);

• готовый к работе (процесс временно приостановлен, чтобы позволить выполняться другому процессу);

• заблокированный (процесс не может быть запущен прежде, чем произойдёт некое внешнее событие).


Рисунок 11 – Процесс может находиться в рабочем, готовом и заблокированном состоянии


Переходы между состояниями:

1) процесс блокируется, ожидая входных данных;

2) планировщик выбирает другой процесс;

3) планировщик выбирает этот процесс;

4) доступны входные данные.

Переход 1 происходит, когда процесс обнаруживает, что продолжение работы невозможно. Переходы 2 и 3 вызываются частью операционной системы, называемой планировщиком процессов, так что сами процессы даже не знают о существовании этих переходов. Переход 4 происходит с появлением внешнего события, ожидавшегося процессом (например, прибытие входных данных).

Для реализации модели процессов операционная система содержит таблицу (массив структур), называемую таблицей процессов, с одним элементом для каждого процесса. Элемент таблицы содержит информацию о состоянии процесса, счетчике команд, указателе стека, распределении памяти, состоянии открытых файлов, об использовании и распределении ресурсов, а также всю остальную информацию, которую необходимо сохранять при переключении в состояние готовности или блокировки для последующего запуска – как если бы процесс не останавливался. В таблице 1 представлены некоторые типичные элементы таблицы процессов.


Таблица 1 – Некоторые поля типичного элемента таблицы процессов


Большое значение для создания иллюзии многопоточности на компьютерах с одним процессором имеет значение понятия прерывания. Прерывание (англ. interrupt) – сигнал, сообщающий процессору о совершении какого-либо асинхронного события [14]. При этом выполнение текущей последовательности команд приостанавливается, и управление передаётся обработчику прерывания, который выполняет работу по обработке события и возвращает управление в прерванный код.

Понятия программы и процесса отличаются друг от друга. Программа представляет собой статический набор команд, а процесс это набор ресурсов и данных, использующихся при выполнении программы. Процесс в Windows состоит из следующих компонентов:

• структура данных, содержащая всю информацию о процессе;

• адресное пространство – диапазон адресов виртуальной памяти, которым может пользоваться процесс;

• исполняемая программа и данные, проецируемые на виртуальное адресное пространство процесса.

2.2 Потоки

Далее необходимо уяснить отличие между процессом и потоком. Процесс представляет собой объект, которому принадлежат ресурсы приложения. А поток (или нить) – это независимый путь выполнения внутри процесса, разделяющий вместе с процессом общее адресное пространство, код и глобальные данные. У каждого потока имеются собственные регистры, стек и механизмы ввода, в том числе очередь скрытых сообщений. Для описания использования нескольких потоков в одном процессе используется термин многопоточность.

В отличие от различных процессов, которые могут быть инициированы различными пользователями и преследовать несовместимые цели, один процесс всегда запущен одним пользователем, и потоки созданы таким образом, чтобы работать совместно, не мешая друг другу. Как показано в таблице 2, потоки разделяют не только адресное пространство, но и открытые файлы, дочерние процессы, сигналы и т. п.

Первая колонка содержит элементы, являющиеся свойствами процесса, а не потока. Например, если один поток открывает файл, этот файл тут же становится видимым для остальных потоков, и они могут считывать информацию и записывать ее в файл. Также как и процесс, поток может находиться в одном из нескольких состояний. Переходы между состояниями потоков такие же, как на рисунке 11.

У каждого потока свой собственный стек. Стек (англ. stack – стопка) – структура данных с методом доступа к элементам LIFO (англ. Last In – First Out, «последним пришел – первым вышел») [14].

В качестве примера использования нескольких потоков в одном процессе, можно привести ситуацию, когда приложению нужно записать большой файл на диск. При использовании одного потока – доступ к другим функциям программы будет недоступен до окончания операции.


Таблица 2 – Элементы процесса, общие для потоков, и индивидуальные элементы потоков


Преимущества использования нескольких потоков перед несколькими процессами:

• возможность совместного использования параллельными объектами адресного пространства и всех содержащихся в нём данных;

• создание и уничтожение потоков происходит в примерно в 100 раз быстрее, чем для процессов;

• увеличивается производительность.

Есть два основных способа реализации пакета потоков: в пространстве пользователя и в ядре (Рисунок 12). В первом случае ядро ничего не знает о потоках и управляет обычными однопоточными процессами. Преимущество этого способа состоит в том, что его можно реализовать даже в операционных системах, не поддерживающих потоки. Раньше именно так все операционные системы и строились. Другое преимущество – это более высокая производительность по отношению ко второму способу и возможность использовать процессом собственный алгоритм планирования.


Рисунок 12 – Пакет потоков в пространстве пользователя (а); пакет потоков, управляемый ядром (б)


Однако, у первого способа есть серьёзные недостатки по отношению со вторым, например проблема добровольной отдачи процессора одним из потоков, или блокирование одного потока, что приводит к блокированию всего процесса. Поэтому на настоящий момент в большинстве известных ОС потоки реализуются в ядре или используется смешанное использование обоих способов.

2.3 Межпроцессное взаимодействие

Процессам часто бывает необходимо взаимодействовать между собой. Поэтому необходимо правильно организованное взаимодействие между процессами, по возможности не использующее прерываний. Проблема межпроцессного взаимодействия разбивается на 3 пункта [14]:

• передача информации от одного процесса другому;

• контроль над деятельностью процессов (к примеру, гарантии, что два процесса не пересекутся в критических ситуациях);

• согласование действий процессов (к примеру, если один процесс ожидает действий второго процесса, чтобы в свою очередь произвести некие действия).

Эти же пункты, не считая первого, относятся и к потокам.

Важным понятие в проблеме межпроцессного взаимодействия является состояние состязания – ситуация, в которой два или более процесса считывают и записывают данные одновременно и конченый результат зависит от того, какой из них был первым. Для предотвращения такого состояния и любой другой ситуации, связанной с совместным использованием памяти, файлов и чего-либо ещё, используется взаимное исключение – запрет одновременной записи и чтения разделенных данных более чем одним процессом.

Часть программы, в которой есть обращение к совместно используемым данным, называется критической областью или секцией. Несмотря на то, что это требование исключает состязание, его недостаточно для правильной совместной работы параллельных процессов и эффективного использования общих данных. Для этого необходимо выполнение 4 условий:

• два процесса не должны одновременно находиться в критических областях;

• в программе не должно быть предположений о скорости и количестве процессоров;

• процесс, находящийся вне критической области, не может блокировать другие процессы;

• невозможна ситуация, в которой процесс вечно ждет попадания в критическую область.


Рисунок 13 – Взаимное исключение с использованием критических областей


В абстрактном виде требуемое поведение процессов представлено на рисунке 13. Процесс А попадает в критическую область в момент времени T1. Чуть позже, в момент времени T2, процесс Б пытается попасть в критическую область, но ему это не удается, поскольку в критической области уже находится процесс А, а два процесса не должны одновременно находиться в критических областях. Поэтому процесс Б временно приостанавливается, до наступления момента времени T3, когда процесс А выходит из критической области. В момент времени T4 процесс Б также покидает критическую область, и происходит возвращение в исходное состояние, когда ни одного процесса в критической области не было.

2.3.1 Взаимное исключение с активным ожиданием

Здесь рассмотрены различные способы реализации взаимного исключения с целью избежать вмешательства в критическую область одного процесса при нахождении там другого и связанных с этим проблем.

1 Запрещение прерывания

Самое простое решение состоит в запрещении всех прерываний при входе процессоров в критическую область и разрешение прерываний по выходе из области. Но это решение неразумно. Предположим все прерывания отключились, а возник какой-то сбой – в результате операционная система закончит своё существование. А если система многопроцессорная, то тогда второй процессор все равно может зайти в критическую область.

2 Переменные блокировки

Программное решение проблемы может носит следующий вид. Пусть переменная блокировки равна 0, процесс, когда хочет попасть в критическую область изменяет её на 1 и входит в критическую область. Тут также может возникнуть состояние состязания, когда два процесса одновременно считывают переменную блокировки, когда она равна 0 и оба входят в критическую область.

3 Строгое чередование

Третий метод проиллюстрирован на листинге 1.


Листинг 1 – Решение проблемы критической области методом строгого чередования


Целая переменная turn, изначально равная 0, отслеживает, чья очередь входить в критическую область. Здесь для того, чтобы 0-ой процесс вошел в область, turn должна быть равна 0, а 1-ой – turn равна 1.

Постоянная проверка значения переменной в ожидании некоторого значения называется активным ожиданием, которое используется только при уверенности в небольшом времени ожидания.

Однако здесь есть недостаток: если один процесс существенно медленнее другого, то может возникнуть ситуация, когда оба процесса находятся вне критической области, однако один процесс блокирован, ожидая пока другой войдёт в критическую область. Это нарушает 3 условие из сформулированных ранее.

4 Алгоритм Петерсона

В 1981 году датский математик Петерсон разработал простой алгоритм взаимного исключения, представленный на листинге 2 [17].


Листинг 2 – Решение Петерсона для взаимного исключения


Перед тем, как войти в критическую область процесс вызывает процедуру enter_region со своим номером в качестве параметра. После выхода из критической области процесс вызывает leav_region.

Исходно оба процесса находятся вне критических областей. Процесс 0 вызывает enter_region, задает элементы массива и устанавливает переменную turn равной 0. Поскольку процесс 1 не заинтересован в попадании в критическую область, процедура возвращается. Теперь, если процесс 1 вызовет enter_region, ему придется подождать, пока interested[0] примет значение FALSE, а это произойдет только в тот момент, когда процесс 0 вызовет процедуру leave_region, чтобы покинуть критическую область.

Если оба процесса вызвали enter_region практически одновременно, то оба сохранят свои номера в turn. Сохранится номер того процесса, который был вторым, а предыдущий номер будет утерян. Предположим, что вторым был процесс 1, так что значение turn равно 1. Когда оба процесса дойдут до оператора while, процесс 0 войдет в критическую область, а процесс 1 останется в цикле и будет ждать, пока процесс 0 выйдет из критической области.

5 Команда TSL

Это решение требует участия аппаратного обеспечения. Многие компьютеры имеют команду: TSL RX, LOCK.

(Test and Set Lock – проверить и заблокировать), которая действует следующим образом. В регистр RX считывается содержимое слова памяти LOCK, а в ячейке памяти LOCK сохраняется некоторое ненулевое значение. Операция считывания слова неделима. Процессор, выполняющий команду TSL, блокирует шину памяти, чтобы остальные процессоры, если они есть, не могли обратиться к памяти.

На листинге 3 представлены функции для входа и выхода из критической области, выполненные в синтаксисе Ассемблера.


Листинг 3 – Вход и выход из критической области с помощью команды TSL


Прежде чем попасть в критическую область, процесс вызывает процедуру enter_region, которая выполняет активное ожидание вплоть до снятия блокировки, затем она устанавливает блокировку и возвращается. По выходе из критической области процесс вызывает процедуру leave_region, помещающую 0 в переменную LOCK. Как и во всех остальных решениях проблемы критической области, для корректной работы процесс должен вызывать эти процедуры своевременно, в противном случае взаимное исключение не удастся.

2.3.2 Примитивы межпроцессного взаимодействия

Решение Петерсона и с помощью команды TSL корректны, но у них один и тот же недостаток – использование активного ожидания. Т.е. процесс входит в цикл, ожидая возможности войти в критическую область.

Помимо бесцельной траты времени процессора на выполнение данного цикла, существует так называемая проблема инверсии приоритета. Суть её в следующем. Процессу с низким приоритетом никогда не будет предоставлено процессорное время, если в это время выполняется процесс с высоким приоритетом. Таким образом, если процесс с низким приоритетом находится в критической области, а процесс с высоким приоритетом, заканчивая операцию ввода-вывода, оказывается в режиме ожидания, то процессорное время будет отдано процессу с высоким приоритетом. В результате процесс с низким приоритетом никогда не выйдет из критической области, а процесс с высоким приоритетом будет бесконечно выполнять цикл.

Поэтому вместо циклов ожидания применяются примитивы межпроцессного взаимодействия, которые блокируют процессы в случае запрета на вход в критическую область. Одной из простейших является пара примитивов sleep и wakeup. Примитив sleep – системный запрос, в результате которого вызывающий процесс блокируется, пока его не запустит другой процесс. У запроса wakeup есть один параметр – процесс, который следует запустить. Также возможно наличие одного параметра у обоих запросов – адреса ячейки памяти, используемой для согласования запросов ожидания и запуска.

Два процесса совместно используют буфер ограниченного размера. Один из них, производитель, помещает данные в буфер, а потребитель считывает их оттуда. Трудности начинаются в тот момент, когда производитель хочет поместить в буфер очередную порцию данных и обнаруживает, что буфер полон. Для производителя решением является ожидание, пока потребитель полностью или частично не очистит буфер. Аналогично, если потребитель хочет забрать данные из буфера, а буфер пуст, потребитель уходит в состояние ожидания и выходит из него, как только производитель положит что-нибудь в буфер и разбудит его.

Это решение кажется достаточно простым, но оно приводит к состояниям состязания. Нужна переменная count для отслеживания количества элементов в буфере. Если максимальное число элементов, хранящихся в буфере, равно N, программа производителя должна проверить, не равно ли N значение count прежде, чем поместить в буфер следующую порцию данных. Если значение count равно N, то производитель уходит в состояние ожидания; в противном случае производитель помещает данные в буфер и увеличивает значение count.

Код программы потребителя прост: сначала проверить, не равно ли значение count нулю. Если равно, то уйти в состояние ожидания; иначе забрать порцию данных из буфера и уменьшить значение count. Каждый из процессов также должен проверять, не следует ли активизировать другой процесс, и в случае необходимости проделывать это. Программы обоих процессов представлены в листинге 4.


Листинг 4 – Проблема производителя и потребителя с состоянием соревнования


Для описания на языке С системных вызовов sleep и wakeup они были представлены в виде вызовов библиотечных процедур. В стандартной библиотеке С их нет, но они будут доступны в любой системе, в которой присутствуют такие системные вызовы. Процедуры insert_item и remove_item помещают элементы в буфер и извлекают их оттуда.

Возникновение состояния состязания возможно, поскольку доступ к переменной count не ограничен. Может возникнуть следующая ситуация: буфер пуст, и потребитель только что считал значение переменной count, чтобы проверить, не равно ли оно нулю. В этот момент планировщик передал управление производителю, производитель поместил элемент в буфер и увеличил значение count, проверив, что теперь оно стало равно 1. Зная, что перед этим оно было равно 0 и потребитель находился в состоянии ожидания, производитель активизирует его с помощью вызова wakeup.

Но потребитель не был в состоянии ожидания, так что сигнал активизации пропал впустую. Когда управление перейдет к потребителю, он вернется к считанному когда-то значению count, обнаружит, что оно равно 0, и уйдет в состояние ожидания. Рано или поздно производитель наполнит буфер и также уйдет в состояние ожидания. Оба процесса так и останутся в этом состоянии.

Суть проблемы в данном случае состоит в том, что сигнал активизации, пришедший к процессу, не находящемуся в состоянии ожидания, пропадает. Если бы не это, проблемы бы не было. Быстрым решением может быть добавление бита ожидания активизации. Если сигнал активизации послан процессу, не находящемуся в состоянии ожидания, этот бит устанавливается. Позже, когда процесс пытается уйти в состояние ожидания, бит ожидания активизации сбрасывается, но процесс остается активным. Этот бит исполняет роль копилки сигналов активизации.

Несмотря на то, что введение бита ожидания запуска спасло положение в этом примере, легко сконструировать ситуацию с несколькими процессами, в которой одного бита будет недостаточно. Можно добавить еще один бит, или 8, или 32, но это не решит проблему.

В 1965 году Дейкстра [16] предложил использовать семафор – переменную для подсчета сигналов запуска. Семафор – объект синхронизации, который может регулировать доступ к некоторому ресурсу. Также было предложено использовать вместо sleep и wakeup две операции down и up. Их отличие в следующем: если значение семафора больше нуля, то down просто уменьшает его на 1 и возвращает управление процессу, в противном случае процесс переводится в режим ожидания. Все операции проверки значения семафора, его изменения и перевода процесса в состояние ожидания выполняются как единое и неделимое элементарное действие, т.е. в это время ни один процесс не может получить доступ к этому семафору. Операция up увеличивает значение семафора. Если с этим семафором связаны один или несколько ожидающих процессов, которые не могут завершить более раннюю операцию down, один из них выбирается системой и разблокируется. Проблема производителя и потребителя легко решается с помощью семафоров.

Иногда используется упрощенная версия семафора, называемая мьютексом. Мьютекс – переменная, которая может находиться в одном из двух состояний: блокированном или неблокированном. Поэтому для описания мьютекса требуетсявсего один бит. Мьютекс может охранять неразделенный ресурс, к которому в каждый момент времени допускается только один поток, а семафор может охранять ресурс, с которым может одновременно работать не более N потоков.

Недостатком семафоров является то, что одна маленькая ошибка при их реализации программистом приводит к остановке всей операционной системы. Чтобы упростить написание программ в 1974 году было предложено использовать примитив синхронизации более высокого уровня, называемый монитором. Монитор – набор процедур, переменных и других структур данных, объединенных в особый модуль или пакет. Процессы могут вызывать процедуры монитора, но у процедур объявленных вне монитора, нет прямого доступа к внутренним структурам данных монитора. При обращении к монитору в любой момент времени активным может быть только один процесс. Монитор похож по своей структуре на класс в C++. Не все языки программирования поддерживают мониторы и не во всех операционных системах есть их встроенная реализация. Так в Windows их нет.

Все описанные примитивы не подходят для реализации обмена информации между компьютерами в распределенной системе с несколькими процессорами. Для этого используется передача сообщений. Этот метод межпроцессного взаимодействия использует два примитива: send и receive, которые скорее являются системными вызовами, чем структурными компонентами языка. Первый запрос посылает сообщение заданному адресату, а второй получает сообщение от указанного источника. Передача сообщений часто используется в системах с параллельным программированием.

Последний из рассмотренных механизмов синхронизации называется барьер, который предназначен для синхронизации группы процессов – т.е. несколько процессов выполняют вычисления с разной скоростью, а затем посредством применения барьера ожидают, пока самый медленный не закончит работу, и только потом все вместе продолжают выполнение команд.

Литература по операционным системам содержит множество интересных проблем, которые широко обсуждались и анализировались с применением различных методов синхронизации. Часть из них описана в работе [14].

2.4 Планирование

Часть операционной системы, отвечающая за выбор рабочего процесса из группы активных процессов, называется планировщиком, а используемый алгоритм – алгоритмом планирования. Практически все процессы чередуют периоды вычислений с операциями ввода-вывода (Рисунок 14).

Обычно процессор работает некоторое время без остановки, затем происходит системный вызов, например, на чтение из файла или запись в файл. Некоторые процессы большую часть времени заняты вычислениями, а некоторые ожидают ввода-вывода. Первые процессы называются ограниченными возможностями процессора, вторые – ограниченными возможностями устройств ввода-вывода.

Основные ситуации, когда необходимо применять планирование:

• при создание нового процесса, необходимо решить, какой процесс запустить: родительский или дочерний;

• при завершении работы процесса необходимо из набора готовых процессов выбрать и запустить следующий, если нет ни одного готового, то запускается холостой процесс из операционной системы;

• при блокировании процесса на операции ввода-вывода, семафоре или по-другому, необходимо выбрать и запустить другой процесс;


Рисунок 14 – Периоды использования процессора, чередующиеся с ожиданием ввода-вывода: процесс, ограниченный возможностями процессора (а); процесс, ограниченный возможностями устройств ввода-вывода (б)


Если аппаратный таймер выполняет периодические прерывания с частотой 50 Гц, 60 Гц или с любой другой частотой, решения планирования могут приниматься при каждом прерывании по таймеру или при каждом k-м прерывании. Алгоритмы планирования можно разделить на две категории согласно их поведению после прерываний.

1 Алгоритмы планирования без переключений (неприоритетное планирование), выбирают процесс и позволяют его работать вплоть до блокировки (в ожидании ввода-вывода или другого процесса), либо вплоть до того момента, когда процесс сам не отдаст процессор. Процесс может работать часами.

2 Алгоритмы планирования с переключениями (приоритетное планирование), выбирают процесс и позволяют ему работать максимально фиксированное время, затем приостанавливается и управление переходит к другому процессу. Приоритетное планирование требует прерываний по таймеру, чтобы передать управление планировщику.

В различных средах используются различные алгоритмы планирования. Выделяют 3 типичных среды [14]:

• системы пакетной обработки данных;

• интерактивные системы;

• системы реального времени.

В первых системах нет пользователей за терминалами и в таких системах приемлемы алгоритмы без переключений или с переключениями, но с большим временем, отводимым каждому процессу.

Во вторых системах необходимы алгоритмы с переключениями, чтобы предотвратить захват процессора одним процессом.

В третьих системах приоритетное планирование необязательно, т.к. там существуют другие программы, которые знают когда надо блокироваться.

Основные задачи алгоритмов планирования: а) для всех систем;

1) справедливость – предоставление каждому процессу справедливой доли процессорного времени;

2) принудительное применение политики – контроль за выполнением принятой политики (т.е., к примеру, предоставление процессам контроля безопасности процессора по первому требованию);

3) баланс – поддержка занятости всех частей системы (т.е. важно, чтобы работало больше устройств, чем один процесс только производил вычисления); б) для систем пакетной обработки данных; 1) пропускная способность – максимальное количество задач в час;

2) оборотное время – минимизация времени, затрачиваемого на ожидание обслуживания и обработку задачи;

3) использование процессора – поддержка постоянной занятости процессора; в) для интерактивных систем;

1) время отклика – быстрая реакция на запросы;

2) соразмерность – выполнение пожеланий пользователя; г) для систем реального времени;

1) окончание работы к сроку – предотвращение потери данных;

2) предсказуемость – предотвращение деградации качества в мультимедийных системах.

Далее рассмотрим некоторые алгоритмы планирования процессов. Для планирования потоков используются те же алгоритмы планирования, лишь есть некоторые отличия при различной реализации управления потоками на уровне ядра и уровне пользователя, которые сводятся к различной производительности.

2.4.1 Планирование в системах пакетной обработки данных

1 «Первым пришёл первым ушёл»

Самый простой алгоритм планирования. Категория алгоритма – без переключений. Процессам предоставляется доступ к процессору в том порядке, в котором они его запрашивают. Формируется единая очередь процессов. Когда текущий процесс блокируется, запускается следующий в очереди, а когда блокировка снимается, процесс попадает в конец очереди. Недостаток в том, что если существует очередь процессов, в котором есть процессы ограниченные устройствами ввода-вывода (т.е. большую часть времени тратящие на ожидание устройств), то это ожидание будет означать простой процессора.

2 Алгоритм «Кратчайшая задача первая»

Категория алгоритма – без переключений. Суть алгоритма заключается в следующем: если в очереди есть несколько одинаково важных задач, планировщик выбирает первой самую короткую по времени. Эта схема работает лишь в случае одновременного наличия задач и обычно неактуальна.

3 Алгоритм «Наименьшее оставшееся время выполнения»

Версия предыдущего алгоритма. В соответствии с этим алгоритмом, планировщик каждый раз выбирает процесс с наименьшим оставшимся временем выполнения. Естественно для таких алгоритмов необходимо знать, сколько времени выполняются процессы, что обычно является сложной задачей.

4 Алгоритм трехуровневого планирования

Системы пакетной обработки позволяют реализовать трехуровневое планирование, как показано на рисунке 15. По мере поступления в систему новые задачи сначала помещаются в очередь, хранящуюся на диске. Планировщик доступа выбирает задание и передает его системе. Остальные задачи остаются в очереди. Выбор заданий обуславливается установленным приоритетом – по времени выполнения или как-то по другому, например по работе с устройствами вводавывода.


Рисунок 15 – Трехуровневое планирование


Как только задание попало в систему, для него будет создан соответствующий процесс, который вступает в борьбу за доступ к процессору. В ситуации, когда процессов слишком много, работает второй уровень планирования (планировщик памяти), который определяет, какие процессы будут находиться в памяти, а какие можно выгрузить на диск. Естественно это не должно происходить слишком часто, т.к. дисковые операции сравнительно медленные. Количество процессов, одновременно находящихся в памяти, называется степенью многозадачности.

Конец ознакомительного фрагмента.