Вы здесь

Океанография и морской лед. 1. Современные средства исследования океана и ледяного покрова ( Коллектив авторов, 2011)

1. Современные средства исследования океана и ледяного покрова

1.1 Современные средства зондирования и исследования океана

С.Б. Кузьмин[2], А.Ю. Ипатов[3]

Современные приборы и технологии наблюдения за гидрологическими условиями в Северном Ледовитом океане

Аннотация

Описаны современные приборы, применяющиеся при океанологических исследованиях в Северном Ледовитом океане. Подробно даны технические характеристики профилографов, измерителей и зондов. Приведены количественные оценки, показывающие рост современной приборной базы, используемой при исследованиях в полярных регионах, а также увеличение объемов полученных измерений океанологических параметров за последнее десятилетие. Современные технологии проведения наблюдений за океанологическими параметрами описаны на примерах экспедиций, организованных Арктическим и антарктическим научно-исследовательским институтом (ААНИИ), выполненных в Северном Ледовитом океане в последнее десятилетие, в том числе в период Международного полярного года (МПГ 2007/08).

Введение

Наблюдения за гидрологическими условиями подразумевают возможность измерения в различных режимах значений температуры, солености (электропроводности) морской воды, а также скорости и направления течений, колебаний уровня моря, параметров волнения. Кроме того, в качестве сопутствующих параметров можно рассматривать скорость звука в морской воде (при прямых измерениях), мутность. В ходе экспедиционных работ на подвижных платформах (судовые экспедиции, работа на дрейфующем льду) в Северном Ледовитом океане (СЛО) возможны наблюдения за всеми указанными гидрологическими параметрами, кроме колебаний уровня моря и волнения. Очевидно, что рациональная организация исследований в любой области науки, в том числе и океанологии, сопряжена с достоверностью данных, получаемых в ходе экспериментов (полевых, экспедиционных работ). Использование современной приборной базы, аналогичной используемой зарубежными коллегами, позволяет при правильной эксплуатации приборов получать результаты, не вызывающие в научном сообществе сомнений в их корректности.

Принципы измерения гидрологических параметров, используемые в описанных ниже приборах одинаковы. Измерение температуры производится термистором. Электропроводность определяется при прохождении морской воды через ячейку индуктивности (при возбуждении индуктивных токов в ячейке). При этом вода: либо протекает сквозь ячейку под действием насоса, обеспечивающего равномерный поток жидкости, либо протекает свободно. Давление измеряется кварцевым датчиком на основе пьезоэффекта, либо тензодатчиком. Мутность морской воды определяется путем оценки величин рассеяния излученного света. Скорость течения в акустических доплеровских измерителях и профилографах определяется по частотному сдвигу акустического сигнала. Направление течений определяется магнитным компасом. Время измеряется автономно запитываемыми кварцевыми часами. Имеются отличия в характеристиках датчиков, классификация которых по классу точности приведена в таблице 1.

Передача данных производится, как правило, через интерфейс типа RS232 (RS232C) со скоростью 9600 бод. При подготовке приборов обязательными элементами перед использованием являются их тестирование на работоспособность, проверка запаса питания и объема свободной памяти.

Современные приборы и технологии, используемые в высокоширотных экспедициях для получения данных о вертикальном профиле термохалинных характеристик

Первыми образцами современного оборудования, задействованными для получения данных о вертикальном распределении (профилей) термохалинных характеристик, в ходе высокоширотных экспедиций стали зонд SBE 9plus CTD и профилограф SBE 19plus SeaCat производства компании SeaBird Electronics (США). Приборы данных моделей успешно эксплуатируются и сейчас, причем SBE 19plus является наиболее часто используемым прибором в арктических экспедициях в силу простоты и надежности в эксплуатации, автономности и малого веса. Несколько позже в судовых высокоширотных экспедициях начали применять обрывные зонды также позволяющие получить профили термохалинных характеристик.

SBE 9plus CTD и SBE 19plus SeaCat по характеристикам установленных на них датчиков (табл. 2) относятся к высшему классу точности измерения согласно принятой классификации измерительных приборов в океанологии (табл. 1). Обрывные зонды (характеристики датчиков даны в табл. 3) относятся к ненормируемым по классу точности (табл. 1).


Таблица 1. Классификация океанологических приборов по точности установленных на них датчиков (взята из работы Левашова Д.И., 2003)


Работа с описываемыми здесь приборами с борта судна возможна в дрейфе, в случае обрывных зондов, и на ходу. При сплоченности льда более трех баллов, при сильном ветре (более 10 мс) и (или) значительном дрейфе, любые океанографические станции выполняются с подработкой подруливающими устройствами, либо с использованием главного двигателя судна.

Зонд SBE 9plus CTD предназначен для измерения в режиме непрерывной передачи данных (основной режим работы) по кабель-тросу электропроводности (солености), температуры морской воды, давления (рис. 1Г). Кроме того, имеется возможность дополнительной установки датчиков растворенного кислорода, pH, флюоресценции фитопланктона, рассеяния солнечной радиации, мутности. Зонд устанавливается в батометрическую секцию-блок крепления зонда и батометров (розетту) SBE 32 Caroucel (рис. 1А), либо отдельно, в титановой раме. Конструкция розетты позволяет закреплять на ней дополнительно автономные измерительные приборы, что значительно увеличивает объем получаемой информации. Розетта SBE 32 Caroucel рассчитана на 24 пластиковых батометра емкостью 5 л типа 1080, произведенных фирмой General Oceanics Inc. (США). С помощью батометров производится отбор проб воды для последующего анализа в лабораторных условиях на судне.


Рис. 1. Приборы и оборудование, используемые в высокоширотных экспедициях. А – комплекс SBE 32 Caroucel с зондом SBE 911plus; Б – комплекс SBE 32 Caroucel c профилографом SBE 19plus и модулем AFM; В – комплекс SBE55 ECO Water Sampler c профилографом SBE 19plus; Г – зонд SBE 9plus CTD; Д – профилограф SBE 19plus; Е – измеритель температуры и электропроводности SBE 37SM; Ж – измеритель течений RCM 9IW; З – измеритель течений Seaguard IW; И – акустический доплеровский профилограф течений WHS300; К – акустический доплеровский профилограф течений дальней зоны действия WHLS75


В режиме непрерывной передачи данных зонд работает с бортовым устройством SBE 11plus. В этом случае он обозначается как SBE 911plus. При необходимости может работать в автономном режиме без кабель-троса, при подключении дата-логгера SBE 17plus. Все указанные приборы и оборудование также произведены фирмой SeaBird Electronics. Комплекс SBE 911plus эксплуатируется в ААНИИ на борту НЭС «Академик Федоров», в частности использовался в экспедициях «Арктика-2007», «Шельф-2010». На основе полученных комплексом данных строятся, в частности, пространственные распределения гидрологических параметров. На рис. 2Б в качестве примера такого построения приведен разрез от пролива Карские Ворота до пролива Вилькицкого в диапазоне глубины 0–100 м, выполненный по данным измерений в экспедиции «Шельф-2010».

Спуск и подъем через кран-балку розетты с зондом и батометрами выполняется лебёдкой со скоростью не более 1 м/с, при этом используется кабель-трос диаметром 9 мм. На барабане лебедки имеется 6000 м троса. Управление работой комплекса выполняется программой «SeaSave» из пакета программ «SEASOFT». Данные, передаваемые при спуске на бортовое устройство и соединенный с ним персональный компьютер (ПК), используются для определения горизонтов отбора проб воды батометрами. В нижней точке зондирования (10–20 м от дна) комплекс выдерживается для выравнивания по вертикальному углу. Измерение термохалинных характеристик и прочих параметров производится при подъеме (со скоростью 0,8 м/с). На выбранных горизонтах программно по кабель-тросу подается команда устройству, закрывающему батометры, отбирающие пробы воды.

Профилограф SBE 19plus SeaCat предназначен для измерений в автономном режиме (в режиме зондирования или буйковой станции, основной рабочий режим) электропроводности (солености), температуры морской воды, давления. Как и SBE 9plus может иметь такие же дополнительно устанавливаемые датчики параметров. Прибор устанавливается в штатной титановой раме (рис. 1Д), либо крепится на розетту SBE 32 Carousel вместе с устройством для автоматического закрытия батометров на заданных горизонтах (Auto Fire Module (AFM)). При работе с розеттой глубина срабатывания батометров программируется для AFM по давлению с помощью интерфейса RS232.

Комплекс SBE19plus SEACAT с розеттой SBE 32 Carousel (рис. 1Б) может использоваться в рейсах при отсутствии на борту судна лебедки с кабель-тросом. Примером таких экспедиций на борту НИС «Иван Петров» могут служить «БАРКАЛАВ-2007», «БАРКАЛАВ-2008», где данный комплекс включал в себя профилограф и розетту на 12 батометров типа 1080 емкостью 5 л. Температура и соленость в поверхностном слое, полученные описываемым комплексом в ходе экспедиции «БАРКАЛАВ-2007» представлены на рис. 2А.


Рис. 2. Пространственные распределения гидрологических параметров (1 – температура, 2 – соленость), полученных в ходе высокоширотных судовых экспедиций с помощью измерительных комплексов SBE 19plus (А) и SBE 911plus (Б).


Перед спуском с помощью программы «SeaSaveAF» из пакета программ «SEASOFT» устройство AFM через интерфейс RS232 программируется на давление, при котором будут закрываться батометры, либо на промежутки времени, при которых данная операция будет выполняться при нахождении комплекса на постоянной глубине. Кроме того, AFM записывает в свою память последовательность закрытия батометров, их номера, время и подтверждение закрытия для каждого батометра. AFM работает от 9 щелочных батареек типа Duracell MN1300 (LR20), которые обеспечивают приблизительно 40 часов работы, либо от никель-кадмиевых источников питания. Спуск и подъем комплекса производится судовой лебедкой на тросе 8 мм. После подъема комплекса данные считываются из памяти SBE 19plus на ПК. Методика выполнения гидрологической станции описана выше для зонда SBE 911plus. Основным недостатком данного комплекса является невозможность отслеживать флуктуации измеряемых характеристик водной среды на профиле в режиме непрерывной регистрации.

При океанографических работах, выполняемых на борту судна возможно также использование SBE 19plus в режиме непрерывной передачи данных (по кабель-тросу). Существует три варианта эксплуатации SBE 19plus в таком режиме. Первый – без розетты как комплекс, состоящий из профилографа и закрепленного на его раме модуля Power Data Interface Module (PDIM), соединенных с бортовым устройством (БУ) SBE 36 CTD Deck Unit. Модуль питается от SBE 19plus и обеспечивает передачу данных на БУ. Либо – два варианта комплексов с розеттой. В первом случае прибор монтируется на розетте SBE 32 Carousel и составляет комплекс с бортовым устройством SBE33 Carousel Deck Unit. Во втором варианте прибор монтируется на розетте SBE55 ECO Water Sampler вместе с модулем SBE55 Electronic Control Module, блоком магнитных размыкателей SBE55 Lanyard release assembly и тем же бортовым устройством SBE33 (рис. 1В).

Профилограф SBE 19plus широко используется при работах, выполняемых на льду. К таким экспедициям относятся, в первую очередь, научно-исследовательские дрейфующие станции «Северный полюс» (СП); работы в лагере «Барнео»; экспедиции «Полынья-2008», «Полынья-2009»; вертолетные станции, выполнявшиеся попутно, в частности в ходе экспедиции «Арктика-2007». Здесь отбор проб воды батометрами в розетте не осуществляется, прибор установлен в штатной титановой раме, работает автономно. Как правило, гидрологические станции делаются в закрытом помещении. Над майной, заранее выбуренной с применением мотобуров (на станциях СП для таких целей используется мотобур «Jiffy»(США)), либо над трещиной или краем разводья устанавливается палатка без пола, например КАПШ-3. На дрейфующих станциях СП работы выполняются в панельном мобильном домике типа ПДКО, где один половой щит над майной снят и она окружена фанерным коробом для предотвращения заносов снегом и замерзания. Майна обогревается и освещается галогенной лампой (мощность 500 Вт), установленной на боковой стенке короба. При необходимости майна обогревается гибким теплоэлектрическим нагревателем (ТЭН) на плавучей раме, а также ТЭНами, закрепляемыми на стенках короба под поверхностью воды для предотвращения бокового нарастания льда.

Перед началом работ программой «SEATERM», поставляемой SeaBird Electronics, производятся следующие установки рабочего режима. Устанавливаются порядок производства измерений (в режиме зондирования): измерять при спуске, либо подъеме, либо в обоих направлениях; частоты измерений (дискретности измерений); порядок вывода измеряемых параметров, связываемых с калибровочными коэффициентами; широта места наблюдения (для перерасчета давления в глубину); текущее время. Непосредственно перед работой прибор тестируется программой «SEATERM». Профилограф опускается на лебедке (обычно модель СП-77), установленной на сани с электроприводом на тросе 1,5–2 мм через выстрел с блоком. Напряжение на электропривод подается либо от стационарного (на дрейфующих станциях СП), либо от автономного дизель – генератора (бензогенератора). Спуск прибора выполняется в контролируемом по скорости (1 м/с) свободном падении, либо при включенном электродвигателе с той же скоростью. Подъем прибора выполняется с помощью электропривода также со скоростью 1 м/с. Непосредственно перед спуском прибор выдерживается подо льдом 5–15 минут для выравнивания температуры корпуса прибора с термистором и морской воды. После подъема на воздух насос прибора промывается дистиллированной водой. Периодически насос промывается с применением штатного детергента. После каждой выполненной станции, либо после окончания полетов, полученные данные скачиваются из памяти зонда на ПК. Запас рабочего времени SBE 19plus в автономном режиме по питанию около 1 950 000 единиц измерения (электропроводность, температура, давление).

Обрывные зонды широко используются в судовых высокоширотных экспедициях, поскольку наблюдения с помощью данных зондов можно производить в отсутствии специально оборудованного рабочего места и с минимальными потерями судового времени (без остановки судна). Работы выполняются с борта судов с помощью обрывных зондов типа XBT (expendable bathythermograph) и XCTD (expendable conductivity, temperature, depth probe) производства фирмы Lockheed Martin Corp. (США – Мексика), Tsurumi – Seiki Co., Ltd. (Япония), выполненных по лицензии фирмы Sippican Inc. (Япония), ныне входящей в той её части, которая производит океанологическое оборудование, в состав фирмы Lockheed Martin Corp. В ходе экспедиций последних лет использовались следующие модели батитермографов (XBT): T4, T5, T7, обрывных зондов электропроводности, температуры и давления (XCTD): XCTD-1, XCTD-2. Используемые в приборах датчики (табл. 3) по своему принципу работы аналогичны описанным ранее, отличаются малой инерцией. Для производства работ обрывными зондами кроме собственно зондов, используется пусковое устройство LM-3A производства Lockheed Martin Corp., бортовое устройство MK-21 той же фирмы или MK-130 производства фирмы Tsurumi-Seiki Co. и персональный компьютер с установленным на нем программным обеспечением «Win MK21» или «English_Ver. 3.02» данных фирм соответственно. Измеряемые параметры передаются от датчиков свободно падающего зонда через тонкую (0,15 мм) проволоку на бортовое устройство. Здесь аналоговые в случае XBT или цифровые сигналы в случае XCTD декодируются и передаются дальше в компьютер, работающий в режиме непрерывного получения данных. Перед началом работ программно производится настройка по типу прибора, пределам шкал измерения, устанавливается имя и место выводного файла с данными (в виде ASCII-кода). Затем после включения зонда производится контроль наличия связи в сети зонд-бортовое устройство. В случае XCTD далее производится тестирование датчиков зонда на воздухе. Глубина измерения температуры для зондов типа XBT определяется по времени наблюдения при полагающейся постоянной известной скорости погружения зонда. Поскольку работы с обрывными зондами, как правило, выполняются на ходу судна, процесс их выполнения полностью согласуется с мостиком в режиме двухсторонней связи.


Таблица 2. Характеристики зонда SBE 9plus CTD, профилографа SBE 19plus SeaCat и измерителя SBE 37SM MicroCat, используемых для получения термохалинных характеристик.

Примечания: 1 – разрешение от диапазона 0,0001 См/м для пресной воды до 0,0007 См/м при высокой солености; 2 – для зонда SBE 9plus CTD при работе в автономном режиме приведены характеристики дата-логгера SBE 17plus; 3 – никель-металлогидридные батареи (аккумуляторные), возможна установка щелочных типоразмера «D»


Таблица 3. Характеристики обрывных зондов.

Примечание: 1 – для приборов производства фирмы Tsurumi – Seiki Co.

Современные приборы и технологии, используемые в высокоширотных экспедициях для изучения временного хода термохалинных характеристик на отдельных горизонтах

Ряды данных, описывающих временной ход термохалинных характеристик, были получены в ходе измерений, выполняемых чаще всего с помощью измерителя температуры и электропроводности SBE 37 в модификации SBE 37SM MicroCat. Также в отдельных случаях в ходе работ на дрейфующей станции СП-37 для данных целей использовался описанный ранее профилограф SBE 19plus SeaCat, установленный в режиме буйковой станции. Набор такелажа и установка прибора на льду производится аналогично описанному ниже для SBE 37SM MicroCat. Все данные наблюдения выполнялись с дрейфующего льда в рамках экспедиций на станциях «Северный полюс».

Измеритель температуры и электропроводности SBE 37SM MicroCat изготовлен компанией SeaBird Electronics (США) (рис. 1Е). Предназначен для измерения в автономном режиме электропроводности (солености), температуры морской воды, дополнительно оснащен датчиком давления (табл. 2). В отличие от рассмотренной ранее продукции данной фирмы, измерения электропроводности происходят в режиме свободного протекания воды, без насоса, что обеспечивает меньшие расход питания и большую автономность. Запас времени по питанию (литиевые батарейки) 300 000 единиц измерения (электропроводность и температура). Подготовка прибора к работе и считывание данных после окончания работы выполняется прилагаемой к нему программой «SEATERM». Выставляется дискретность наблюдений, текущее время и формат его представления, время пуска прибора. Прибор устанавливается на открытом воздухе в заранее выбуренной майне. В силу конструктивных особенностей прибор крепится на отрезке стального троса сечением 4 мм, который в свою очередь крепится к синтетическому тросу сечением 13 мм. Над прибором в такелаж набирается «мокрый» вертлюг для предотвращения кручения троса. Снизу прибор утяжеляется ввиду своего малого веса (табл. 2) грузом весом 15 кг. На верхнем трехметровом участке синтетический трос пропускается через пластиковую трубу сечением 35 мм для предотвращения разрыва троса при выбуривании прибора. Над майной данная конструкция фиксируется доской, на которую заведена петля на верхней оконечности троса. Место положения майны обозначается флажками.

Современные приборы и технологии, используемые в высокоширотных экспедициях для изучения временного хода течений

Значительным прорывом в океанологических исследованиях в СЛО стало использование при работе со льда измерителей и профилографов скорости течений. Впервые измерения течений с применением современных приборов и корректной привязкой к координатам (использование системы GPS) на дрейфующем льду были выполнены в рамках работы сезонного отряда СП-34. Для наблюдения за течениями при этом использовались акустические доплеровские измерители течения RCM 9IW (рис. 1Ж) производства фирмы AANDERAA (Норвегия) и акустические доплеровский профилограф течения ADCP (Acoustic Doppler Current Profiler) WorkHorse Sentinel 300 кГц (WHS300) производства фирмы RDI Teledyne (США) (рис. 1И). В дальнейшем к данным приборам добавились акустический доплеровский измеритель течений SEAGUARD RCM IW производства AANDERAA и акустический доплеровский профилограф течений дальней зоны действия ADCPLR (Acoustic Doppler Current Profiler Long Range) WorkHorse Long Ranger 75 кГц (WHLS75) от фирмы RDI Teledyne. Общим для всех данных приборов является принцип измерения скорости и направления течения. Основным различием между акустическими измерителями и профилографами течений является то, что в первом случае измерения производятся излученным акустическим сигналом на одном горизонте в кольцевой области горизонтальной плоскости, удаленной на радиус 0,5 м от прибора до внешней границы, удаленной на радиус 3,5 м от прибора. В случае профилографов измерения скорости течений выполняются на нескольких горизонтах по вертикали (в нескольких ячейках), причем измеряемая скорость отнесена не к отдельному горизонту, а к слою некоторой толщины (ячейке). Приборы имеют «мертвую зону» непосредственно за излучателями размером 6,12 и 12,57 м для профилографов WHS300 и WHLS75 соответственно. Характеристики RCM 9IW и SEAGUARD RCM IW сходны. Характеристики WHS300 и WHLS75 отличаются частотой акустического сигнала (табл. 4). С этим связаны и отличия в общей толщине исследуемого слоя и толщине каждой ячейки, в которой измеряется скорость течения (табл. 5).


Таблица 4. Характеристики измерителей течений RCM 9IW и SEAGUARD RCM IW, профилографов течений WorkHorse Sentinel (WHS300), WorkHorse Long Ranger (WHLS75).

Примечания: 1 – разрешение в задаваемых диапазонах: «arctic» –3,12…+5,83, «low» –2,7…+21,7, «wide» –0,6…+32,8, «high» +9,8…+36,6; 2 – первое значение для угла наклона до 15°, второе – для угла наклона до 35°; 3 – количество сборок батарей; 4 – для литиевых батарей


Таблица 5. Размер ячейки (слоя) измерения, общая толщина слоя и соответствующие им значения среднеквадратичного отклонения (СКО) скорости профилографов течений WHS300 и WHLS75


Набор описываемых приборов в такелаж и их установка на льду производится аналогично описанному ранее для SBE 37SM MicroCat.

Измеритель течения RCM 9IW кроме датчика скорости течения (тип 3680 или 4220) имеет датчик давления, основанный на пьезоэффекте (тип 4017D или 4017А…4017F), датчик электропроводности (тип 3919B или 3919А, 4119, 4120), датчик температуры (тип 3621). Характеристики штатных датчиков, указанных первыми приведены в табл. 4. Дополнительно может быть установлен датчик мутности (3612А), а также датчики флюоресценции фитопланктона или датчик растворенного кислорода.

Перед установкой измерителя выполняется его настройка. Производится очистка устройства накопления данных Data Storage Unit DSU 2990 (либо DSU 2990E). На центральной плате устанавливаются следующие параметры: интервал измерения температуры и электропроводности; количество каналов; режим работы излучателя акустических сигналов. По умолчанию производится 600 излучений акустического сигнала (пингов). Режимы, при которых производится 150, 300 или 1200 пингов реализуются перестановкой соединительных клемм на плате прибора. Затем производится включение прибора в режиме измерений за заданный интервал 1, 2, 5, 10, 20, 30, 60, 120 минут (Normal mode по умолчанию) «On», либо в режиме измерений в течение последней минуты заданного интервала «Burst mode», при этом питание экономится. Опрос датчиков происходит следующим образом. В нормальном режиме в течение заданного интервала выполняется установленное количество пингов, и один раз опрашиваются прочие каналы. В режиме «Non stop» – непрерывно (но с количеством пингов не более 600) дважды выполняется цикл излучения акустических сигналов и производится считывание каналов. Интервал измерения в секундах в этом случае равен количеству каналов, умноженному на 4 плюс 2 секунды. В режиме «R» заданное количество пингов приходится на десятиминутный интервал при непрерывном излучении акустических сигналов, а запрос каналов производится после последних 600 пингов.

Прибор устанавливается в монтируемой к корпусу раме. Отличием в креплении RCM 9IW в такелаже является то, что прибор вывешивается на конце синтетического троса, а утяжеляющий груз весом 15 кг удален вниз от прибора на синтетическом тросе на 5 м. Запас времени по питанию (батареи типа 3614 AANDERAA) при измерении через 10 минут равен 92 суткам.

После окончания работы прибор извлекается из прочного корпуса, выключается, снимается устройство накопления данных DSU 2990 (либо DSU 2990E). Оно подключается к устройству считывания данных DSU Reader 2995, подключенному к персональному компьютеру. С помощью штатной программы «Data Reading Program DRP 5059» производится синхронизация часов прибора с компьютером, считывание данных, они ассоциируются с измеряемыми переменными. Далее возможно сохранение данных в виде ASCII – кодов, расчет статистических оценок рядов данных.

Измеритель течения SEAGUARD RCM IW во многом принципиально схож с RCM 9IW. Отличием является использование датчика скорости течения типа Zpulse (на RCM 9IW установлен датчик типа DCS 3820). В данной модификации (рис. 1З) также, как и RCM 9IW, имеются аналогичные датчики температуры и электропроводности, давления. Кроме того, подготовка прибора к работе производится с использованием программы «SEAGUARD Studio». Данные хранятся в несъемном блоке. Однако для подготовки к работе и считывания данных прибор также извлекается из прочного корпуса. По классу точности датчиков температуры и RCM 9IW, и SEAGUARD RCM IW относятся к минимально точным, электропроводности и давления – к высшему классу точности (табл. 1, табл. 4). Набор такелажа и схема установки прибора аналогичны описанному выше для RCM 9IW.

Акустические доплеровские профилографы (ADCP) WorkHorse Sentinel 300 кГц (WHS300) и (ADCPLR) WorkHorse Long Ranger 75 кГц (WHLS75) имеют четыре излучателя акустического сигнала типа Convex, расположенные на верхней крышке прибора (рис. 1И, рис. 1К). Излучатели наклонены относительно горизонтальной оси на 20°. На приборах также установлены датчики температуры для коррекции значений скорости, могут быть установлены датчики давления (тензорный датчик). Запас времени по питанию 45 и 55 суток в установленном десятиминутном режиме измерения для профилографов WHS300 и WHLS75 соответственно.

Подготовка прибора к работе и считывание данных производится программно. Разбирать прибор требуется только для подключения (замены) питания или переключения типа интерфейса. Перед установкой прибор тестируется с помощью приложенного к нему программного обеспечения (программа «WinSc»). После контрольного включения проводится оценка измерений каналов температуры и давления. Перед включением прибора в рабочий режим проводится калибровка магнитного компаса, установка нуля глубины, времени встроенных часов. Непосредственно перед установкой профилографа в майну, программой «PlanADCP» выставляются следующие параметры: тип измерителя (частота сигнала), диапазоны измерения (океан), тип постановки (буйковая станция), диапазон глубин измерения, размер и количество ячеек (слоев) измерения, объем памяти, интервал осреднения (дискретность), максимальная продолжительность работы, примерная температура и соленость воды в период измерений. Также можно установить: допустимое стандартное отклонение измерений скорости, количество пингов в ансамбле измерений (умолчание 50 пингов), интервал между пингами, магнитное склонение. Более тонкая настройка прибора может осуществляться командами в программе «WinSc» перед пуском программы, планирующей постановку «PlanADCP». Можно устанавливать режим мгновенных измерений и его параметры, регулировать амплитуду сигнала, ширину полосы излучения, режим высокого разрешения (для WHLS75) и т. п. Перенос данных на компьютер, обработка измерений производится с помощью программы «WinSc». Более подробное представление исходных данных и вывод их в виде ASCII-кодов выполняется с помощью программы «WinADCP».

Излучатели профилографов можно ориентировать как вверх, так и вниз. Задаваемая толщина слоев лимитируется необходимой точностью измерения (табл. 5). По классу точности датчика температуры данные профилографы относятся к ненормируемым, что оправдано, поскольку данный параметр выступает как вспомогательный. По классу точности датчика давления они относятся к высшему классу точности (табл. 1). Кроме интерфейса типа RS232 (RS232C) профилографы течений также имеют интерфейс типа RS422. Передача данных производится со скоростью 9600–115 400 бод.

Приборы устанавливаются в монтируемой к корпусу раме. Набор такелажа и крепление WHS300 в майне выполняется аналогично описанному ранее для RCM 9IW, но приборы не утяжеляются. Профилограф течений WHLS75 имеет значительный вес (120 кг с рамой) и габариты (табл. 4), что требует использования иной, нежели для WHS300 схемы установки. Он устанавливается под лед в обогреваемую майну размером около 100×150 см внутри палатки КАПШ-3. Майна обогревается ТЭНом на плавучей раме мощностью 1 кВт. Дополнительно на стенках майны с двух сторон устанавливаются притопленные ТЭН мощностью 0,4–0,5 КВт. Синтетический трос, на котором висит прибор, пропускают через блок для обеспечения возможности его быстрого извлечения, а также возможности его подъема для контрольного считывания данных.

При расстановке профилографов WHS300 и WHLS75 следует иметь в виду возможность наложения сигналов разной частоты, приводящего к сбоям. Как показала практика работ на СП, для исключения наложения сигналов следует разносить измерители на расстояние не менее 50 м. В качестве примера использования данных измерения течения профилографом WHS300 может служить представление пространственного распределения средних векторов (трехсуточное осреднение) течений на горизонте 69 м, полученное в ходе экспедиции СП-36, приведенное на рис. 3.


Рис. 3. Пространственное распределение средних векторов течений на горизонте 69 м по данным, полученным профилографом течений WHS300

Заключение

Качественный и количественный прорыв в приборной базе, используемой при проведении океанологических исследований в Арктике, наиболее очевиден на примере экспедиций на научно-исследовательских дрейфующих станциях «Северный полюс», организуемых ААНИИ (табл. 6). Увеличение приборной базы по номенклатуре и по количеству измеряемых этими приборами океанологических параметров имело место, начиная с работ сезонного отряда дрейфующей станции СП-34 в 2006 г. Нарастание объема выполняемых наблюдений связанное с расширением приборной базы видно из табл. 7, где показан объем наблюдений, выполненных в тех же экспедициях, что и указанные в табл. 6. При этом если количество гидрологических станций определяется продолжительностью работ на каждой из СП, то объем выполненных измерений течений в большей степени связан с указанными выше тенденциями. Значительный спад количества данных наблюдений на дрейфующей станции СП-37 определяется субъективными причинами.


Таблица 6. Состав приборной базы (в единицах), активно используемой при проведении океанологических исследований на российских дрейфующих станциях «Северный полюс»


Таблица 7. Общий объем наблюдений, выполненных океанологическими отрядами на российских дрейфующих станциях «Северный полюс» с применением современной приборной базы.

Примечания:1 – суммарная продолжительность измерений течений на всех горизонтах


Углубление исследований СЛО с применением современных приборов и оборудования связано со следующими перспективными решениями:

• в рамках работ на дрейфующем льду:

– незначительное увеличение количества автономных измерителей температуры и электропроводности SBE 37SM и профилографов течений WHS300 для обеспечения полигонных постановок с целью исследования пространственно-временной изменчивости гидрологических параметров на отдельных горизонтах;

– качественное увеличение получаемой информации за счет исследования микропульсаций гидрологических параметров подо льдом, например, используя RMS (Recording Microstructure System) производства Rockland Scientific (Канада);

– использование современного вспомогательного оборудования (треноги, лебедки);

• в судовых экспедициях:

– увеличение количества измеряемых при зондировании параметров, например, при установке на розетте профилографа WHS600 или WHS300, имеющего режим работы LADCP, установке датчиков растворенных газов (кислород, метан), датчика флюоресценции фитопланктона;

– использование малоинерционных приборов для исследования поверхностного слоя, например, турбулиметров (VMP750VMP2000 производства Rockland Scientific или Turbo MAP-L производства ALEC Electronics (Япония)).

В работе использованы данные технических описаний приборов, а также информация фирм-изготовителей, размещенная на их сайтах.

Литература

Левашов Д.И. Техника экспедиционных исследований. М.: Издательство ВНИРО, 2003. 399 с.

S.B. Kuzmin
[4], A.Yu. Ipatov
[5]. Modern oceanographic instruments and observations technique applied with respect to research of hydrological conditions at the Arctic Ocean

Аbstract

Modern oceanographic instruments used during expeditions at the Arctic Ocean are described. Characteristics of recorders, profilographs, probes are shown in details. The quality estimations of augmentation of instruments assembly used to investigate oceanographic parameters in the Arctic Ocean are presented. The quantitative estimations of augmentation oceanographic data base during last decade has been obtained, are presented too. Few expeditions took place at last decade (during IPY 2007/08 too) under Arctic and Antarctic research institute (AARI) leadership at the Arctic Ocean both from the ice and onboard are used as example to show up-to-date oceanographic technique.

С.А. Кириллов[6], К.В. Фильчук[7]

Использование заякоренных и дрейфующих буйковых измерительных комплексов для непрерывной регистрации параметров состояния морской среды в Арктике

Аннотация

В статье рассмотрены основные методики получения информации по гидрофизическому состоянию Северного Ледовитого океана (СЛО) с автономных измерительных платформ, к которым относятся заякоренные и дрейфующие буйковые комплексы. Анализируются преимущества и недостатки каждого из видов наблюдений, а также перспективы их дальнейшего использования для развития наблюдательной сети в СЛО.

Введение

Северная полярная область является частью глобальной климатической системы, где наблюдаются наиболее сильные естественные флуктуации ее состояния. Это связано со значительным влиянием адвективного обмена с субарктической зоной с одной стороны, а также с существованием сложных процессов взаимодействия отдельных компонентов арктической климатической системы между собой и многочисленных механизмов прямых и обратных связей с другой. В течение двух последних десятилетий климатические изменения в Арктике стали наиболее заметны в связи со значительными изменениями, выраженными в существенном увеличении температуры воздуха и сокращении площади и толщины арктических льдов. С 1987–1989 гг. началось повышение температуры атлантических вод в Северном Ледовитом океане (СЛО), которое для отдельных районов превысило максимальные значения за весь исторический с 1887 г. период наблюдений. В конце 90-х годов прошлого века научная активность в области исследования Северного Ледовитого океана стала нарастать. Вначале это были отдельные рейсы судов и ледоколов в арктические моря и Арктический бассейн СЛО, авиационные экспедиции с высадкой на лед и др. Затем стали выполняться международные научные программы, которые ставили задачей исследование океанографических процессов в отдельных частях Северного Ледовитого океана в условиях быстро меняющихся природных условий.

Наблюдаемые климатические изменения, в свою очередь, открывают широкие перспективы развития природопользовательской и хозяйственной деятельности в высокоширотных районах, что сопровождается усилением антропогенного влияния на хрупкую арктическую экосистему в целом. Одновременно с этим возрастают риски, связанные с влиянием сложных гидрометеорологических условий на хозяйственную деятельность. В этой связи безусловным фактором, снижающим упомянутые риски, является развитие системы мониторинга гидрофизического состояния вод арктического бассейна и окраинных морей, действующей в автономном режиме.

В настоящее время поступление информации о гидрофизическом состоянии СЛО с автономных измерительных комплексов обеспечивается в двух вариантах. Первый вариант подразумевает получение данных при помощи заякоренных буйковых измерительных комплексов, устанавливаемых в отдельных районах арктического бассейна на длительный период с последующим подъемом этих комплексов и скачиванием информации. Второй вариант предполагает оперативное поступление информации через спутниковые каналы связи с дрейфующих буйковых измерительных комплексов.

В настоящей статье будут рассмотрены основные вопросы, касающиеся способов получения гидрофизической информации в СЛО при помощи таких комплексов, а также вопросы перспективности их дальнейшего использования для развития наблюдательной сети в СЛО.

Заякоренные буйковые измерительные комплексы

В последние годы все большее развитие в системе мониторинга текущих изменений состояния арктической климатической системы получают автономные заякоренные измерительные комплексы (или ПБС – притопленная буйковая станция), с помощью которых выполняется сбор информации в фиксированной точке в течение продолжительного (как правило, в течение одного года) периода времени. Автономные заякоренные буйковые станции, наряду с экспедиционными судовыми средствами получения информации, являются одним из мощнейших инструментов сбора данных о гидрофизическом состоянии водной толщи и протекающих в ней процессов. При этом перечень параметров, которые возможно регистрировать при помощи заякоренных станций, является весьма широким и определяется исключительно списком уже существующих приборов, предназначенных для измерения характеристик состояния морской среды и способных работать в автономном режиме. Кроме этого, подобные системы являются единственной возможностью получить достоверную оценку параметров динамического состояния водной толщи: скоростей и направлений морских течений, их сезонной и межгодовой изменчивости, характеристик приливных течений и пр. Кроме того, в настоящее время наряду с приборами, устанавливаемыми в составе ПБС на фиксированных горизонтах, в практику океанографических наблюдений все чаще входят профилографы, осуществляющие вертикальное перемещение вдоль несущего троса комплекса в пределах выбранного диапазона глубин и записывающие информацию о вертикальном распределении основных параметров состояния (температура, соленость, скорость течения) водных масс.

Конструктивно ПБС состоят из четырех основных элементов, к которым относятся: якорь, удерживающий измерительный комплекс в точке постановки (рис. 1 б); несущий буй положительной плавучести для поддержания станции в вертикальном положении (рис. 1 а); акустический размыкатель, служащий для связи с комплексом и приема сигнала на всплытие от бортового устройства (рис. 1 в), и связующий синтетический или металлический трос (рис. 1 г), на котором устанавливаются приборы и оборудование.


Рис. 1. Основные составляющие части автономного заякоренного буйкового измерительного комплекса: а) – несущие буи; б) – акустический размыкатель в комплекте с бортовым устройством; в) – якорь/груз; г) – трос


Основой успешного использования ПБС является учет нескольких основных моментов, часть из которых связана с чисто технических проблемами (правильный расчет нагрузки ПБС, защита от коррозии), а часть – с правильной последовательностью действий по подъему станции. При этом, как показывает опыт, при правильно организованной постановке ПБС проблем удается избежать.

Расчет нагрузки, в которую входит определение достаточного веса якоря для удержания станции в точке постановки и размера элементов плавучести в верхней части ПБС, производится в зависимости от общего количества используемых в составе станции приборов, их веса и размеров, при учете динамических нагрузок (течения), характерных для исследуемого района. Очевидно, что увеличение количества приборов приводит к увеличению веса и необходимости увеличения размеров элементов плавучести. Аналогичное увеличение плавучести требуется также при увеличении парусности станции за счет включения в ее состав значительных по размерам приборов или в условиях активной динамики водных масс. Одновременно с этим увеличение плавучести вызывает необходимость увеличения веса якоря и использования более прочного троса.

Суть борьбы с коррозией на металлических элементах конструкции ПБС заключается в установке в районе предполагаемого коррозионного разрушения протекторов – металлических накладок из магниево-алюминиевого сплава или цинка, электрический потенциал которого ниже потенциала защищаемого металла. Этот способ основан на разнице электрических потенциалов металла (катода), подвергающегося коррозии, и протектора (анода). Цинк в том случае оказывается эффективен только при высокой его чистоте (более 99,9 %) или в сплаве с 1–3 % магния. В противном случае протектор быстро покрывается окислами, изолирующими его поверхность от воды.

Установка и демонтаж заякоренных буйковых комплексов осуществляется в основном во время проведения комплексных морских научно-исследовательских экспедиций. В последние годы большая часть таких комплексов на акватории СЛО была установлена в рамках международных проектов, таких как NABOS (Nansen And Amundsen Observational System – Система наблюдений в бассейнах Нансена и Амундсена), SEARCH (Study of Environmental Arctic Changes – Программа исследований изменений в природной среде Арктики), CABOS (Canadian Basin Observational System – Система наблюдений в Канадском бассейне), DAMOCLES (Developing Arctic Modeling and Observing Capabilities for Long-term Environmental Studies – Программа усовершенствования модельных и мониторинговых исследования природной среды Арктики), Laptev Sea System (Система моря Лаптевых), CASES (Canadian Arctic Shelf Exchange Study – Программа исследования процессов шельфового обмена в Канадской Арктике), SBI (Arctic Shelf-Basin Interaction – Проект изучения взаимодействия между шельфовой и глубоководной частью СЛО), RUSALCA (Russian-American Long-term Census of the Arctic – Российско-американская долговременная программа арктических исследований) и др. В ряде случаев задачи по постановке и снятию станций решались с привлечением средств авиации, например, в рамках программы наблюдательной системы в районе Северного Полюса (North Polar Environment Observatory), осуществляемой в Центре Полярных исследований университета Вашингтон (рис. 2).


Рис. 2. Постановка ПБС с дрейфующего льда в рамках научно-исследовательской программы NPEO


Российский вклад в развитие системы мониторинга при помощи заякоренных буйковых комплексов в основном представлен в виде совместных инициатив с зарубежными научно-исследовательскими институтами. Российские ученые и специалисты при этом принимали непосредственное участие в разработке и развитии целого ряда из представленных выше программ мониторинга, к которым можно отнести такие международные проекты как RUSALCA, NABOS и Laptev Sea System. При этом экспедиционные исследования, выполняемые в рамках этих проектов в окраинных морях российской Арктики, организовывались и проводились при непосредственном участии или под руководством ААНИИ.

В перспективе в Арктическом и антарктическом научно-исследовательском институте рассматривается возможность развития национальной системы мониторинга при помощи заякоренных станций в СЛО. В качестве предполагаемого места осуществления такой программы рассматривается район узкого шельфа и глубоководной части Арктического бассейна на траверзе мыса Арктического, как одном из наиболее интересных районов с точки зрения современных изменений морского климата северной полярной области и особенностей протекания океанографических процессов.

Основным препятствием для повсеместного внедрения практики использования автономных заякоренных комплексов в Арктике является практически круглогодичное присутствие ледяного покрова. В этих условиях экспедиции, в рамках которых осуществляется подъем и постановка комплексов, как правило, проводятся на судах, обладающих различными ледовыми классами. В настоящее время к научно-исследовательским судам ледокольного типа можно отнести: Академик Федоров (Россия), Louis St.Laurent, Amundsen (Канада); Polarstern (Германия); Oden (Швеция); Healy (США); Xuelong (Китай). Причем в подавляющем большинстве случаев использование этих судов возможно только в течение относительно короткого промежутка времени, ограниченного несколькими летними месяцами, когда наблюдается максимальное сокращение площади и толщины ледяного покрова в Арктическом бассейне. Кроме судов ледокольного типа в СЛО в летнее время экспедиционные исследования проводятся также с судов, обладающих более легким ледовым классом или даже отсутствием последнего, но район действия этих судов ограничен относительно небольшими пространствами чистой воды или разреженного льда в прикромочной зоне. Однако практика последних лет показывает, что в условиях значительного сокращения площади ледяного покрова в летний период, с помощью таких судов удается получать все большее пространственное покрытие натурными гидрофизическими данными.

Отдельной и самой сложной задачей является подъем ПБС в условиях присутствия ледяного покрова. Особенно подъем затрудняется в случае наличия разреженных льдов, когда сделать майну при помощи судна не представляется возможным и становится высокой вероятность всплытия поверхностных буев под отдельно плавающие льдины. В случае наличия сплоченного льда подъем также представляет собой известные трудности, которые связаны с целым набором последовательно выполняемых действий. Первым является триангуляция и расчет точного положения либо придонных акустических размыкателей, либо специального позиционирующего акустического устройства (транспондера), устанавливаемого в верхней части станций. В условиях глубокого океана и присутствия течений горизонтальная разница положения этих двух элементов может составлять несколько десятков метров, а иногда и более сотни. После этого осуществляется расчет скорости и направления дрейфа льда, времени, необходимого на подготовку майны необходимого размера, и начинаются работы по ее формированию. При условии правильной оценки дрейфа, в момент прохождения майны над позицией ПБС с бортового акустического устройства передается сигнал размыкателю на всплытие (рис. 3).


Рис. 3. Подъем притопленной буйковой станции в условиях высокой сплоченности льда в районе постановки ПБС (а, б)


Наиболее интересные результаты могут быть получены при использовании профилографов, перемещающихся вдоль несущего троса ПБС. Пример записи изменений вертикального профиля температуры в северной части моря Лаптевых показан на рис. 4. В частности, благодаря использованию технологии профилирования удалось установить ряд интересных особенностей динамики и термохалинной изменчивости глубинной атлантической водной массы в этом районе и зафиксировать существенный рост температур в ядре Атлантических вод в 2003–2004 гг.


Рис. 4. Пример записи изменений вертикального профиля температуры в северной части моря Лаптевых по данным притопленной буйковой станции в период с 9 сентября 2003 г. по 6 февраля 2005 г.

Дрейфующие буйковые измерительные комплексы

Одним из перспективных направлений развития наблюдательной сети в СЛО является создание и поддержка системы автономных дрейфующих измерительных комплексов, выполненных на базе современных технических средств, позволяющих получать высокодискретные вертикальные профили гидрофизических характеристик в толще воды, осуществлять глобальное позиционирование, выполнять операции обмена данными с использованием спутниковых каналов связи. Впервые подобный подход был опробован в рамках совместного американо-канадско-японского проекта Beaufort Gyre Exploration Project (проект исследований в круговороте Бофорта). Специально для задач проекта был разработан научно-технический комплекс, получивший наименование ITP (Ice-Tethered Profiler). В период 2004–2005 гг. на дрейфующем льду моря Бофорта были установлены три прототипа ITP. Опыт эксплуатации прототипов (два из трёх сохраняли работоспособность в течение десяти месяцев с момента установки, передав на сервер разработчиков результаты профилирования температуры и солёности более чем в тысяче пунктов каждый, а также большой объём диагностической информации о состоянии прибора) позволил обосновать целесообразность дальнейшего развития проекта.

Комплекс ITP состоит из трёх основных компонентов: находящегося на поверхности льда буя, подвеса с концевым грузом и профилографа, перемещающегося в вертикальном направлении по подвесу (рис. 5). Буй представляет собой выполненный из пенопласта высокой плотности цилиндр, внутри которого размещен водонепроницаемый алюминиевый бокс с электронной аппаратурой. Набор аппаратуры включает в себя контроллер, индукционный модем, GPS-приёмник, оборудование спутниковой связи системы Iridium. Антенны GPS-приёмника и спутникового телефона размещены в верхней, выступающей за пределы пенопластового кожуха, части бокса и защищены прочным радиопрозрачным колпаком. Также в корпусе буя размещаются аккумуляторные батареи. Поздние модификации комплекса стали оснащаться пенопластовым конусом, призванным обеспечить бую дополнительную плавучесть, что позволяет производить установку на открытой воде. Конус устанавливается на лёд вершиной вниз, а на его основание монтируется блок с аппаратурой. К нижней части буя металлическим фланцем крепится кабель-трос подвеса. Кабель-трос совмещает функции направляющей движения профилографа и сигнальной линии. Для того чтобы подвес принимал вертикальное положение при значительных скоростях дрейфа, к его нижнему концу подвешивается груз весом около 100 килограмм. Верхние 5 метров кабель-троса защищены от механических воздействий льда уретановым рукавом. Кроме того, на нижнем конце рукава закреплена бронзовая контактная пластина, обеспечивающая коммуникационной схеме комплекса электрическую «землю». Перемещающийся по подвесу профилограф представляет собой пластиковый бокс цилиндрической формы, внутри которого размещены: измерительное оборудование Sea-Bird 41CP CTD, индукционный модем, электродвигатель, аккумуляторные батареи. Состав измерительного оборудования может быть расширен за счёт оснащения профилографа дополнительными датчиками. Профилограф монтируется на кабель-тросе через верхний и нижний направляющие ролики, а также ролик электродвигателя. Вращение плотно прижатого к тросу ролика электродвигателя и обеспечивает вертикальные перемещения профилографа. Коммуникационный обмен с поверхностным блоком осуществляется посредством индукционных модемов. Модем профилографа наводит в проводнике кабель-троса полезный сигнал, считываемый модемом, размещённым в корпусе буя. Заряда аккумуляторных батарей комплекса хватает не менее чем на два года непрерывной работы. Разворачивается комплекс с использованием специального оборудования силами трёх человек в течение трёх-четырёх часов.


Рис. 5. Схема (а) и процесс установки (б) элементов комплекса ITP


Начиная с 2006 года и по настоящее время на дрейфующих льдах Арктического бассейна ежегодно выставляется от трёх до двенадцати буёв ITP, а всего за рассматриваемый период в Арктике было задействовано тридцать восемь комплексов. Общее количество полученных профилей оценивается в тридцать тысяч.

На рис. 6 с цветовой дифференциацией по годам представлены пункты акватории Арктического бассейна, в которых было выполнено профилирование комплексами ITP. Как видно, наибольшая концентрация точек профилирования достигнута в акватории моря Бофорта, в соответствии с первоначальными целями проекта. Однако и в центральной части Арктического бассейна были задействованы двенадцать буёв ITP, в том числе в период МПГ в рамках российских арктических экспедиций на НЭС «Академик Федоров» были установлены в 2007 году пять комплексов, в 2008 году – 4 комплекса ITP.


Рис. 6. Положение пунктов в Арктическом бассейне СЛО, в которых с буев ITP выполнялось профилирование в период 2004–2010 гг.


Дрейфующие комплексы ITP являются автономными платформами, обеспечивающими регулярное поступление оперативной океанографической информации в течение всего года. Поздние модификации буёв выполняют термохалинное профилирование до шести раз в сутки. Наличие приёмника GPS позволяет рассматривать комплекс как источник информации высокого временного разрешения о характере дрейфа морского льда в месте нахождения буя. В случаях удачного выбора района постановки, когда льдина-носитель оказывается вовлечённой в продолжительный дрейф и в течение долгого времени не разрушается и не выносится из Арктического бассейна, комплекс ITP несколько лет может служить поставщиком океанографических данных (рис. 7).


Рис. 7. Пример записи изменений вертикального профиля температуры в приполюсном районе по данным ITP-буя № 14 в период с 13 сентября по 5 ноября 2007 г.


Накопленный опыт использования ITP позволил выявить и устранить ряд технологических недостатков, оптимальным образом реализовать заложенные на этапе проектирования комплекса идеи. Таким образом, можно считать, что наиболее затратный в экономическом отношении период опытной эксплуатации преодолён. Стоимость производства и развёртывания комплекса невелика в сравнении с затратами на организацию океанографических наблюдений с других платформ, таких как научно-исследовательские суда и дрейфующие станции. Конечно, ITP не обеспечивает комплексную регистрацию дополнительных параметров, характеризующих состояние снежно-ледяного покрова и атмосферы. Этот недостаток может быть устранён путём использования ITP в составе автономных дрейфующих обсерваторий, включающих также автоматические метеостанции, балансомерные ледовые буи и другое измерительное оборудование. Ввиду особенностей конструкции, обусловленных необходимостью адаптации комплекса к усреднённым характеристикам ледяного покрова и батиметрическим условиям на целевой акватории, ITP не может получать информацию о поверхностном слое воды до глубины 5–7 метров и выходить на мелководные участки Арктического бассейна. Тем не менее, с помощью ITP-комплексов может осуществляться мониторинг пространственного расположения струи Атлантических вод и термохалинных характеристик в их ядре. Поскольку совокупность перечисленных параметров определяет один из основных климатообразующих факторов арктического региона, дальнейшее развитие программы ITP на всей глубоководной части акватории СЛО представляется перспективным направлением научных исследований в Арктике.

Заключение

Подводя итог обзора автономных измерительных комплексов можно отметить, что если заякоренные комплексы нацелены в основном на изучение гидрологических процессов, то задачам мониторинга гидрофизического состояния СЛО в большей степени отвечают дрейфующие буйковые станции. Современные модификации дрейфующих комплексов позволяют осуществлять их постановку как на открытую воду, так и на дрейфующий лед. Наряду с этим надежность разработанных и уже используемых комплексов доказывает высокую экономическую эффективность их дальнейшего использования в Арктике вне зависимости от направленности климатических изменений и состояния ледяного покрова. Кроме этого дрейфующие буйковые станции являются единственными автономными платформами, обеспечивающими оперативное поступление океанографической информации в течение круглого года. В экономическом отношении они значительно выигрывают у дрейфующих ледовых станций, организация, обеспечение и эвакуация которых приводит к высоким финансовым затратам.

S.A. Kirillov
[8], K.V. Filchuk
[9]. The anchored and drifted observational platforms for continuous registration of seawater parameters in the Arctic Ocean

Аbstract

The anchored and drifted observational platforms are considered as the main autonomous techniques which gains information on hydrophysical state of the Arctic Ocean. The advantages and disadvantages of both methods are discussed along with the perspectives of their further using for the observational network in the Arctic.

Е.В. Блошкина[10], А.К. Платонов[11], Н.А. Куссе-Тюз[12], В.И. Дымов[13], Т. А. Пасечник[14], В.В. Алексеев[15]

Возможности и перспективы мониторинга и изучения гидрологических условий Северного Ледовитого океана по данным спутниковых измерений

Аннотация

Статья посвящена возможностям использования спутниковой информации для мониторинга и изучения гидрологических условий Северного Ледовитого океана и его морей. Приводятся основные технические характеристики некоторых космических спутников и аппаратов дистанционного зондирования Земли. Рассматриваются особенности космического зондирования для определения температуры поверхности океана и уровня моря. Обсуждается вопрос использования спутниковой альтиметрической информации для верификации моделей ветрового волнения и её усвоение (ассимиляция) моделями ветрового волнения в оперативной практике. На конкретном примере показывается, что спутниковые данные по морскому волнению не всегда подходят для оперативной ассимиляции. Наблюдения за проявлениями на поверхности моря сложных динамических метеорологических и океанографических явлений, пятен поверхностных загрязнений позволяют проводить радиолокаторы с синтезированной апертурой, установленные на борту космических спутников.

Введение

Результаты анализа изменений гидрометеорологических процессов различных пространственно-временных масштабов, наблюдающихся в последние десятилетия в Арктическом бассейне Северного Ледовитого океана (СЛО), позволяют судить о современном состоянии и дальнейшем развитии глобальной климатической системы. Данных, получаемых различными контактными методами для изучения этих изменений, недостаточно. В связи с этим, важной задачей современных полярных исследований является применение спутниковой информации для мониторинга различных гидрологических характеристик и ее использование в прогностических и диагностических моделях. Основными преимуществами данных дистанционного зондирования (ДДЗ) над контактными методами является их относительная доступность, оперативность, высокое пространственное и временное разрешение. К факторам, затрудняющим применение части ДДЗ в Арктическом бассейне, можно отнести сезонные ограничения, связанные с распределением ледяного покрова и освещённостью поверхности моря, а также частым экранным эффектом облачности.

Температура поверхности океана

Одним из важнейших гидрологических параметров является температура воды. На сегодняшнем этапе развития космической океанологии спутниковые методы позволяют получать только данные распределения температуры поверхности океана (ТПО). Но уже сейчас существуют модели, позволяющие на основе данных дистанционного зондирования рассчитывать вертикальное распределение этой характеристики.

Первый спутник серии TIROS-N агентства NOAA, несущий на себе радиометр AVHRR, измеряющий ТПО в инфракрасном (ИК) диапазоне, был запущен еще в 1978 году [http://ngdc.noaa.gov]. Наиболее широкое использование методов получения ТПО из космоса начинается с 1990-х годов. На данный момент наилучшие ИК-данные по ТПО предоставляются радиометрами MODIS (спутники Aqua и Terra) и AVHRR/3.

Огромным достижением в развитии данного направления спутниковой океанологии стала возможность использования приборов, измеряющих ТПО в микроволновой части спектра (спутник TRMM с камерой TMI (1997 г.) [http://trmm.gsfc.nasa.gov], спутник Aqua с радиометром AMSR-E (2002 г.)).

Каждый из двух методов измерения ТПО имеет свои недостатки. Для инфракрасного излучения непреодолимой преградой является облачность любого типа, что не позволяет получать данные о ТПО в районах закрытых облаками. Также определенную негативную роль играет наличие в атмосфере различных аэрозолей, газов, водяного пара и состояние водной поверхности.

При сканировании морской поверхности в микроволновом диапазоне важную роль играют различные атмосферные явления, такие как осадки, сильный ветер, некоторые виды облачности, которые могут приводить к существенным ошибкам при измерении ТПО. Из-за малого разрешения снимка становится невозможным качественное определение ТПО вблизи берегов и кромки льда.

ИК и микроволновое излучения проникают под водную поверхность только на глубину порядка 1 мм, что также влияет на точность значений ТПО из-за наличия скин-слоя.

В общем случае на качестве спутниковой информации сильно сказываются угол сканирования камеры, положение конкретного пиксела на снимке, наличие солнечных бликов.

Пространственное разрешение данных, получаемых с ИК и микроволновых радиометров, очень отличается. Для ИК-камер оно достигает 1 км, для микроволновых радиометров – 50 км. Поэтому, при решении различных задач необходимо учитывать особенности этих методов измерения ТПО. Также, в некоторых случаях, возможно совместное использование данных, полученных как в инфракрасном, так и микроволновом диапазонах. Технические характеристики и точность измерения различных космических аппаратов и измерительных приборов представлены в таблице 1 [http://gis-lab.info/projects/ss/ss.html], (Гарбук, Гершензон, 1997).


Таблица 1. Технические характеристики спутников и приборов, измеряющих ТПО


Возможность получения данных о ТПО по всей акватории Северного Ледовитого океана зависит от распространения ледяного покрова. Площадь, освещенная информацией, ограничена районами чистой воды, т. е. для областей, покрытых льдом, данные отсутствуют.

Достаточно большое количество результатов обработки измерений ТПО со спутников находятся в свободном доступе, как в цифровой форме, так и в виде изображений в сети Интернет. Для оценки возможности использования таких результатов обработки был проведен сравнительный анализ данных о ТПО, полученных CTD-зондированием (зонд SBE-19 plus) в экспедиции «БАРКАЛАВ-2008», организованной в рамках Международного Полярного года (МПГ), и со спутника AQUA камерой AMSR-E. На рис. 1 представлены карты распределения ТПО для полигонов в Карском море и море Лаптевых. Для построения этих карт использовались данные в цифровой форме (сайт ftp://podaac.jpl.nasa.gov/pub/GHRSST/data/L2P_GRIDDED/AMSRE/).


Рис. 1. Карты распределения ТПО: на полигоне в Карском море (а, б) (август 200 года), на полигоне в море Лаптевых (в, г) (сентябрь 200 года); а), в) – по данным CTD-зондирования; б), г) – по данным спутниковых измерений


Рис. 1 (продолжение). Карты распределения ТПО: на полигоне в Карском море (а, б) (август 2008 года), на полигоне в море Лаптевых (в, г) (сентябрь 2008 года); а), в) – по данным CTD-зондирования; б), г) – по данным спутниковых измерений


Положение фронтальных зон на полигонах хорошо согласуется друг с другом. Расхождения в значениях ТПО лежат в пределах ошибки измерения спутника. Коэффициент корреляции достигает 0,9. Необходимо отметить наличие систематической ошибки: данные дистанционного зондирования превышают значения ТПО, полученные контактными методами примерно на 0,2 °С. Наличие такой ошибки может быть связано с несовершенством методики обработки спутниковых измерений для СЛО. Такие методики разрабатываются и модернизируются на основе натурных данных, преимущественно полученных для тропических районов. Для большинства же районов акватории СЛО область покрытия регулярными измерениями мала по сравнению с другими областями Мирового океана, что, возможно, и приводит к наличию систематической ошибки в значениях ТПО. Поэтому данные, полученные в экспедициях «БАРКАЛАВ–2007» и «БАРКАЛАВ–2008», организованные в рамках МПГ, можно рассматривать как подспутниковый эксперимент, проведенный на акватории СЛО. Подробные площадные съемки Карского моря и моря Лаптевых дают возможность использовать эти данные для усовершенствования методик обработки спутниковой информации о ТПО для Арктического бассейна.

Таким образом, на основе данных дистанционного зондирования можно получать оперативную информацию о положении температурных фронтов, об их изменчивости в пределах различных временных масштабов. Использование абсолютных значений ТПО для акватории СЛО требует усовершенствования методов обработки результатов спутниковых измерений.

Уровень океана

При исследовании динамических процессов важной характеристикой является уровень океана. В настоящее время существует очень мало измерений этой характеристики на открытой акватории СЛО. С развитием спутниковой океанологии появилась возможность получать в реальном времени данные о динамической топографии океана, что открыло широчайшие перспективы в исследовании динамики морей и океанов.

Изначально задачей альтиметрии являлось уточнение формы геоида и гравитационной модели Земли. Первые спутники (Skylab, Geos, Seasat), несущие на себе альтиметры, были запущены в США в 1970-х годах. Широкое внедрение спутниковой альтиметрии началось в 1990-х годах, когда были запущены два европейских космических аппарата ERS-1 и ERS-2 и спутник Topex/Poseidon, созданный в рамках французско-американского проекта для изучения циркуляции Мирового океана. Для продолжения миссии Topex/Poseidon в 2001 г. был запущен новый спутник Jason-1, а в 2008 г. – спутник Jason-2 (Фукс, Блошкина, 2007). Технические характеристики спутников и приборов представлены в таблице 2.


Таблица 2. Технические характеристики спутников и альтиметров


Первые спутниковые альтиметры имели точность около 1 м, а более современные альтиметры позволяют измерять уровень океана с точностью 2–3 см, с пространственным разрешением 5–6 км и периодичностью 3–35 суток. Основное ограничение точности измерений спутниковой альтиметрии определяется параметрами горизонтального разрешения при сканировании поверхности океана, высокой скоростью движения спутника и неполнотой знаний об изменении скорости распространения электромагнитных волн в различных слоях атмосферы. Полученные со спутника данные усваиваются в гидродинамической модели и пересчитываются в аномалии уровня в узлах регулярной сетки (Лебедев, Костяной, 2005). Карты аномалий уровня и данные в цифровом виде доступны в сети Интернет. Продукты обработки спутниковой альтиметрии по уровню океана можно разбить на две группы:

– вдольтрековые;

– результат пространственно-временной интерполяции измерений в узлы регулярной сетки.

Чаще всего для проведения пространственно-временной интерполяции одновременно анализируются данные с максимально возможного количества спутников, что позволяет уменьшить ошибки. На рис. 2 представлена область покрытия такими данными акватории СЛО за 1 августа 2007 г. Для построения карт были использованы данные в цифровом виде с сайта AVISO (http://www.aviso.oceanobs.com/).


Рис. 2. Карта распределения аномалий уровня для некоторых регионов СЛО, 1 августа 2007 г.


Как видно из рис. 2, большая часть акватории СЛО не освещена информацией, что скорее всего связано с особенностями обработки материалов измерений. Для получения информации для таких районов необходима работа с первичными снимками или вдольтрековыми данными. Также следует отметить, что точность данных в прибрежных зонах недостаточно высока и требует дополнительной верификации.

Сравнение альтиметрических измерений для акватории СЛО с фактическими значениями уровня сделать сложно из-за отсутствия данных непосредственных измерений уровня моря в областях покрытия данных.

На основе результатов обработки спутниковой альтиметрии можно получать оперативную информацию о динамических фронтах, их движении и трансформации в пределах различных пространственно-временных масштабов только для определенных районов СЛО. Для использования измерений в прибрежных зонах необходима разработка методов адаптации данных применительно к этим районам морей. Освещение остальных областей СЛО требует привлечения первичных снимков и вдольтрековых данных.

Спутниковые данные и ветровое волнение

В арктических морях практически отсутствуют контактные инструментальные измерения параметров ветрового волнения на регулярной основе. В связи с этим представляется интересным и нужным использовать для изучения режима ветрового волнения, оценки модельных расчетов и прогнозов данные альтиметрических измерений спутников. В настоящее время существующие системы архивации, проверки и интерпретации результатов спутниковой альтиметрии свободно доступны на портале (AVISO, 2010). Система использует данные действующих в настоящее время альтиметров космических спутников Jason-1 и Jason-2, Envisat, ERS-2 (табл. 2) и CryoSat-2. Полученные спутниковые данные о высоте волн и скорости ветра могут использоваться совместно с данными численного моделирования ветрового волнения для верификации моделей ветрового волнения и ассимиляции (усвоения) данных спутниковых наблюдений в оперативных прогнозах ветрового волнения.

1. Верификация моделей ветрового волнения по данным спутниковых измерений

Для верификации была использована модель ветрового волнения ААНИИ (Лавренов, 1998; Давидан и др., 2010; Дымов и др., 2004), по которой было выполнено более 900 ежедневных прогнозов с января 2008 г. по июль 2010 г. Результаты прогнозов были сопоставлены со спутниковыми данными измерений высот волн в 10-ти точках акватории арктических морей за безледный период. На рис. 3 и 4 приведены примеры пространственного распределения высот волн и сезонный ход синхронных модельных и спутниковых данных в одной из точек, расположенной на акватории Баренцева моря.


Рис. 3. Поле высот волн на 00 ч. UTC 27 января 2010 г.: а) – по спутниковым данным AVISO; б) – по модели ААНИИ


Рис. 4. Сопоставление по сезонам (2008–2010 гг.) синхронных модельных и инструментальных данных значительных высот волн Hs в точке 74° с.ш. 39° в.д. (Баренцево море). а) – зима, б) – весна, в) – лето, г) – осень


Анализ результатов показал, что качество спутниковых данных в гридированном виде (сильно сглаженные данные в сетке 1° с временным шагом 24 часа) в настоящее время оставляет желать лучшего. Использование спутниковых данных для оценки качества прогнозов волнения по модели ААНИИ показало, что оправдываемость прогнозов составила на первые сутки – 71 %, на вторые – 70 %, на третьи – 68 %, что в целом укладывается в диапазон оценок, определенных требованиями Наставления по службе прогнозов (1982).

По результатам проведенных испытаний метод прогноза ветрового волнения в арктических морях был рекомендован для внедрения в оперативную работу Гидрометцентра России и ААНИИ (решение ЦМКП Росгидромета от 10 ноября 2010 № 140-5281).

2. Ассимиляция (усвоение) данных спутниковых наблюдений в оперативных прогнозах ветрового волнения

Прогностическое поле ветрового волнения можно рассчитать только с помощью методов математического моделирования. Однако модельную оценку уже имевших место прогнозов полей ветрового волнения и текущего прогноза можно улучшить с помощью данных наблюдений за волнением. Эти данные важны и для проверки существующих представлений о физике процесса, и для верификации результатов модельных расчетов. Современные зарубежные модели ветрового волнения (WaveWatch III, WAM) в прогностических целях уже давно (с 1980-х годов) применяют усвоение инструментальных данных наблюдений над волнением, но это относится в первую очередь к данным измерений, выполненных с заякоренных буёв.

Современные спутники обеспечивают продолжительные серии наблюдений, однако попытки усвоения спутниковых данных AVISO о высоте волн показали, что гридированные данные, собранные за двое суток, совсем не годятся для оперативной ассимиляции. Это заключение подтверждается примером необычно сильного шторма в Баренцевом море в летний период 2010 года. В качестве примера на рис. 5 приводятся поля ветрового волнения, восстановленные по различным моделям и спутниковым данным AVISO, из которых видно, что по спутниковым данным (рис. 5 а) высоты ветрового волнения значительно занижены по сравнению с тремя модельными полями высот волн, представленными на рис. 5 б, 5 в и 5 г.


Рис. 5. Сопоставление полей высот волн по различным моделям и данным спутниковым измерением AVISO на 24 июля 2010 года: а) – спутниковые данные AVISO на 00 часов; б) – модель AARI-PD2 на 06 часов; в) – модель WaveWatch III на 06 часов; г) – модель WAM на 06 часов


Усвоение сырых (трековых) спутниковых данных AVISO, имеющих пространственную и временную привязку, представляет собой еще более сложную задачу. Эта задача требует значительных усилий, связанных с увеличением вычислительной мощности расчетных серверов и серверов обработки этих данных.

Динамические структуры на поверхности океана и радиолокаторы с синтезированной апертурой

Радиолокаторы с синтезированной апертурой (РСА), установленные на борту космических спутников дистанционного зондирования Земли (ДЗЗ), уже длительное время используются в мировой практике для наблюдения за различными важными метеорологическими и океанографическими явлениями. В области метеорологии это наблюдения за атмосферными вихрями, атмосферными гравитационными волнами и фронтами, областями выпадения осадков, полями ветра. В океанографии это отдельные вихри, диполи, гидрологические фронты, внутренние волны, течения, явление апвеллинга, батиметрия прибрежных областей, стоковые выносы рек, загрязнения поверхности моря естественного и искусственного характера, морские льды. Спутниковые РСА также позволяют осуществлять слежение и контроль за перемещением морских транспортных средств, поиск и обнаружение новых подводных месторождений нефти.

Применяемый в РСА физический метод наблюдения за тем или иным природным явлением основан на анализе отражённого поверхностью моря активного сигнала прибора с длиной волны от нескольких миллиметров до нескольких сантиметров. Поверхностный микрослой (до 200–300 мкм) моря имеет собственные физико-химические характеристики, отличающие его от остальной части поверхностных вод, и содержит, в частности, большое количество органических веществ. Поля фито– и зоопланктона, продукты жизнедеятельности морских организмов, речные и сточные воды, сбросы балластных и технических вод судами, естественные выбросы подводных нефтяных месторождений насыщают морские воды органическими поверхностно-активными веществами (ПАВ), способными менять поверхностное натяжение микрослоя. В свою очередь, изменение величины поверхностного натяжения на большой площади морской поверхности обусловливает изменение её степени сглаженности или шероховатости и лимитирует развитие капиллярных волн, что и определяет отражающую способность поверхности и интенсивность отражённого сигнала РСА.

Кроме того, в поверхностном слое океана наблюдаются специфические физические явления, способствующие лучшему отображению на снимках РСА морских динамических структур, таких как, например, соленоиды вертикальной циркуляции Ленгмюра (Sole et al., 2000), образующих на поверхности моря линии дивергенции и конвергенции. На снимках РСА подобные области отображаются как совокупность параллельных светлых и тёмных полос или линий, трансформированных под действием внешних факторов и принимающих форму обуславливающих их динамических структур (океанические вихри, ринги, меандры поверхностных течений и др.). Таким образом, резюмируя, можно сказать, что снимки РСА отображают не сами природные явления, а их проявления (следы) на морской поверхности (рис. 6).


Рис. 6. Изображение района Берингова пролива, выполненное спутником ENVISAT 22 июня 2003 г.: а) – снимок 400×400 км ASAR, координаты центра снимка: 66,15° с.ш. и 166,25° з.д. Светлая часть снимка соответствует зоне интенсивного ветрового волнения; б) – увеличенный фрагмент снимка. На морской поверхности наблюдается сложная система тёмных спиралевидных структур, обусловленная динамическими процессами в прибрежной зоне


В случае наблюдения океанских вихрей и диполей (диаметром от сотен метров до десятков километров) (рис. 7) можно определить их пространственные геометрические характеристики, а при наличии ряда последовательных снимков определить траекторию и скорость смещения, составить карту пространственного распределения и отобразить картину их пространственно-временной повторяемости (Кровотынцев и др, 2009 г.).


Рис. 7. Изображение района бухты Маргариты (западная часть Антарктического полуострова), выполненное спутником ENVISAT 18 марта 2002 г. В центре снимка на тёмном фоне чистой воды и светлого однолетнего дрейфующего льда обнаруживается диполь, состоящий из двух вихрей циклонической и антициклонической направленности вращения, диаметр каждого из которых составляет около 25 км


В центре снимка на тёмном фоне чистой воды и светлого однолетнего дрейфующего льда обнаруживается диполь, состоящий из двух вихрей циклонической и антициклонической направленности вращения, диаметр каждого из которых составляет около 25 км.

При обнаружении внутренних волн на снимке РСА можно определить направление распространения пакета волн, длину фронта ведущей волны, протяжённость пакета, количество волн в пакете, их максимальную и минимальную длину. При наличии достаточной серии периодических снимков одного и того же района можно сделать статистический анализ различных параметров внутренних волн, составить схему их пространственно-временного распределения (Митягина, Лаврова. 2009 г.).

Ещё одна область применения РСА – мониторинг загрязнений поверхности моря ПАВ. Загрязнения могут быть естественного и искусственного характера. К первым относятся, например, выбросы подводных месторождений нефти, обусловленные тектоническими напряжениями и сейсмической активностью. Вторые ассоциируются, в первую очередь, с производственной деятельностью человека и сбросом загрязнённых промышленных вод в реки, которые и транспортируют ПАВ и другие вредные вещества в море. В результате аварий или технических работ нефтесодержащие жидкости попадают в море с нефтяных платформ, нефтепроводов, танкеров и оставляют на поверхности характерные следы «пятен» или вытянутых шлейфов плёнок ПАВ. Снимки РСА позволяют обнаружить эти «пятна» и шлейфы и в некоторых случаях даже определить источник загрязнения с помощью «обратного моделирования» траектории их дрейфа.

К основным достоинствам РСА можно отнести высокую разрешающую способность снимков, независимость их качества от степени солнечной освещённости подстилающей поверхности и наличия облачности, а также широкую полосу непрерывного наблюдения (до 500 км). В настоящее время комбинация снимков трёх-четырёх различных спутников, оснащённых РСА, позволяет практически каждый день получать изображение заданного полярного района.

Российская Федерация на данный момент не имеет космических аппаратов ДЗЗ, имеющих на борту действующие РСА. В прошлом такие отечественные спутники были (например, Океан-К) и их снимки хранятся в фондах Центра космических данных (ЦКД) НПО «Планета». До конца 2015 года на орбиту планируется вывести четыре российских спутника серии «Метеор», включая один океанографический. В состав его бортовой аппаратуры будет входить многорежимный радиолокационный комплекс Х-диапазона. Кроме того, планируется создание космической системы «Арктика», предназначенной для непрерывных наблюдений за арктическим регионом, в состав которой будут входить два спутника радиолокационного наблюдения на приполярных орбитах.

Представляется целесообразным использовать снимки РСА для исследований динамики поверхности моря в сочетании и дополнении со снимками других космических аппаратов. Так, в настоящее время на орбите находится большое количество оптических сканеров, которые также потенциально можно использовать для исследования поверхностных явлений океана посредством модуляции шероховатости морской поверхности. В работе (Мясоедов, Кудрявцев, 2009 г.) предложен метод восстановления шероховатости морской поверхности и ее пространственных вариаций по изображениям поверхности океана в области солнечного блика, получаемых с оптических сканнеров из космоса (MODIS, MERIS и др.).

Заключение

Комплексное использование данных различных приборов спутникового наблюдения (активного радара, пассивных приёмников в инфракрасном и оптическом спектре и др.) при определённых гидрометеорологических условиях даёт уникальную возможность получить представление о мезомасштабных метеорологических и океанографических явлениях: ТПО, положении уровенной поверхности, волнении, поверхностных динамических структурах в морях СЛО, определить их качественные, количественные и, при наличии достаточного количества снимков, статистические характеристики. В сочетании с натурными подспутниковыми калибровочными и контрольными наблюдениями in situ, осуществляемыми с борта научно-исследовательского судна или при помощи автономных буёв, спутниковые изображения являются незаменимым инструментом научно-исследовательских изысканий в труднодоступных районах СЛО.

Литература

Гарбук С. В, Гершензон В.Е. Космические системы дистанционного зондирования Земли. М.: Издательство А и Б, 1997, 296 с.

Давидан И.Н, Давидан Г.И., Дымов В.И, Пасечник Т.А. Модифицированная версия спектрально-параметрической модели ветрового волнения и результаты ее верификации // Известия РГО, 2010, вып. 2, с. 31–39.

Дымов В.И., Пасечник Т.А., Лавренов И.В., Давидан И.Н., Абузяров З.К. Сопоставление результатов расчетов по современным моделям ветрового волнения с данными натурных измерений // Метеорология и гидрология, 2004, № 7, с. 87−94.

Козлов Д. В. Основы Гидрофизики. ГОУ Московский государственный университет природообустройства, 2007, URL: http://www.msuee.ru/html2/med_gidr/l8.html

Кровотынцев В.А., О.Ю. Лаврова, М.И. Митягина, А.Г. Островский. Космический мониторинг состояния природной среды Азово-Черноморского бассейна. Конференция ИКИ РАН. Москва, 2009, (DVDROM).

Лавренов И.В. Математическое моделирование ветрового волнения в пространственно-неоднородном океане. СПб.: Гидрометеоиздат, 1998, 499 с.

Лебедев С.А., Костяной А.Г. Спутниковая альтиметрия Каспийского моря. М.: Издательский центр «МОРЕ» Международного института океана, 2005, 366 с.

Митягина М.И., Лаврова О.Ю. Спутниковые наблюдения поверхностных проявлений внутренних волн в морях без приливов. Конференция ИКИ РАН, Москва, 2009, (DVD-ROM).

Мясоедов А.Г., Кудрявцев В.Н. Изучение мезомасштабных океанических течений по РСА и оптическим изображениям. Конференция ИКИ РАН, Москва, 2009, (DVD-ROM).

Наставление по службе прогнозов (раздел 3, часть III, Служба морских гидрологических прогнозов). – Л.: Гидрометеоиздат, 1982, с. 59.

Фукс В.Р., Блошкина Е.В. Кинематический анализ спутниковых альтиметрических измерений // Тр. ГОИН, 2007, Вып. 210, с. 199–208.

AVISO (Archiving, Validation and Interpretation of Oceanographic Satellite data) Ocean Observation, France. 2010. URL: http://www.aviso.oceanobs.com

Hollingsworth A. Objective analysis for numerical weather prediction// In: Short and medium range numerical weather prediction. T.Matsuno (ed). Special volume of the Journal of the Meteorological Society of Japan, 1986, P. 11–59.

Høyer Jacob L. and J.W. Nielsen. SATELLITE SIGNIFICANT WAVE HEIGHT OBSERVATIONS IN COASTAL AND SHELF SEAS, Center for Ocean and Ice, Danish Meteorological Institute, Lyngbyvej 100, 2100 Copenhagen Ø, Denmark. DAT // 15 years of progress in Radar Altimetry Workshop. Venice. 2006. Портал ESA,URL: http://earth.esa.int/workshops/venice06/participants/812/paper_812_hoeye...

Intergovernmental Oceanographic Commission. Assimilation of satellite wind and wave data in numerical weather and wave prediction models // Report on a workshop at ECMWF, Reading ECMWF, Reading, 1986. P. 1–34.

Janssen Peter A. E. M., Saleh Abdalla, Hans Hersbsch, and Jean-Raymond Bidlot.

Error Estimation of Buoy, Satellite, and Model Wave Height Data //

Journal of Atmosphere and Oceanic Technology. 2007, Vol. 24, issue 9. P. 1665–1677.

Krogstad Harald E. and Stephen F. Barstow. SATELLITE WAVE MEASUREMENTS FOR COASTAL ENGINEERING APPLICATIONS. Сетевой журнал, 1997, URL: http://www.oceanor.no/projects/wave_energy/papers/ceremse_fin.pdf

Sole J., Cuesta I., Garcia-Ladona E., Grau X. Effect of Langmuir Circulations in particle dispersion // Turbulent Diffusion in the Environment. J.M. Redondo & A.Babiano (Eds). © XDFTG, UPC, Barcelona, 2000, P. 53–60.

Sølvsteen Claus, Carsten Hansen. COMPARISON OF ALTIMETRY WAVE AND WIND DATA WITH MODEL AND BUOY DAT // 15 years of progress in Radar Altimetry Workshop. Venice. 2006. Портал ESA, URL: http://earth.esa.int/cgi-bin/confalt15y.pl?abstract=1312

Tarantola A. Inverse problem theory, methods for data fitting and model parameter estimation. Elsevier, 1987, Amsterdam, 613 p.

E.V. Bloshkina
[16], A.K. Platonov
[17], N.A. Kusse-Tyuz
[18], V.I. Dymov
[19], T.A. Pasechnik
[20], V.V. Alexeev
[21]. Opportunities and prospects to the Arctic Ocean hydrological conditions monitoring and research by satellite measurements data

Abstract

The article is devoted to some opportunities of an use of the satellite information for monitoring and studying of hydrological conditions of the Arctic Ocean. The basic characteristics of some space satellites and devices of remote sounding of the ground are advanced. The features of remote sensing for definition a sea surface temperature and a sea level are considered. The question of an use of the satellite altimeter information for verification of the wind waves models and its assimilation by models in operative practice is discussed. On a concrete example is shown that the satellite data on sea waves not always are good for the operative assimilation. Radars with synthesized aperture on board of space satellite allow to carry out the supervision over manifestations on a surface of the sea of the complex dynamic meteorological and oceanographic phenomena and spots of surface pollution.

1.2 Использование современных средств зондирования и изучения ледяного покрова Арктики

В.Г.Смирнов[22], И.Е. Фролов[23], А.В.Бушуев[24], И.А. Бычкова[25], А.В. Григорьев[26], Н.Ю.Захваткина[27],[28], В.С.Лощилов[29], В.В. Степанов[30], Л.П. Бобылев[31],[32], В.Ю. Александров[33],[34]

Возможности методов дистанционного зондирования как надежного источника получения оперативной объективной информации о состоянии ледяного покрова морей полярных областей

Аннотация

В работе обсуждаются методы дистанционного зондирования (ДЗ), используемые для оценки сплоченности, возраста, толщины и дрейфа морского льда. Приведены примеры картирования возрастных стадий льда в Арктике по данным Envisat с помощью метода нейронных сетей и метода байесовской классификации. Излагаются особенности спутниковой технологии обнаружения опасных ледяных образований. Сформулированы предложения по дальнейшему развитию методов ДЗ для изучения ледяного покрова морей полярных областей с учетом опыта, полученного в период работы по программе МПГ.

1. Роль дистанционного зондирования в мониторинге полярных областей

Растущая хозяйственная деятельность в полярных регионах вызывает насущную необходимость организации на постоянной основе мониторинга ледяного покрова. Из-за труднодоступности полярных районов использование традиционных контактных методов измерений затруднено, а в ряде случаев просто невозможно. Стандартные океанографические средства наблюдения в этих районах не могут являться основой мониторинга. Организация каждой новой полярной гидрометеорологической станции – дело не только затратное и трудоемкое, но еще и требующее наличия квалифицированного персонала, готового сменить привычные комфортные условия жизни на суровую обстановку Арктики. Влияние человеческого фактора в Арктике очень велико, ошибки при обеспечении гидрометеорологических прогнозов могут стоить жизни людей. Именно поэтому особое значение для мониторинга морского ледяного покрова в полярных районах приобретают дистанционные методы зондирования.

Спутниковое дистанционное зондирование является основой мониторинга окружающей среды в полярных областях, обеспечивая оперативное получение объективной информации о состоянии ледяного покрова морей, наличии опасных ледяных образований (айсбергов, гряд торосов, стамух и пр.), опасных гидрометеорологических явлений. Возможности и ограничения методов ДЗ при мониторинге ледяного покрова морей зависят от применяемого диапазона электромагнитного спектра, чувствительности аппаратуры, типа зондирования (активное, пассивное), времени доведения спутниковой информации до потребителя. Существенные ограничения применения методов ДЗ связаны с коммерциализацией рынка спутниковых данных высокого разрешения. В настоящее время для организации наблюдений в полярных областях используются как эксплуатационные спутники среднего разрешения, осуществляющие сброс информации в режиме непосредственной передачи, так и коммерческие спутники высокого разрешения, поставляющие информацию потребителю по специальным каналам после предоплаты. Однако ведение дорогостоящей хозяйственной деятельности на шельфе арктических морей вынуждает нефтедобывающие и иные подобные компании закупать дорогую спутниковую информацию высокого разрешения, поскольку такая информация позволяет минимизировать риски работ в тяжелых ледовых условиях.

Для мониторинга льдов наиболее подходят оперативные ИСЗ, информация с которых поступает потребителям без ограничения, в режиме непосредственной передачи. К таким спутникам относятся, в частности, американские ИСЗ с аппаратурой видимого и ИК диапазонов серии NOAA/AVHRR и Terra (Aqua)/MODIS. Поэтому спутники NOAA на сегодняшний день наиболее широко используются национальными ледовыми службами при подготовке информации о состоянии ледяного покрова.

Подавляющее большинство существующих технологий интерпретации спутниковых данных для ледового картирования в национальных ледовых службах основаны на интерактивном анализе с участием опытного ледового эксперта. Наибольшее развитие среди спутниковых технологий, применяемых национальными ледовыми службами, получили технологии, основанные на использовании данных радиолокаторов с синтезированной апертурой (SAR). При этом для автоматической интерпретации данных SAR применялись различные подходы. Так, для определения типов льда разрабатывались различные алгоритмы с использованием величины коэффициента обратного рассеяния сигнала ледяным покровом (Александров, Пиотровская, 2008а; 2008б); проводилось исследование текстуры изображений с использованием полей Маркова (Clausi, 2000); исследовались процессы взаимодействия сигнала SAR с поверхностью льда различного возраста (Abreu, 2000) и др.

Однако такая технология автоматической классификации данных SAR требует наличия большого числа подспутниковых измерений и постоянного контроля со стороны ледового эксперта. Необходимость контроля выходной продукции ледовым экспертом обусловлена высокой вероятностью ошибок интерпретации при использовании автоматических процедур обработки данных SAR.

2. Методы дистанционного зондирования, используемые для получения характеристик ледяного покрова морей

Сплоченность льда. Для оценки сплоченности льда на практике успешно применяются алгоритмы автоматической обработки данных микроволнового пассивного зондирования. Преимущества использования СВЧ-радиометров для мониторинга морского льда обусловлены значительной разницей в микроволновом диапазоне в излучательной способности открытой воды и различных типов льда, а также всепогодностью микроволновых датчиков, их способностью вести измерения в любое время суток. СВЧ-радиометры могут осуществлять ежедневный мониторинг параметров морского льда, как в глобальном, так и в региональном масштабе. Однако на сегодняшний день эти приборы имеют малое пространственное разрешение (6×4 км – у лидирующего по этому параметру радиометра AMSR-E/Aqua). Этот факт препятствует использованию микроволновых данных в региональных целях, в частности при обеспечении ледового плавания. СВЧ-радиометры применяются для глобального мониторинга ледяного покрова, при построении обзорных ледовых карт. Данные о сплоченности ледяного покрова, полученные с СВЧ-радиометров, собираются в информационных центрах (NESDIS, NSIDC) и предоставляются всем потребителям в квазиреальном масштабе времени.

Существующие алгоритмы оценки сплоченности льда по данным СВЧ-измерений основаны на линейной комбинации яркостных температур и их разностей на частотах 19, 37 и 85/89 ГГц при вертикальной и горизонтальной поляризациях. Среди наиболее распространенных алгоритмов оценки сплоченности льда, используемых в ледовых центрах, следует отметить: NASA Team, Bootstrap, TUD, ARTIST (Andersen, Tonboe et al.,2007; Cavalieri, 1994; Comiso,1995).

Алгоритм NASA Team (NT) использует два отношения: поляризационное (горизонтальная и вертикальная поляризации канала 19 ГГц) и градиентное отношение (вертикальная поляризация каналов 19 и 37 ГГц). Использование отношения уменьшает зависимость получаемой в итоге сплоченности от температуры поверхности. Алгоритм применим для трех типов поверхности: воды и двух типов льда (в условиях Арктики – однолетнего и многолетнего; модифицированный алгоритм – для областей с однолетним льдом и тонким льдом). Для снижения вероятности ложного обнаружения морского льда в открытых водах алгоритм NT использует два погодных фильтра, основанных на расчете пороговых значений по отношению вертикальной поляризации каналов 37 и 19 ГГц (23 и 19 ГГц). Улучшенная версия NT – алгоритм NASA Team 2 кроме каналов 19 и 37 ГГц использует данные канала 85 ГГц, полезные для автоматического восстановления параметров морского льда. Канал 85 ГГц очень чувствителен к атмосферному излучению и менее чувствителен к неоднородности снега или льда. Атмосферное излучение на 85 ГГц гораздо более сильное, чем на 19 и 37 ГГц, особенно в присутствии оптически тонких облаков. Вклад атмосферы корректируется путем использования простой модели переноса излучения; для каждого пикселя делается расчет атмосферных поправок, исходя из 11 типовых видов полярных атмосфер. В итоге алгоритм NASA Team 2 позволяет повысить точность оценки сплоченности льда.

Свои недостатки и преимущества в зависимости от времени года и конкретной ледовой обстановки имеют и остальные из перечисленных алгоритмов.

Важно отметить, что микроволновые радиометры в настоящее время позволяют автоматически ежесуточно различать границу льда и общую сплоченность морского льда в течение сезонных периодов вне летнего таяния и осеннего замерзания. Однако автоматическая оценка сплоченности многолетнего льда все еще нестабильна и менее точна, чем оценки, основанные на экспертном анализе SAR или видимых/ИК изображений. В периоды летнего таяния и осеннего замерзания величина ошибок для автоматически получаемых продуктов увеличивается в два раза и более (Andersen, Tonboe et al.,2007). Для снижения погрешности необходима дополнительная экспертная проверка качества последовательных серий информационных продуктов.

Возраст льда. Спутниковые наблюдения в различных диапазонах спектра позволяют определить возрастной состав льда – важнейшую характеристику ледяного покрова. При этом по изображениям видимого диапазона опытный ледовый эксперт может при визуальном анализе определить до 8 градаций развития (возраста) льдов; причем ниласовые и молодые льды разделяются на несколько возрастных градаций, а более старые льды объединяются в одну категорию, не разделяемую по градациям. По ИК-изображениям могут быть определены толщины ниласовых, молодых и однолетних тонких и средних льдов. По радиолокационным изображениям дешифрируются старые льды. В условиях Арктики в зимний период диагностировать возрастной состав льдов можно путем совместного использования ИК– и СВЧ-диапазонов.

Автоматизированные методы картирования морских льдов по возрастным градациям с использованием радиолокационных данных. Технологии использования данных микроволнового диапазона для картирования льда по возрастным градациям развиваются с 1980-х гг. Одна из первых методик оперативного картирования ледовой обстановки была разработана для российского ИСЗ «Океан», единственного на тот период спутника, оснащенного радиолокатором бокового обзора. В процедурах картирования применялся как метод визуальной экспертной интерпретации изображений, так и алгоритмы автоматизированной количественной оценки льдов (Александров, Лощилов, 1985; Александров и др., 1989). Данные спутника «Океан» широко использовались в ААНИИ для ежедневного анализа оперативной ледовой обстановки по изображениям на отдельных орбитах и для составления еженедельных композитных ледовых карт для всей трассы СМП (Асмус и др., 2002; Бушуев и др., 2004).

Одним из методов объективного оценивания возрастных градаций ледяного покрова является метод нейронных сетей (НС) (Bogdanov, 2005; Hara et al., 1994), широко применяемый при обработке данных дистанционного зондирования благодаря ряду преимуществ перед традиционно используемыми статистическими методами классификации. Нейросетевые алгоритмы показывают лучшие результаты при наличии спекл-шума в спутниковых радиолокационных данных. Обученные НС имеют более высокое быстродействие, что позволяет использовать их для обработки больших массивов информации. Это особенно важно при оперативной работе со спутниковыми изображениями с высоким пространственным разрешением. Наиболее сложной задачей является настройка (тренировка) НС с использованием обучающей выборки. При распознавании образов, где обучающая выборка может не охватывать всех возможных состояний данных, важнейшим свойством НС становится способность классифицировать вектора данных, которые не использовались при тренировке алгоритма, то есть способность к обобщению. Это свойство позволяет использовать нейронные сети как универсальный классификатор в задачах дистанционного зондирования.

Метод НС был применен в ААНИИ для разработки метода картирования ледяного покрова по спутниковой радиолокационной информации SAR. На начальном этапе были определены текстурные характеристики изображения. Текстура изображения определяется статистическими взаимосвязями значений соседних пикселей радиолокационного изображения, что выражается в виде «узора» или «рисунка», воспринимаемого глазом при визуальном анализе изображения. Особенности формирования ледяного покрова, стадии его развития, состояние поверхности и другие факторы определяют внешний вид текстуры изображения. Характеристики текстур различных типов поверхностей вычисляются на основе матрицы совместной встречаемости уровней яркости.

Статистический анализ полученных текстурных характеристик показал, что корреляция, инерция и выпуклость кластера – это наиболее значимые признаки. Энергия, гомогенность и энтропия менее значимы, однако являются источниками дополнительной информации. Целесообразность использования этих характеристик подтверждена корреляционным анализом. Яркости SAR-изображения, как известно, подвержены значительному краевому эффекту: уменьшение удельной эффективной площади рассеяния (УЭПР) электромагнитных импульсов морским льдом с увеличением угла зондирования приводит к значительному уменьшению сигнала в дальней части полосы обзора относительно ближней. Для получения равноконтрастного изображения по всей полосе обзора была разработана методология приведения УЭПР морских льдов к одному углу зондирования (Александров, Пиотровская, 2008а; 2008б). Алгоритм приведения изображения к фиксированному углу зондирования включает в себя пересчет яркости SAR-изображения в значение УЭПР для данного угла зондирования, пересчет полученного значения для угла зондирования 25° и пересчет скорректированной УЭПР в новое значение яркости по ранее определенным коэффициентам, уникальным для каждого класса льда (однолетнего, однолетнего деформированного и старого льда).

Верификация алгоритма оценки возрастных градаций льда по методу НС проводилась в период Международного полярного года, на акватории российской Арктики, в частности, по району дрейфа СП-35. Были использованы SAR-изображения с европейского спутника Envisat с разрешением 150 м и полосой обзора 400 км. Благодаря высокоширотному положению траектории дрейфа станции, ее изображение (точнее морских льдов в области станции) можно было получать практически ежедневно. Согласно экспертной оценке, ледяное поле, на котором был построен лагерь дрейфующей станции, состояло из смерзшихся обломков полей старого льда различных размеров, толщины и конфигурации. Монолитные обломки полей старого льда разделены полосами однолетнего льда с включениями битого старого льда. Поэтому сеть настраивалась на выделение на спутниковой сцене трех классов: старого льда, однолетнего ровного льда и однолетнего деформированного льда. Для обучения этой сети использовался стандартный алгоритм обратного распространения ошибки. Сеть была настроена на классификацию SAR-изображений центрального района Арктики в зимний период года. Полученные результаты классификации соответствовали результатам экспертного дешифрирования. Рассчитанные ошибки классификации составили: для однолетнего ровного льда 15 %, для однолетнего деформированного льда 17 % и для старого льда 20 %. Обученная сеть также была использована для автоматического картирования этих же возрастных градаций льда по данным Envisat в Арктическом бассейне (рис. 1).


Рис. 1. Картирование возрастных стадий льда в Арктике с помощью метода нейронных сетей по данным Envisat. 16.01.2008 (слева – исходный снимок, в центре – снимок с угловой коррекцией, справа – классифицированное изображение) 1 – старый лед; 2 – однолетний ровный лед; 3 – однолетний деформированный лед


Для использования метода НС в автоматическом режиме, с целью оперативного картирования возрастных стадий льда, необходима настройка сети в направлении выделения большего количества классов ледовых образований.

Определять возрастной состав морских льдов по спутниковым данным в автоматизированном режиме можно также с помощью методов теории вероятности, в частности, применяя формулу Байеса для расчета апостериорной вероятности p(ωj/xi)


pj/xi) = p(xij) × pj)/p(xi), p(xi) = p(xij) × pj),


где pj) – априорная вероятность, p(xij) – условная плотность распределения величины xi в состоянии ωj.

Метод байесовской классификации обеспечивает оптимальное решение с точки зрения минимума вероятности ошибки. При классификации ледяного покрова на спутниковом снимке принимается решение в пользу того вида льда, для которого величина апостериорной вероятности p(ωj/xi) максимальна.

Для того, чтобы применять правило Байеса, необходимо знать условные плотности распределения и априорные вероятности. В центральной части Арктики частная сплоченность многолетних льдов составляет около 90 % (Johannessen et al., 2006). Исходя из этого, были выбраны следующие значения априорной вероятности появления многолетнего, ровного и деформированного однолетнего льдов: p(ωmy)=0.9; p(ωfy)=0.05, p(ωfd)=0.05. Условные плотности распределения p(xij) рассчитывались по калиброванным изображениям со спутника Envisat, на которых экспертным путем выбирался ряд характерных участков каждого из рассматриваемых видов льдов.

Решение принимается в пользу:


ωmy, если pmy/xi) > pfy/xi) и pmy/xi) > pfd/xi)

ωfy, если pfy/xi) > pmy/xi) и pfy/xi) > pfd/xi)

ωfd, если pfd/xi) > pmy/xi) и pfd/xi) > pfy/xi)


На основе алгоритма байесовской классификации были обработаны SAR-изображения, полученные со спутника Envisat в районе к северу от Гренландии. При этом на первом этапе обработки выполнялось приведение УЭПР поверхности к углу падения 25°, а на втором – распознавание и оценка частной сплоченности многолетнего льда (рис. 2). Участки многолетнего льда и разрывы выделяются на снимке достаточно точно. Некоторые пиксели многолетнего льда идентифицировались как однолетний или деформированный лед, что обусловлено перекрытием их значений УЭПР.


Рис. 2. Картирование возрастных стадий льда в Арктике по SAR-изображению с помощью метода байесовской классификации, по данным Envisat. 6 декабря 2005 г. а) исходное изображение, приведенное к углу падения 25°; б) результат классификации (многолетний лед – желтый; однолетний ровный лед – темно-синий; однолетний деформированный лед – голубой; не классифицирован – красный; в) вычисление частной сплоченности многолетнего льда в выделенных зонах: синяя зона – Cmy=0.95; зеленая зона – Cmy=0.81; красная зона – Cmy=0


Дрейф льда. Дрейф льда определяют с помощью интерактивных или автоматических процедур, основанных на использовании координат одних и тех же опорных точек на последовательных спутниковых изображениях. Определение дрейфа льда в интерактивном режиме занимает значительное время и в оперативной практике не используется. В автоматизированном режиме для оценки векторов дрейфа по последовательным спутниковым изображениям используются следующие методы: полиномиальный, кросс-корреляционный, гибридный, метод оптического потока.

Полиномиальный метод. По двум спутниковым изображениям, выведенным на экран компьютера, интерактивно определяются и запоминаются координаты идентичных ледовых образований. Далее строится полиномиальная модель, коэффициенты которой вычисляются по методу наименьших квадратов. Полученная зависимость позволяет по координатам ледового объекта на первом изображении определить вероятные координаты этого объекта на втором изображении. Таким образом, оператор имеет возможность производить поиск соответствующего ледового объекта на втором изображении в окрестности предсказанной точки, что ускоряет определение дрейфа в интерактивном режиме.

Кросс-корреляционный метод. Метод основан не на опознавании и определении координат идентичных точек изображений, а на нахождении соответствия между небольшими участками (шаблонами) на паре последовательных изображений путем поиска максимума кросс-корреляции. Впервые этот метод был предложен М. Фили и Д.А. Ротроком в 1987 г. для изображений SAR ERS-1 и в дальнейшем применялся для изображений других спутников (Fily, Rothrock, 1987). Выбранный на первом изображении шаблон сравнивается с таким же по размеру шаблоном на втором изображении. При этом шаблон на втором изображении последовательно передвигается в пределах района, размер которого определяется оператором с учетом максимально возможной для этого района скорости дрейфа. Модификация метода использует пирамидальную структуру изображений, включающую в себя несколько уровней, каждый из которых представляет собой исходное изображение с различным усреднением. По модифицированному алгоритму сначала находят векторы дрейфа для изображений самого низкого разрешения, а затем эта информация используется при поисках максимума коэффициента кросс-корреляции последовательно на каждом уровне пирамиды, начиная с вершины. На каждом уровне пирамиды происходит уточнение поля векторов дрейфа. Использование пирамидальной структуры изображений позволяет ограничить область поиска на втором изображении и снижает, хотя и не исключает полностью, вероятность грубых ошибок метода. Данный алгоритм применялся при определении дрейфа в центральных районах Арктики, однако в битых льдах и при значительных углах поворота ледяных полей его точность значительно ухудшалась, а пик корреляции расширялся и в конечном счете становился статистически незначимым. Использование системы полярных координат позволяет применить кросс-корреляционный метод к преобразованному спектру мощности для определения углов поворота ледяных полей. После исключения относительного поворота, пик кросс-корреляции возрастает, что позволяет получить векторы перемещения первого порядка, определяющие движение льда как твердого тела (перемещение и поворот).

Для уменьшения времени вычислений в модификации кросс-корреляционного алгоритма используется процедура двумерного бинарного поиска. При этом принимается допущение, что двумерный коэффициент кросс-корреляции в некоторой окрестности наблюдаемого объекта монотонно уменьшается от максимального значения, соответствующего его истинному положению. Расчеты показали, что распределение двумерного коэффициента кросс-корреляции в окрестности рассматриваемого объекта на SAR – изображении имеет множество пиков, и использование процедуры двумерного бинарного поиска приводит к нахождению максимума, соответствующего одному из них.

Для автоматического определения дрейфа по радиолокационным изображениям, полученным со спутника «Океан», метод кросс-корреляции был усовершенствован в ААНИИ (Рахина и др., 1998). Особенностью используемого подхода стала обработка изображения полного разрешения с ограничением зоны поиска на повторном снимке для уменьшения времени вычислений и вероятности ошибки. Ограничить зону поиска удалось за счет использования априорной информации о максимально возможной скорости дрейфа. Данный алгоритм впоследствии был применен для определения дрейфа льдов по данным ИСЗ Envisat (рис. 3).


Рис. 3. Вектора дрейфа льда, рассчитанные для района Северной Земли за период 30.10 – 3.11.2009 гг. с использованием кросс-корреляционного алгоритма Международного центра по окружающей среде и дистанционному зондированию им. Нансена. 1 – старый лед; 2 – однолетний лед; 3 – открытая вода; длина векторов, выраженная в масштабе карты, отражает перемещения льда за промежуток времени с 30 октября по 3 ноября 2009 г.


Гибридный метод. Является комбинацией интерактивного, полиномиального и кросс-корреляционного методов. По интерактивно определенным векторам дрейфа строится полиномиальная модель дрейфа, которая уточняется методом кросс-корреляции. Определенная полиномиальной моделью точка на втором изображении является центром площади поиска максимума коэффициента кросс-корреляции. Размер зоны поиска, определяющий объем вычислений, и точность конечного результата зависят от точности полиномиальной модели.

Метод оптического потока. Метод основан на вычислении компонент скорости движения льда по яркости каждой точки изображения при помощи аппарата частных производных. Автор алгоритма Я. Сан (Sun, 1994) также использует построение пирамидальной структуры спутниковых изображений, на вершине которой находится изображение наиболее грубого разрешения, а в основании – исходное изображение. На уровне грубого разрешения методом кросс-корреляции получаются грубые вектора дрейфа. Затем на каждом уровне пирамиды производится вычисление оптического потока – трехмерного векторного поля, которое получается из скалярной функции яркости последовательных по времени изображений. Яркость объекта во время его движения считается постоянной. Градиент яркости изображения также принимается стационарным во времени. Метод используется для детального слежения за динамикой льда и позволяет получить информацию о трансформациях ледяного покрова – сжатиях, разрежениях, взаимных подвижках, деформациях. Алгоритм вычисления оптического потока требует предварительной калибровки снимков по значениям яркости.

Толщина льда. Толщина льда – один из наиболее важных параметров ледяного покрова. Методов прямых измерений толщины льда с помощью спутниковых средств не существует. Для определения толщины льда по данным ИСЗ применяются косвенные методы, основанные либо на найденных закономерностях между измеряемыми параметрами (температурой поверхности льда) и собственно толщиной льда, либо на вычислении разницы в длине пути луча, проходящего до границы снег-воздух и луча, отраженного непосредственно от ледовой поверхности. Грубая оценка толщины льда может быть получена по спутниковым данным о возрасте льда, так как толщина льда и его возраст – два взаимосвязанных параметра.

Определение толщины льда по данным измерений в ИК-диапазоне. ИК-диапазон исторически стал первым из известных диапазонов электромагнитного спектра, дистанционные наблюдения в котором позволили разработать реально действующие технологии оценки толщины льда. Уже в 1970-е гг. были получены первые успешные результаты оценки толщины льда по данным авиационных ИК-радиометров (Kuhn, 1975). В 1980-х начались разработки технологий использования спутниковых ИК-каналов для оценки толщины льда (Лощилов, Парамонов, 1987; Groves, Stringer, 1991). Технологии базировались на решении уравнений теплопроводности сред вода – лед – снег – воздух и эмпирических зависимостях, полученных в ходе полевых наблюдений в полярных районах. Было установлено, что при отрицательных температурах воздуха между температурой поверхности льда и его толщиной до определенных критических толщин льда существует обратно пропорциональная зависимость: чем толще лед, тем ниже температура его поверхности. При толщине льда 240–250 см наблюдался эффект насыщения, когда температура поверхности льда приобретала минимальные для данных гидрометеорологических условий значения, которые не менялись при дальнейшем увеличении толщины. Такие льды получили наименование «толстые».

В ААНИИ применяется технология оценки толщины льда по данным о температуре поверхности льда, полученной с ИСЗ NOAA/AVHRR.

Снежно-ледяной покров морей зимой рассматривается как промежуточный слой между морской водой, имеющей у нижней поверхности льда постоянную температуру, равную температуре замерзания морской воды данной солености, и слоем воздуха, температура которого для арктических морей в большинстве случаев находится в пределах –20 … –50 °C. Температура замерзания морской воды определяется из справочной литературы, как функция солености в районе наблюдения.

Для устранения эффекта атмосферного влияния на значения ИК-сигнала применяется стандартная процедура многоканальной коррекции с использованием радиационных температур в 4-м и 5-м каналах AVHRR при заданных для исследуемого региона постоянных коэффициентах. Наличие облачности в районе наблюдений полностью исключает возможность оценки толщины льда по ИК-измерениям. Поэтому автоматизированное определение толщины морского льда по спутниковым изображениям ИК-диапазона производится только для безоблачных районов. Границы облачных образований могут быть определены интерактивно или с использованием специальных статистических методов анализа двумерных полей.

В рамках модели оценки толщины морского льда по значению температуры его поверхности непосредственно определяется не истинная толщина льда и снега в данном пикселе, а преобразованная толщина Hp, приведенная к толщине только льда, имеющего одинаковую теплопроводность со льдом, покрытым снегом:

Hp = H+h х L/l,

где H и L – толщина и теплопроводность льда, h и l – толщина и теплопроводность снега.

Параметрическая модель оценки толщины морского льда, применяемая нами, имеет на входе безразмерный параметр Q, представляющий собой «коэффициент подобия» между топографией поля льда и соответствующим ему температурным полем снежно-ледяной поверхности. Параметр Q вычисляется для каждого пиксела ИК изображения:

Q = (Ti– Tw) / (Tt– Tw),

где Ti —температура участка, на котором измеряется толщина льда, Tt, Tw – средние температуры тестовых участков «толстого» льда и чистой воды.

Тестовые участки «толстого» льда и чистой воды выбираются ледовым экспертом. Зависимость параметра Q от преобразованной толщины была определена экспериментально по ежедекадным измерениям толщин льда и снега на припае, проводимым береговыми полярными станциями.

Опыт показал, что определение параметра Q путем опознавания и измерения на тестовых участках чистой воды и старых льдов, как правило, не может быть выполнено корректно. При низких температурах воздуха на разводьях и разрывах сразу начинают образовываться ниласовые и молодые льды, а тестовые участки «толстого» льда в осенний и ранний зимний периоды даже в арктических морях могут отсутствовать. В разработанной нами усовершенствованной технологии в качестве тестовых участков «толстого льда» используется сеть постоянных реперных точек заснеженной суши. Истинная толщина льда, образование и нарастание которого происходило в бесснежные периоды, равняется преобразованной. Высоты снега на льдах той или иной преобразованной толщины определяются по данным береговых станций.

Реально на конкретной акватории одновременно присутствуют льды различного времени образования. Спутниковая технология, основанная на данных ИК-каналов, должна позволять определять толщины различных возрастных стадий льда. Для этого по осредненным данным береговых станций конкретного моря о высотах снега и декадных суммах среднесуточных температур формируется оперативная база высот снега, расчетных и преобразованных толщин льда (приведенных к толщине незаснеженного льда), а также расчетных и преобразованных толщин снежно-ледяного покрова различного времени образования. Вычисления выполняются по десятисуточным периодам, соответственно с датами измерения толщин льда и снега припая береговыми станциями. На завершающем этапе формируется классификационная таблица, в которой для каждой возрастной стадии (с шагом 20 см) указывается средняя высота снега, преобразованные толщины и безразмерные параметры Q. С использованием этой таблицы исходное ИК-изображение трансформируется в спутниковое классифицированное изображение (карту-схему) возрастных градаций (толщин) льда.

Оценка точности разработанной технологии оценки толщин льда по спутниковым ИК наблюдениям проводилась с использованием синхронных наблюдений с ледоколов. Оказалось, что технология позволяет оценивать преобразованные и истинные толщины молодых и однолетних тонких льдов с погрешностью ±5–10 см, а однолетних средних – 10–15 см. Возрастные стадии определяются, как правило, безошибочно.

Оценка толщины ледяного покрова в арктических морях в весенний период. Анализ спутниковой информации ИК-диапазона по Карскому морю за разные годы, проведенный А.В. Бушуевым, показал, что удовлетворительное совпадение расчетных данных по толщине снежно-ледяного покрова и натурных наблюдений имело место только для зимнего периода, когда температура воздуха ниже −10 °C. При более высоких температурах воздуха расчеты давали значительную погрешность. Исследования возможных причин расхождения экспериментальных и натурных оценок позволили заключить, что основную роль в возникновении ошибок расчета играет неучет сезонного изменения теплопроводности снега.

Снег, как известно, имеет более низкую теплопроводность по сравнению со льдом, что объясняется обилием в снеге мелких воздушных пор. Установлено, что коэффициент теплопроводности плотного снега в 3 раза меньше коэффициента теплопроводности морского льда (Дюнин, 1983). Весной снежный покров на поверхности морского льда меняет свои характеристики, главным образом, из-за изменения плотности снега.

Исследования показали, что в применяемой нами технологии оценки толщины снежно-ледяного покрова арктических морей в весенний период целесообразно использовать соотношение теплопроводностей льда и снега 3:1, а в зимний – 7:1. Эмпирическая зависимость параметра Q от толщины снежно-ледяного покрова для весеннего периода также берется иной по сравнению с зимним периодом. Для установления вида этой зависимости были использованы ледовые наблюдения в Карском море экспедиции ААНИИ «КАРА-2010» с борта дизель-электрохода «Мончегорск» в апреле-мае 2010 г. и снимки с радиометра AVHRR ИСЗ NOAA по району Карского моря. В результате была получена эмпирическая зависимость параметра Q от толщины снежно-ледяного покрова (рис. 4), характерная для весеннего погодного периода в Арктике, когда отмечаются слабые отрицательные температуры воздуха (до –10 °С). С использованием установленной зависимости по спутниковым данным AVHRR (рис. 5) были получены расчетные значения толщин льда (рис. 6).


Рис. 4 Зависимость параметра Q от толщины снежно-ледяного покрова, принимаемая для расчетов в зимнее время (1) и весеннее (2)


Рис. 5. Карское море 28 апреля 2010 г. Снимок AVHRR ИСЗ NOAA-16, 4 канал


Рис. 6. Толщина льда в Карском море 28 апреля 2010 г. по данным измерений температуры поверхности радиометром AVHRR/NOAA (в расчете использованы «весенние» значения параметра Q и коэффициент теплопроводности плотного снега; стрелками показан маршрут движения дизель-электрохода «Мончегорск» в период с 30.04 по 2.05.2010 г)


При положительных температурах воздуха на поверхности льдов образуется талая вода, экранирующая собственное излучение льда и ледовые наблюдения в ИК-диапазоне становятся невозможны.


Определение толщины льда по данным измерений в СВЧ-диапазоне. В микроволновом диапазоне возможности измерения толщины льда в значительной степени зависят от применяемой длины волны и чувствительности радиометра. Так, при рабочей длине волны 21 см максимальная толщина льда, которую можно измерить СВЧ-радиометром, составляет 173 см – при приборной чувствительности ∆Т=0,01 К и 132 см при ∆Т= 0,1 К. При рабочей длине волны 2 см максимальная измеряемая толщина льда составляет 27 см для аппаратуры с ∆Т= 0,01 К и 21 см – для ∆Т=0,1 К (Ji et al., 2007). Толщину льда в микроволновом диапазоне лучше определять с помощью многочастотных СВЧ-радиометров, причем для тонких льдов лучше использовать коротковолновые каналы 8 мм – 5 см, а для толстых льдов – канал 21 см. В настоящее время отладка разработанной модели выполняется с использованием данных измерений самолетных СВЧ-радиометров (Ji et al., 2007).

Комбинированные методы. В последнее время развиваются методы оценки толщины ледяного покрова с помощью спутниковой альтиметрии – лазеров и радаров-альтиметров. Луч лазера и луч радара обладают различной способностью проникновения в поверхностный слой снега: лазерный сигнал отражается от поверхности снега, а радарный проходит сквозь слой снега (hs) до поверхности льда. Таким образом, радары-альтиметры измеряют надводную толщину льда, а лазерные альтиметры – расстояние от спутника до верхней границы снежного покрова, находящегося на льду (hf.). Комбинирование этих двух видов измерений позволит более точно оценивать толщину ледяного покрова (hi). Расчет hi. проводят по уравнению плавучести с учетом плотности морской воды (ρw), снега (ρs), и льда (ρi) (Connor et al., 2009):



Основным недостатком радаров-альтиметров является зондирование только вдоль узкой трассовой полосы и низкое пространственное разрешение (порядка 7 км для радара-альтиметра RA-2), что не позволяет в настоящее время рассматривать радары-альтиметры в качестве источников ледовых данных для решения оперативных задач.

3. Обнаружение опасных ледяных образований

При решении задач освоения природных углеводородных месторождений на шельфе полярных морей наибольшую опасность для сооружений и инженерных конструкций представляют ледяные нагромождения деформированного морского льда и фрагменты льда материкового происхождения. Для арктических морей основную проблему при обеспечении жизнедеятельности на морских акватория представляют следующие опасные ледяные образования (ОЛО): многолетние ледяные поля диаметром 500 м и более; айсберги и их обломки; поля толстого однолетнего льда с большими (более 3 м высотой) грядами торосов; всплывшие и подвижные стамухи. Спутниковые технологии должны обеспечивать соответствующие эксплуатационные службы компаний, осуществляющих хозяйственную деятельность в шельфовой зоне, оперативной информацией о морфометрических характеристиках гряд торосов и стамух, параметрах айсбергов (габариты, скорость и направление дрейфа) и пр.

Экспертный анализ и интерпретация изображений являются пока наиболее надежным и точным способом получения информации по обнаружению ОЛО и их характеристикам. Причем без наличия опорных полевых наблюдений часто не представляется возможным сделать достоверное заключение об обнаружении ОЛО. На рис. 7 представлено изображение с ИСЗ RADARSAT, на котором с помощью наземной исследовательской группы удалось идентифицировать крупную стамуху. При этом, по полевым наблюдениям, в радиусе пяти километров от указанной стамухи располагались еще несколько стамух приблизительно такого же размера, в том числе и в южном направлении. Однако на спутниковом изображении такие объекты не были обнаружены. Этот факт может быть связан с неблагоприятной случайной взаимной ориентацией угла и направления зондирования в момент съемки стамух.


Рис. 7. РСА изображение со спутника RADARSAT, на котором удалось идентифицировать изображение стамухи (выделено кружком) 22 апреля 2007 г.


Наиболее перспективным является оперативный мониторинг ОЛО на основе совместного комплексного анализа данных SAR (спутников RADARSAT, Envisat), данных тепловых каналов оптического диапазона спутников NOAA и Terra, наземных наблюдений на судах и береговых станциях, а также модельных расчетных данных. Важным условием таких комплексных наблюдений является регулярный, а не эпизодический спутниковый мониторинг состояния ледяного покрова. Одним из методов объективного мониторинга ОЛО с помощью спутниковых данных может быть метод нейронных сетей. Для выделения ОЛО по этому методу, помимо текстурных характеристик, могут использоваться и иные входные параметры. Например, для айсбергов это могут быть: наличие и конфигурация открытой воды за движущимся айсбергом и ветровые данные.

Для развития спутниковых технологий обнаружения ОЛО необходима верификация результатов с использованием подспутникового эксперимента с регистрацией широкого круга параметров. Особенно это необходимо для обеспечения возможности выделения «точечных объектов» – айсбергов, ледяных островов и всплывших стамух. Основной проблемой при выделении таких объектов методом нейронных сетей является, например, дефицит обучающих выборок.

В заключение этого раздела в табл. 1 отражены возможности современной спутниковой аппаратуры при определении важнейших параметров морского льда в автоматическом/автоматизированном режиме. Наиболее соответствуют задачам мониторинга морских льдов на ежедневной основе технологии оценки сплоченности и положения кромки льдов по данным СВЧ-радиометрии. К сожалению, приборы этого типа имеют пока недостаточное для многих приложений пространственное разрешение. Самыми информативными являются приборы активной локации – радары. Они позволяют определять наибольшее число параметров ледяного покрова, причем круглогодично и при любых облачных условиях. Данные видимого диапазона, напротив, имеют ограниченное применение в полярных регионах ввиду невозможности проведения съемки в темное время года. Данные ИК-диапазона обеспечивают хорошие интерпретационные возможности при мониторинге льдов в зимний период. Этот диапазон наиболее предпочтителен для разработки технологий оценки толщины льда.


Таблица 1. Характеристики ледяного покрова, измеряемые с ИСЗ (для видимого и ИК– диапазонов – в условиях ясного неба, для видимого – также при высоте солнца над горизонтом более 5°)


Табл. 1 иллюстрирует только аппаратные возможности и наличие необходимых технологий обработки данных. Реальное использование тех или иных спутниковых средств для мониторинга морских льдов зависит также от экономических факторов, от доступности спутниковой информации для конкретных потребителей.

Заключение

Цикл работ в области изучения характеристик морского льда с помощью методов дистанционного зондирования, осуществленный российскими учеными в период МПГ в полярных областях Земли, позволил получить ряд важных выводов.

Дальнейшее совершенствование методов дистанционного зондирования ледяного покрова полярных регионов требует постановки широкомасштабных экспериментальных работ по верификации методик ДЗ морских льдов. Для таких работ необходимым условием должно быть обеспечение исследователям возможности доступа к имеющимся различным информационным источникам по изучаемой акватории. В том числе желательно обеспечить, в согласованных объемах, обмен информацией между ледовыми службами разных стран. Полевые работы должны проводиться с использованием сертифицированной аппаратуры, обеспечивающей выполнение многопараметрических полевых наблюдений с сопоставимой точностью. Необходимо совершенствовать стационарный сегмент гидрометеорологических наблюдений в полярных районах, для чего следует шире разворачивать в труднодоступных полярных регионах сеть современных автоматических измерительных комплексов, включенную в систему мониторинга морских льдов.

Перспективы развития технологий мониторинга морских льдов зависят также от степени разработанности ледовых моделей, позволяющих прогнозировать краткосрочные и долгосрочные изменения параметров ледяного покрова (в том числе модели дрейфа льда, дрейфа айсбергов, нарастания толщин льда и пр.). В моделях должна быть предусмотрена возможность усвоения спутниковых данных. Прогностический блок должен стать полноправной составляющей технологии мониторинга морских льдов.

Работы российских ученых по программе МПГ показали, что развитие методов ДЗ морского льда в нашей стране сдерживается из-за отсутствия собственных природоресурсных космических аппаратов, оснащенных современными радарами, радиометрами высокого разрешения и пр. В РФ были предприняты определенные шаги для восстановления российской орбитальной группировки метеорологических и природоресурсных спутников. 17 сентября 2009 г. был запущен российский космический аппарат «Метеор-М». Информация с этого спутника уже используется для решения ряда природоресурсных задач, а данные бортового спектрофотометра с пространственным разрешением 60 м могут быть использованы для изучения тонкоструктурных особенностей строения морского ледяного покрова. На 2011 г. запланирован запуск второго спутника серии «Метеор-М». Вся российская группировка метеоспутников будет состоять из трех аппаратов, причем третий планируется оборудовать радиолокатором с активной фазированной решеткой с пространственным разрешением порядка 1 м.

В соответствии с федеральной космической программой в период до 2015 года будет завершена реализация мероприятий по вводу в эксплуатацию Многоцелевой Космической Системы (МКС) «Арктика». Система будет состоять из двух космических аппаратов (КА) «Арктика-М», функционирующих на высокоэллиптических орбитах типа «Молния» с периодом обращения 12 часов, и двух космических аппаратов «Арктика-Р», запускаемых на низкие околополярные орбиты и оснащенных радиолокаторами с синтезированной апертурой. Подсистема «Арктика-М» позволит осуществлять непрерывный мониторинг окружающей среды Арктики, включая наблюдения за состоянием ледяного покрова в видимом и инфракрасном спектральных диапазонах.

В XVIII веке М.В. Ломоносов сказал, что богатство России будет прирастать Сибирью; в XXI веке мы можем утверждать, что богатство России будет прирастать Арктикой. Обязанность ученых в решении этой важной государственной задачи – разработать наиболее эффективные технологии доступа к этим богатствам, обеспечить безопасность жизнедеятельности на хозяйственных объектах в полярных регионах, предложить наиболее экологичные методы природопользования. Реализация таких программных задач потребует широкой международной кооперации, развития эффективного сотрудничества ученых разных стран. Важным элементом такого сотрудничества несомненно станет развитие спутниковых технологий мониторинга полярных областей Земли.

Литература

Александров В.Ю., Лощилов В.С. Количественная интерпретация спутниковых радиолокационных изображений морских льдов с использованием априорных данных // Исследование Земли из космоса. 1985, № 3. С. 28–31.

Александров В.Ю., Лощилов В.С., Терентьев И.В. Оценка возможности автоматизированного определения характеристик разрывов в ледяном покрове по спутниковым радиолокационным изображениям // Исследование Земли из космоса. 1989. № 3. С.12–17.

Александров В.Ю., Пиотровская Н.Ю. Оценка УЭПР морских льдов разного возраста по радиолокационным изображениям спутника ENVISAT // Исследование Земли из космоса. 2008а. № 4. С. 3–11.

Александров В.Ю., Пиотровская Н.Ю. Цифровая обработка РСА-изображений морских льдов спутника ENVISAT // Проблемы Арктики и Антарктики. 2008б. № 1(78). С. 90–94.

Асмус В.В. Милехин О.Е., Кровотынцев В.А., Селиванов А.С. Использование радиолокационных данных ИСЗ Океан для решения задач гидрометеорологии и мониторинга окружающей среды // Исследование Земли из космоса. 2002. № 2. С. 1–8.

Бушуев А.В., Лощилов В.С., Смирнов В.Г., Щербаков Ю.А. Спутниковый мониторинг ледяного покрова. – В сб. докладов 2й всероссийской научной конференции: Дистанционное зондирование земных покровов и атмосферы аэрокосмическими средствами. Санкт-Петербург, РГГМУ, 16–18 июня, 2004, Том 2, с. 42–47.

Дюнин А.К. В царстве снега /Новосибирск: Наука. СО АН СССР. 1983, 161 с.

Лощилов В.С., Парамонов А.И. Определение и картографирование толщины морского льда в Арктике по спутниковым изображениям в ИК-диапазоне // Исследование Земли из космоса. 1997, № 5. С. 63–72.

Рахина Т.В., Александров В.Ю., Бушуев А.В., Сандвен С. Определение дрейфа льдов по радиолокационным изображениям спутника «Океан» с использованием кросс-корреляционного алгоритма // Исследование Земли из Космоса. 1998. № 4. С. 102–110.

Abreu R.D. RADAR Sea Ice Signatures: An Operational Primer // Proceedings of a workshop on mapping and archiving of sea ice data – the expanding role of radar. Ottawa, Canada, 2–4 May 2000. WMO/TD-№. 1027, JCOMM Technical Report 2000. №.7. P. 85–94.

Andersen, S., Tonboe, R., Kaleschke, L., Heygster, G., Pedersen, L.T. (2007). Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice //J. Geophys. Res., 2007. Vol. 112, C08004.

Bogdanov A.V., Sandven S., Johannessen O.M.et al. Multisensor Approach to Automated Classification of Sea Ice // IEEE Trans. on Geoscience and Remote Sensing. 2005. Vol. 43. № 7. P. 1648–1664.

Carsey F.D. Microwave remote sensing of sea ice // Geophysical monograph. 1992. Vol. 68. 446p.

Cavalieri D. A passive microwave technique for mapping new and young sea ice in seasonal sea ice zones // J. Geophys. Res. 1994. Vol. 99(C6). P. 12561–12572.

Clausi D.A. Texture Analysis of SAR ICE Imagery Using MRFs. // Proceedings of a workshop on mapping and archiving of sea ice data – the expanding role of radar, Ottawa, Canada, 2–4 May 2000, WMO/TD-No. 1027, JCOMM Technical Report 2000. №.7. P. 287–292.

Comiso J.C. SSMI ice concentrations using the Bootstrap Algorithm, NASA RP № 1380, 1995. 50p.

Connor L. N., Laxon S.W., Ridou L.R. e.a. Comparison of Envisat radar and airborne laser altimeter measurements over Arctic sea ice//Remote Sensing of Environment 2009. Vol/ 113, Issue 3, P. 563–570

Fily M., Rothrock D.A. Sea ice tracking by nested correlation // IEEE Transactions on Geoscience and Remote Sensing. 1987. Vol. 25. № 5, P. 570–580.

Gronvall H., Seina A., Simila M. The Finish Ice Service and Real-Time Automatic Classification of SAR Data // Nordic Space Activities, 1996. Vol. 4, P. 28–29, 33–35.

Groves J.E., Stringer W.J. The use of AVHRR thermal infrared imagery to determine sea ice thickness within the Chukchi polynya //ARCTIC VOL. 1991, № 44, Supp. 1. P. 130–139.

Hara Y., Atkins R.G., Shin R.T. et.al. Application of Neural Networks to Radar Image Classification // IEEE Trans. on Geoscience and Remote Sensing. – 1994. – Vol. 32, № 1. P. 100–109.

Haverkamp D., Son L.K. Tsatsoulis C. A Comprehensive, Automated Approach to determining Sea Ice Thickness from SAR data // IEEE Trans. Geosci. Rem. Sensing. 1995. Vol.33, № 1, P. 46–57/

Haverkamp D., Son L.K., Tsatsoulis C. The combination of Algorithms and Heuristic Methods for the Classification of Sea Ice Imagery // Remote Sensing Reviews, 1994. Vol. 9, P. 135–159, 183–194.

Ji Y., Zhang, J. Meng, Y. ABMR ice thickness model and its application to Bohai Sea in China // Progress in Electromagnetic Research 2007. Vol. 76. P. 183–194.

Johannnessen O.M., Volkov A.M., Grischenko V.D. Bobylev L.P. e.a. ICEWACH, Real-time sea ice monitoring of the Nothern sea route using satellite radar technology A cooperative project between Russian Space Agency (RKA) and European Space Agency (ESA), Progress report, Technical report No. 113. Nansen environmental and remote center, 1996. 126 p.

Johannessen O.M., Alexandrov V.Yu., Frolov I.Ye., Sandven S., Bobylev L.P., Pettersson L.H., Kloster K., Smirnov V.G., Mironov Ye.U., Babich, N.G. Remote sensing of sea ice in the Northern Sea Route: studies and applications. Chichester, UK: Springer-Praxis, 2006.

Kloster, K., Fleshe H., Johannessen O.M. Ice motion from airborne SAR and satellite imagery // Advanced Space Res. 1992. № 12(7). P. 149–153.

Kuhn P.M., Sterns L.P., Ramseier R.O. Airborne infrared imagery of arctic sea ice thickness. NOAA Technical Report ERL. 331–APCL 34. 1975. Boulder: U.S. Department of Commerce, NOAA, Environmental Research Laboratories.

Sandven S., Kloster K., Johannessen O.M. SAR Ice Algorithms for Ice Edge, Ice Concentration, and Ice kinematics // NERSC Technical Rep. 1991. № 38.

Spreen G., Kaleschke L., Heygster G. Sea ice remote sensing using AMSR 89-GHz // J. Geophys. Res., 2008. Vol.113.

Sun Y. A new correlation technique for ice motion analysis // EARSeL Advances in Remote Sensing. 1994. Vol.3, № 2, P. 57–63.

V.G. Smirnov
[35], А.V. Bushuev
[36], I.А. Bychkova
[37], А.V. Grigoriev
[38], N.Yu. Zakhvatkina
[39],
[40], V.S. Loschilov
[41], V.V. Stepanov
[42], I.E. Frolov,
[43] L.P. Bobylev
[44],
[45], V.Yu. Alexandrov
[46],
[47]. Capabilities of remote sensing as the source of the operative objective information about the polar sea ice cover state

Abstract

Remote sensing methods used for determination of sea ice concentration, stages of development, thickness and drift are considered. Examples of sea ice stages of development charting in the Arctic with the use of Envisat data, neural network and Bayesian classification methods are presented. Features of satellite technology for Dangerous Ice Formations (DIFs) are stated. Proposals for further development of sea ice remote sensing taking into account the IPY experience are formulated.

Г.К. Зубакин, Ю.П. Гудошников

Современные методы и технологии изучения морфометрических и динамических характеристик ледяного покрова, айсбергов и ледников

Арктический и антарктический научно-исследовательский институт, Санкт-Петербург, Россия

Аннотация

В работе рассматриваются различные аспекты ледоисследовательских работ применительно к природным условиям баренцевоморского шельфа. Традиционные методы полевых работ дополняются новыми экспериментальными методами, направленными на повышение качества информации о морском ледяном покрове, айсбергах и ледниках. Все методы прошли апробацию в ходе инженерных изысканий для освоения морских углеводородных месторождений и научно-исследовательских экспедиций по программе Международного Полярного года 2007/2008 гг.

1. Исследования ледяного покрова, айсбергов и ледников Баренцева моря, выполнявшиеся ААНИИ в 1990–2000-х гг.

Для осуществления всех видов прикладных и научных исследований по обеспечению гидрометеорологической и ледовой информацией освоения месторождений углеводородов в шельфовой зоне арктических морей в ААНИИ в 1991 г. была создана лаборатория «Арктик-Шельф». Первым крупным проектом, в котором лаборатория заняла место головного подразделения института, был пятилетний цикл инженерных гидрометеорологических изысканий в районе Приразломного нефтяного месторождения в Печорском море для проектирования морской ледостойкой платформы (Данилов и др., 2003, Зубакин и Данилов, 2000). Основным способом получения необходимой информации являлись морские экспедиции, проводимые в период максимального развития ледяного покрова (для Печорского моря это апрель), в ходе которых выполнялся основной комплекс ледоисследовательских и гидрометеорологических работ, состав которого будет рассмотрен ниже. В процессе работ по Приразломному месторождению сложились два варианта логистической организации экспедиций:

1) на судах ледового класса (в 1996 г. это было обеспечивающее судно «Нефтегаз-57»; в 1997, 2001, 2003 гг. работы проводились на научно-экспедиционном судне «Михаил Сомов» с вертолетом Ми-8Т на борту);

2) вертолетные экспедиции с использованием вертолетов Ми-8МТВ и Ми-8Т (1998, 1999 гг.), экспедиционный состав и вертолеты базировались на берегу в поселке Варандей.

При первом варианте организации экспедиции судно, находясь в районе работ, выполняет судовые ледовые и гидрологические станции, в которых задействуется наиболее громоздкое и тяжелое оборудование. Одновременно мобильная десантная группа, используя судовой вертолет, выполняет «облегченный» комплекс работ на удаленных от судна вертолетных станциях (рис. 1). В то время, как десантная группа работает на льду, вертолет производит комплекс дистанционных наблюдений и попутную ледовую разведку с поиском льдин для последующих ледовых станций и проходов к ним в условиях сплоченного льда. Основным преимуществом такого варианта организации экспедиций является возможность значительно увеличить объемы наблюдений за счет одновременного выполнения судовых и вертолетных станций, что очень важно для получения статистически значимых оценок характеристик природной среды. Кроме того, в судовых экспедициях практически отсутствуют ограничения на размеры и вес оборудования, что позволяет расширять, при необходимости, состав работ и, как следствие, повышать качество исследований.


Рис. 1. Организация работ при полевых гидрометеорологических и ледовых исследованиях в Баренцевом море. 1 – исследование морфометрии и внутренней структуры тороса; 2 – площадка для определения физико-механических свойств льда; 3 – подледные гидрологические наблюдения (зондирующие приборы); 4 – гидролокационная съемка нижней поверхности ледяного покрова


Достоинством второго варианта организации экспедиции является более низкая стоимость полевых работ за счет отказа от аренды судна, уменьшения объемов работ, используемого оборудования и количества личного состава. Как показала практика, в морских исследованиях вертолетные экспедиции могут эффективно использоваться при небольшом удалении района работ от береговых пунктов базирования вертолетов.

Параллельно с работами на Приразломном месторождении были выполнены гидрометеорологические изыскания для Варандейского нефтяного терминала (1999–2004 гг.). В этих работах, помимо морских экспедиций с основным комплексом ледовых и гидрометеорологических наблюдений, в рамках гидрометеорологических исследований применялись инновационные для отечественной практики того времени постановки автономных буйковых станций (АБС) с комплексом приборов для определения осадки подводной части торосов, характеристик дрейфа льда и подледных течений. АБС устанавливались на период от нескольких месяцев до двух лет. Постановка первых АБС осуществлялась с представителями канадской компании ASL – разработчика подводного комплекса.

В 2001–2007 гг. был выполнен полный цикл морских инженерных ледовых и гидрометеорологических изысканий на Штокмановском ГКМ (ШГКМ) (Данилов и др., 2008). Экспедиции выполнялись на НЭС «Михаил Сомов» в апреле-мае. Морские льды непосредственно на Штокмановском месторождении появляются не каждый год (Наумов и др., 2003), поэтому ледовую составляющую исследований в большинстве случаев приходилось переносить значительно севернее – в районы, откуда ледяные поля дрейфуют на ШГКМ. Очень важным в процессе работ оказался 2003 г., когда к месторождению из северных районов моря очень близко подошли двухлетние льды, а на самой его акватории была встречена целая «флотилия» айсбергов: ледовые наблюдатели получили тогда более 100 фиксаций координат айсбергов. Наиболее крупные из них были детально обследованы. Это аномальное для данного района скопление айсбергов не имело аналогов за всю более чем 100-летнюю историю наблюдений за айсбергами в Баренцевом море, как по количеству, так и по их размерам. До 2003 г. эксперты оценивали вероятность сближения айсберга и платформы на Штокмановском месторождении на расстояние 100–200 м как редкое событие, возможное 1 раз в 100–1000 лет, причем считалось, что это могут быть лишь небольшие айсберги либо их обломки. Новые оценки составили для тех же значений сближения 1 раз в 16–104 лет. При этом масса самого крупного в обнаруженном скоплении столообразного айсберга, пересекшего в мае 2003 г. акваторию месторождения, составила 3,7 млн т (рис. 2).


Рис. 2 Столообразный айсберг с горизонтальными размерами 424×190 м и массой более 3 млн т в районе Штокмановского ГКМ в Баренцевом море, 2003 г.


Результаты экспедиции 2003 г. заставили пересмотреть всю концепцию освоения Штокмановского месторождения. При этом заказчики потребовали от изыскателей всесторонней оценки айсберговой угрозы для исследуемого района и предложений для разработки комплекса мер по ее снижению. В итоге, в 2004–2007 гг. основной комплекс ледовых и гидрометеорологических наблюдений был дополнен гляциологическими исследованиями основных айсбергопродуцирующих ледников Земли Франца-Иосифа и Новой Земли и мониторингом айсбергов на всей акватории северо-восточной части Баренцева моря. В 2004 и 2005 гг. в ходе ледоисследовательских экспедиций на «Михаиле Сомове» были выполнены первые в России экспериментальные буксировки айсбергов с целью отвода их от предполагаемого гидротехнического сооружения (Данилов и др., 2008, Лоскутова, 2004). Важным результатом исследований явилась концепция ледового менеджмента для защиты добывающих объектов ото льдов и айсбергов (Гудошников и др., 2008).

2. Традиционные методы ледоисследовательских работ

Состав основного комплекса гидрометеорологических и ледовых работ, выполняемых в ходе морских инженерных изысканий, определяется нормативными документами и руководствами (ВСН, 1988, СНиП, 1996, 1997, 2004). Наиболее полно и подробно применительно к морским условиям он раскрыт в СП 11-114-2004 «Инженерные изыскания на континентальном шельфе для строительства морских нефтегазопромысловых сооружений» (СП, 2004). Путем апробации различных методов наблюдений за характеристиками природной среды, формирования приборной базы, развития и совершенствования тех методов, которые позволяют обеспечить требуемую точность измерений, в лаборатории «Арктик-Шельф» была разработана своя технология выполнения полевых изысканий для акваторий замерзающих морей (Зубакин и др., 2006). Обобщенный перечень видов наблюдений, необходимых при проведении экспедиционных работ, приведен в табл. 1.


Таблица 1. Состав основного комплекса ледовых и гидрометеорологических наблюдений при проведении изыскательских работ на шельфе

3. Научно-исследовательские работы в составе гидрометеорологических изысканий

Проблемы, связанные с повышением качества гидрометеорологических изысканий в морских условиях, стоят очень остро в мировой практике не одно десятилетие. Ледяной покров занимает в списке этих проблем едва ли не лидирующее место. Несмотря на обилие нормативных документов, дебаты между изыскателями и проектировщиками по вопросам выбора исследуемых объектов и методикам наблюдений не прекращаются. Суть проблемы, на наш взгляд, кроется в принципиальных различиях в представлениях одних и других о морском ледяном покрове. Для успешного решения проблемы обеспечения безопасности гидротехнических объектов на уровне проектирования, все угрозы должны быть предельно четко и максимально полно описаны в качестве входных параметров в более или менее сложных моделях взаимодействия конструкций с окружающей средой. Для этого составляющие ледяного покрова разделены в соответствии с существующими классификациями и ледовой номенклатурой на ледяные образования различного вида, описываемые стандартным набором характеристик. В процессе полевых работ изыскатели сталкиваются с практически бесконечным разнообразием реальных ледяных форм и образований. В связи с этим, представление их в терминах существующих моделей далеко не всегда может быть однозначным.

Наиболее характерным примером подобной неоднозначности является проблема консолидированного слоя торосов – одной из основных характеристик льда, используемых при расчете ледовых нагрузок. Несмотря на большое количество исследований торосов в России и за рубежом, точного определения, что следует считать консолидированным слоем, которое одновременно удовлетворило бы и проектировщиков, и ледовых экспертов фактически не существует (что не мешает этому понятию присутствовать в нормативной литературе). Отсутствие такого терминологического определения порождает множество несогласий в методических вопросах выделения консолидированного слоя в полевых условиях.

Работа над проблемой консолидированного слоя ведется в ААНИИ постоянно. В полевых условиях были опробованы практически все известные на сегодня методы выделения консолидированного слоя: по вертикальному распределению температуры в торосе, по вертикальному распределению давления, оказываемого на индентор скважинного зонда-прессиометра и др. Наиболее надежным методом остается обработка результатов сквозного бурения торосов (механического, водяного, термобурения). Большой объем наблюдений, полученный в ходе изысканий, показал, что толщина консолидированного слоя сильно изменяется даже в пределах одного тороса, встречаются торосы с несколькими ядрами консолидации. Большой прогресс в понимании процесса консолидации льда в природных условиях удалось достичь в ходе подводных исследований торосов с использованием водолазов и телеуправляемых аппаратов. В частности выяснилось, что в однолетних торосах в северо-восточной части Баренцева моря достаточно часто встречается гротообразная консолидация (рис. 3), в которой пустоты не являются показателем раздела консолидированной и неконсолидированной частей тороса, а весь киль выступает как единая жесткая конструкция.


Рис. 3. Подводная часть тороса


Еще одной актуальной проблемой ледовых изысканий является определение прочности льда для расчета ледовых нагрузок. Отечественные нормативы и руководства предписывают рассчитывать нагрузки, используя среднюю по толщине льда прочность, полученную в ходе испытаний малых ледяных образцов (СНиП, 1996). Однако такой метод дает завышенные пределы прочности, что ведет к неоправданному утяжелению и удорожанию конструкций. Практические эксперименты показали, что прочность льда, определенная в ходе приложения нагрузки ко всей толщине льда (так называемая «крупномасштабная прочность»), существенно ниже, чем рассчитанная осреднением пределов прочности малых образцов (Алексеев и др., 2001). В результате, в последние годы использование только традиционных методов определения физико-механических характеристик льда для задач инженерных изысканий зачастую уже не устраивает заказчиков, особенно зарубежных. Поэтому в ААНИИ внедрены и уже в течение ряда лет успешно используются методы крупномасштабных испытаний льда (Степанов и др. 2003). Дальнейшим развитием данного направления оказался разработанный в институте метод определения глобальных нагрузок со стороны торосов на сооружение. Основным измерительным средством в этом случае выступает ледокол, воздействующий на торос. При этом регистрируются все параметры движения ледокола по всем степеням свободы, а также усилие на винте. Перед началом испытаний выполняется детальное обследование тороса. Метод определения глобальных нагрузок был успешно реализован в 2008 г. на ледоколе «Капитан Николаев» и в 2009 г. на атомном ледоколе «Ямал» в ходе экспедиционных исследований в северо-восточной части Баренцева моря, направленных на освоение Штокмановского ГКМ.

В практике инженерных изысканий на месторождениях арктического шельфа нередки случаи, когда в состав полевых работ включаются эксперименты, не имеющие прямого отношения к стандартному комплексу изысканий. Это связано с тем, что заказчики часто предпочитают получить наиболее полный комплекс интересующей их информации по природной среде «из одних рук», поскольку морские экспедиции, как правило, сопровождаются дорогостоящей арендой судов, и организация отдельных экспедиций для решения дополнительных задач экономически невыгодна. Примером подобных «дополнительных» исследований являются работы по оценке и минимизации айсберговой угрозы для гидротехнических сооружений. В рамках изысканий на Штокмановском ГКМ, ААНИИ в сотрудничестве с Институтом географии РАН (ИГ РАН) в течение нескольких лет проводились комплексные исследования айсбергов и айсбергопродуцирующих ледников: выполнялись аэрофотосъемка айсбергов и ледниковых фронтов ЗФИ и Новой Земли, воздушное радиолокационное зондирование толщи ледников, гидролокационные исследования подводной части айсбергов, гляциологические работы непосредственно на айсбергах и ледниках, определялись скорости течения ледников и дрейфа айсбергов (рис. 4).


Рис. 4. НЭС «Михаил Сомов» среди айсбергов возле ледника Павлова (Новая Земля)


Опыт ледовых исследований, накопленный в ходе изысканий в 1990–2000-х гг., был в полной мере реализован при подготовке и осуществлении Программы Международного Полярного года 2007/2008 гг. В ходе МПГ были выполнены три экспедиции в северо-восточной части Баренцева моря и Карском море с исследованием ледяного покрова, ледников и айсбергов. На основе собранных материалов, как в ходе изысканий, так и в ходе работ в рамках МПГ, была создана единая база данных по характеристикам айсбергов Баренцева и Карского морей.

Уикс в работе (Уикс, 1997), посвященной истории исследований морского льда, описывает множество примеров, когда военные и экономические интересы государств Арктического бассейна стимулировали ускоренное развитие этого направления наук о Земле. Освоение ресурсов арктического шельфа России в настоящее время позволяет получать новые данные по морским льдам, айсбергам и связанным с ними процессам, в объемах, заметно превышающих сугубо научные программы последних лет. Особую ценность этой информации придает обусловленный нуждами изысканий комплексный характер наблюдений, позволяющий отслеживать все интересующие нас процессы во взаимосвязи, соединяя метеорологию, различные направления океанологии, гляциологию, географию, климат. Уже сейчас можно констатировать, что благодаря инженерным изысканиям наши знания о природных условиях морей арктического шельфа, и прежде всего, Баренцева моря, за последнее десятилетие значительно расширились. Еще большего прогресса в этой области следует ожидать в течение ближайших лет по мере усвоения, обобщения и анализа данных большого числа экспедиций, проведенных в первом десятилетии XXI в.

Литература

Ю.Н. Алексеев, В.П. Афанасьев, О.Е. Литонов, М.Н. Мансуров, В.В. Панов, П.А. Трусков. Ледотехнические аспекты освоения морских месторождений нефти и газа. – СПб.: Гидрометеоиздат, 2001. – 282 с.

ВСН 41.88 (экспериментальные)/ Миннефтепром. Проектирование ледостойких стационарных платформ. – М.: Миннефепром, 1988. – 136 с.

Ю.П. Гудошников, Г.К. Зубакин, А.В. Чернов. Вопросы обеспечения безопасности морских инженерных сооружений от айсбергов// Морская Биржа, № 3 (25), 2008. – С. 70–73.

А.И. Данилов, Ю.П. Гудошников, Г.К. Зубакин. Ледовые исследования и изыскания в районе Штокмановского ГКМ// МурманшельфИнфо, № 4, 2008. – С. 18–20.

А.И. Данилов, Г.К. Зубакин, А.Г. Шеломенцев, Н.В. Чурсина. Результаты пятилетних ледовых исследований и инженерных изысканий в районе Приразломного нефтяного месторождения в Печорском море// Тр. RAO-03, СПб, 16–19 сентября 2003 – С. 290–294.

Г.К. Зубакин, А.И. Данилов. Изучение природных условий замерзающих морей шельфов России в интересах освоения нефтяных и газовых месторождений// Проблемы Арктики и Антарктики, юб. вып. 72, 2000. – С.109–123.

Г.К. Зубакин, Ю.П. Гудошников, Н.Е. Дмитриев, А.К. Наумов, И.В. Степанов. Технология сбора и анализа данных о ледяном покрове замерзающих морей для обеспечения освоения шельфовых месторождений// Технологии ТЭК, № 2 (27), 2006. – С. 72–77.

О. Лоскутова. Даже айсберг может стать послушным// Морская Биржа, № 3 (9), 2004. – С. 70–71.

А.К. Наумов, Г.К. Зубакин, Ю.П. Гудошников, И.В. Бузин, А.А. Скутин. Льды и айсберги в районе Штокмановского газоконденсатного месторождения// Тр. RAO-03, СПб, 16–19 сентября 2003 – С. 337–342.

СНиП 2.06.04/ Минстрой России. Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов). – М.: Стройиздат, 1996.

СП 11-103-97. Инженерно-гидрометеорологические изыскания для строительства/ Госстрой России. – М.: ПНИИИС Госстроя России, 1997. – 29 с.

СП 11-114-2004. Инженерные изыскания на континентальном шельфе для строительства морских нефтегазопромысловых сооружений/ Госстрой России. – М.: ФГУП «ПНИИИС» Госстроя России, 2004. – 88 с.

И.В. Степанов, В.А. Лихоманов, П.М. Николаев. Крупномасштабные испытания прочности ровного льда Баренцева моря: метод исследования и предварительные результаты// Тр. RAO-03, СПб, 16–19 сентября 2003 – С. 190–193.

У.Ф. Уикс. Исследование морского льда: краткая история/Морской лед. Сбор и анализ данных наблюдений, физические свойства и прогнозирование ледовых условий (справочное пособие). – СПб: Гидрометеоиздат, 1997. – С. 8–35.

G.K. Zubakin, Yu.P. Gudoshnikov. Contemporary methods and technologies for studying morphometric and dynamical characteristics of the ice cover, icebergs and glaciers. Arctic and Antarctic Research Institute, Saint Petersburg, Russia

Abstract

The work is devoted to various aspects of the ice research activities in environmental conditions of the Barents Sea shelf. Traditional methods of the field works are elaborated by new experimental methods aimed at improvement of the quality of information on the se ice cover, icebergs and glaciers. All the methods were tested in the course of engineering surveys meant for exploration of marine hydrocarbon deposits and scientific expeditions performed in the scope of program of the International Polar year 2007/08.

В.А. Лихоманов, Н.А. Крупина, А.В. Чернов

Перспективы использования плавучих инженерных сооружений для долговременного базирования научных обсерваторий типа станций «Северный Полюс»

Арктический и антарктический научно-исследовательский институт, Санкт-Петербург, Россия

Аннотация

На основании анализа организации и результатов работы дрейфующих станций «Северный Полюс» разработано ТЭО на проектирование и постройку плавучих инженерных сооружений для долговременного базирования научно-исследовательских обсерваторий типа «СП». По результатам произведенного анализа на самой начальной стадии проектирования определены главные размерения и водоизмещение трех вариантов таких сооружений, необходимых и достаточных для жизнеобеспечения и успешной научной деятельности обсерваторий. Предложены варианты общего расположения жилых и служебных помещений, создающих оптимальные условия жизни и работы полярников. Рассмотрены новые перспективные научные направления исследований, возможность проведения которых обеспечивают конструктивные особенности плавучей самоходной платформы.


Российское присутствие в арктическом регионе и освоение Арктики относится к важнейшим геополитическим интересам России. Об этом свидетельствуют официальные документы заседания Правительства Российской Федерации по вопросу «Об обеспечении интересов Российской Федерации в высокоширотных и полярных регионах», Совета Безопасности Российской Федерации и Морской коллегии при Правительстве Российской Федерации.

Существующие проблемы и пути их решения отражены в Морской доктрине Российской Федерации, Концепции долгосрочного социально-экономического развития Российской Федерации на период до 2020 г., Основах государственной политики Российской Федерации в Арктике на период до 2020 г. и дальнейшую перспективу, в проекте Стратегии развития морской деятельности до 2020 г. и более отдаленную перспективу, в проекте разрабатываемой в настоящее время Стратегии развития арктической зоны до 2020 г. и на более отдаленную перспективу, других документах.

Согласно принятым решениям, Арктика должна стать основной стратегической ресурсной базой России. При этом Арктика имеет исключительно важное военно-стратегическое значение для решения задач обороны страны. Здесь базируются силы Северного флота и находится их операционная зона, сосредоточен ряд важнейших предприятий оборонной промышленности.

Закончившийся Международный полярный год (МПГ), инициатором проведения которого выступила Россия, высветил наиболее острые научные проблемы и направления, которые надо развивать в первую очередь. Именно сейчас, в период климатических изменений, наиболее актуальна необходимость продолжения мониторинга состояния арктической климатической системы для постоянной оценки устойчивости и масштабов наметившихся изменений.

Результаты научных наблюдений, полученные в высокоширотных исследованиях на дрейфующих научно-исследовательских станциях «Северный полюс», высокоширотных воздушных экспедициях, судовых высокоширотных исследованиях, внесли основной вклад в познание закономерностей природных процессов центральной части Арктического бассейна и арктических морей, создание системы научно-оперативного обеспечения безопасности мореплавания по высокоширотным и традиционным трассам Северного морского пути.

Присутствие в Арктике требует согласования экологических и инфраструктурных задач, однако риски, связанные с исследованиями на дрейфующих научно-исследовательских станциях «Северный полюс», ставят задачу поисков вариантов плавучих сооружений в качестве долговременной дрейфующей обсерватории взамен дрейфующих станций «Северный полюс».

В 2010 г. в ААНИИ закончена разработка Технико-экономического обоснования (ТЭО) проектирования и строительства плавучих ледостойких сооружений для долговременного базирования научно-исследовательских обсерваторий типа станций «Северный Полюс» («СП»). Основный задачей ТЭО являлась разработка эскизов и предварительная оценка строительной стоимости плавучего инженерного сооружения, пригодного для долговременного базирования научно-исследовательских обсерваторий типа станций «Северный Полюс».

Главным требованием к выбору основных параметров дрейфующего сооружения было обеспечение наиболее широкого спектра исследовательских работ и качества исследований и обработки их результатов, а также обеспечение максимально достижимых на судне в условиях долговременного полярного дрейфа комфортных условий проведения научных работ и проживания членов экспедиции, проведения досуга, в том числе возможности спортивно-оздоровительных занятий. Рассматривались также другие требования, касающиеся возможностей расположения штатного палубного научного оборудования, грузовых трюмов, приема и временного базирования вертолета, быстрого пополнения запасов, смены экспедиционного состава, приема инспекций и делегаций.

В качестве основного варианта платформы предлагается вариант самоходной платформы упрощенной формой и высокой ледовой прочностью корпуса, способной автономно дрейфовать в высоких широтах Северного Ледовитого океана (СЛО) не менее двух лет и самостоятельно (своим ходом) возвращаться из точки окончания дрейфа в точку начала следующего дрейфа по чистой воде. Проектный срок службы платформы 25 лет. Платформа не предназначена для самостоятельного плавания в ледовых условиях, что потребовало бы размещения на ней энергетической установки мощностью не менее 7200 кВт – минимальную по правилам Российского морского Регистра судоходства (часть VII, глава 2, п. 2.21.1) (Правила, 2010). В дрейфе будут работать только стояночные генераторы для обеспечения исследований и бытовых нужд. С учетом необходимости высокой степени защищенности движителя при длительном ледовом дрейфе платформы, оптимальным типом движителя представляется поворотная винто-рулевая колонка (ВРК), обеспечивающая движение платформы и ее маневрирование на чистой воде. При этом во время дрейфа ВРК должна убираться в корпус платформы во избежание повреждений. Общий вид самоходной платформы показан на рис. 1.


Рис. 1. Самоходный вариант платформы: вид сбоку и продольный разрез ниже второй палубы


Рис. 2. Вариант общего расположения верхней палубы


В табл. 1 представлены основные параметры платформы. В дальнейшем, на стадиях эскизного и технического проекта, требования к количеству и площадям лабораторий, жилых и служебных помещений будут уточнены, что позволит более точно определить размерения сооружения, его водоизмещение, строительную и эксплуатационную стоимости.


Таблица 1. Основные технические характеристики платформы


Разработка общего расположения основывалась на том, что на стадии ТЭО степень подробности должна быть достаточной для оценки правильности выбора главных размерений, а также возможности размещения лабораторий, кают, помещений общего пользования, вспомогательных помещений, основных механизмов палубного специального оборудования. Детальное расположение вспомогательных помещений, механизмов и устройств будет выполнено на стадии разработки технического проекта.

Корпус разделен на восемь водонепроницаемых отсеков, включая форпик и ахтерпик, семью поперечными водонепроницаемыми переборками.

Палубы ярусов надстройки используются под каюты и лаборатории. На верхнем ярусе находится ходовой мостик.

Жилой район верхней палубы, кроме кают, расположенных по бортам, вмещает столовую-салон на 44 посадочных места, камбуз с хлебопекарней и курительный салон.

Носовая часть второй палубы отведена под жилые помещения и лаборатории, в средней части расположена амбулатория с изолятором. Кормовая часть занята каютами и лабораториями. Работы с опускаемой подводной аппаратурой и другой техникой обеспечиваются колодцем, выходящим в крытое помещение в кормовой части верхней палубы. На крыше помещения предусмотрен люк для работы судового крана с крупногабаритным оборудованием.

Нижняя палуба отведена под спортивно-оздоровительный комплекс и помещения для вспомогательных механизмов и устройств судового назначения.

Спортивно-оздоровительный комплекс включает тренажерный зал, плавательный бассейн длиной 12,5 м с двумя дорожками и сауну с душем и контрастным бассейном.

Члены экспедиции размещены в одноместных каютах с санузлом. Начальник экспедиции и капитан имеют блок-каюты, включающие кабинет, салон, спальню и санузел с ванной. Во всех одноместных каютах должно быть предусмотрено резервное спальное место.

Количество и возможная площадь лабораторий определены на основании анализа опыта работы дрейфующих станций «Северный Полюс».

Выше было сказано, что определение главных размеров и компоновка общего расположения платформы осуществлялась с учетом условий обеспечения наиболее широкого спектра исследовательских работ, качества исследований и обработки их результатов, а также максимально достижимых на судне в условиях долговременного полярного дрейфа комфортных условий проведения научных работ и проживания членов экспедиции. Новые возможности, которые появятся при вводе в эксплуатацию долговременных плавучих инженерных сооружений, позволят не только расширить программы исследований, но и усовершенствовать традиционные направления за счет применения более современных технологий и средств обработки результатов исследований (Гудошников и др., 2008).

На платформе предполагается размещение одиннадцати штатных лабораторий: метеосиноптической, аэрологической, атмосферной, двух ледоисследовательских, одна из которых «холодная», двух океанографических, одна из которых «мокрая», гидрохимической, гидрографической, геофизической и экологической (биологической). Площадь каждой лаборатории составляет не менее 15 м2. Общая площадь лабораторных помещений на платформе будет около 180 м2. Наличие на платформе стационарных, хорошо оборудованных лабораторий позволит проводить новые виды исследований в различных областях полярной науки.

Работы на дрейфующей платформе дадут возможность выполнять широкий спектр океанологических исследований, связанных с возможностью использования глубоководных спускаемых обитаемых и необитаемых аппаратов.

Перспективы использования станций нового поколения для развития геолого-геофизических работ определяются уникальным геологическим и геофизическим материалом, который может быть получен для оценки углеводородного потенциала арктических бассейнов и для целей геологического картирования. Ранее проведенные попутные геолого-геофизические работы со льда на полярных дрейфующих станциях «СП» были использованы, в том числе, для обоснования положения внешней границы континентального шельфа России.

Конструктивные особенности платформы позволят существенно расширить объем геофизических работ. В частности, появится возможность установить приемную станцию наклонного зондирования ионосферы (современный цифровой ионозонд нового поколения с линейно-частотной модуляцией, ЛЧМ комплекс), предназначенную для оперативной диагностики условий распространения КВ радиоволн внутри северной полярной шапки. Определение диапазона рабочих частот для КВ радиосвязи представляется крайне необходимым для обеспечения безопасности авиационных полетов через Северный полюс, а также для других потребителей, которые используют радиосвязь в КВ диапазоне радиоволн.

Также дрейфующие станции нового поколения перспективны для развития воздушного транспорта, тем более, что Российская Федерация с мая 1995 г. проводит работу по внедрению полярных маршрутов, проходящих из Северной Америки в Юго-Восточную Азию через территорию Российской Федерации. Координация и взаимодействие авиационных администраций по открытию полярных трасс осуществлялась российско-американской координационной группой по управлению воздушным движением (УВД), в работе которой, кроме России и США, принимали участие Япония, Канада, КНДР, Китай, Монголия, Республика Корея, Международная организация гражданской авиации (International Civil Aviation Organization, ICAO), Международная ассоциация воздушного транспорта (International Air Transport Association, IATA), а также заинтересованные авиакомпании.

Правительственная комиссия по транспортной политике одобрила работу Минтранса России по созданию системы кроссполярных воздушных трасс и обеспечению регулярных полетов, удовлетворяющих потребности перевозчиков (протокол от 20 июля 2001 г. № 4).

Однако развитие экономики России и сопровождающие его процессы по совершенствованию межрегиональных связей требуют кардинально нового подхода к развитию транспортного обеспечения северных регионов и производительных сил Севера (особенно в высокоширотных и полярных регионах).

Исходя из того, что воздушный транспорт и его развивающаяся инфраструктура являются наиболее мобильными средствами для достижения вышеуказанных целей, полномасштабное его использование будет способствовать эффективному экономическому росту полярных регионов при условии скоординированных действий субъектов федерации. Эти скоординированные действия целесообразно направить на следующие мероприятия:

• развитие всех видов системы авиационного обеспечения (особенно – метеорологического), организации исследовательских работ с применением полярных станций, для обеспечения полетов в нижнем воздушном пространстве (неконтролируемом воздушном пространстве);

• создание (развитие) системы аэронавигационного обеспечения воздушных судов, обеспечивающих их проводку по Северному морскому пути, разработку нефтяных шельфов и геологоразведывательных работ.

Использование стальных водоизмещающих сооружений в качестве базы долговременных научных обсерваторий позволит не только расширить объем климатических, геологических, геофизических и других традиционных для дрейфующих станций исследований, но и дополнить этот перечень принципиально новыми видами работ. В частности, на дрейфующей платформе возможно выполнение прикладных инженерных исследований, а именно, поднять на новый уровень исследования в области механики и деформации льда при его воздействии на промышленные объекты, предназначенные для освоения шельфов арктических и замерзающих морей России. Могут выполняться не проводившиеся ранее исследования прочностных свойств морского льда совместно с исследованиями глобальных и локальных ледовых нагрузок с целью совершенствования методов расчета локальных и глобальных ледовых нагрузок на суда и другие инженерные сооружения. При этом именно стальной корпус платформы, оборудованный необходимым количеством датчиков и аппаратуры, будет служить уникальным измерительным инструментом (Гудошников и др., 2009).

В настоящее время общепринято разделение ледовой нагрузки на локальную и глобальную. Однако в нормативной документации, как в отечественной, так и в зарубежной, не приводятся определения этих физических величин, поэтому авторы предлагают следующие формулировки.

Глобальная ледовая нагрузка – физическая векторная величина, характеризуемая абсолютной величиной, направлением и точкой приложения суммарной силы, оказываемой льдом на инженерное сооружение. Глобальная нагрузка является расчетной при рассмотрении вопросов общей прочности сооружения, его устойчивости на грунте, удержания сооружения в точке бурения.

Локальная ледовая нагрузка – оказываемое льдом нормальное к поверхности инженерного сооружения давление, распределенное по пятну контакта, расположенному в определенном районе инженерного сооружения. Локальная нагрузка является расчетной при оценке местной прочности корпуса сооружения.

Глобальные ледовые нагрузки могут быть ограничены либо природными движущими силами, включая собственную энергию движущихся ледяных образований, либо несущей способностью ледяных образований. Природная движущая сила может определяться как суммарная сила от воздействия течения, ветра, а также от взаимодействия с окружающим льдом. При этом силы могут действовать как в одном, так и в различных направлениях. Под собственной энергией ледяного образования подразумевается кинетическая энергия его движения. При взаимодействии ледяного образования с ледостойким сооружением возможны различные виды разрушения ледяного образования.

Локальная ледовая нагрузка характеризуется размерами пятна контакта и законом распределения давления внутри зоны контакта. В настоящее время известны более десятка различных законов распределения ледовой нагрузки, предложенных специалистами разных стран. Знание закона распределения нагрузки имеет принципиальное значение при ее расчете.

Локальные ледовые нагрузки, возникающие в процессе дрейфа, могут быть определены с помощью оборудования стального корпуса платформы тензодатчиками. Непрерывные тензометрические измерения имеют не только важное научное значение, но и позволят контролировать состояние корпуса в процессе эксплуатации. Глобальные ледовые нагрузки определяются с помощью шестикомпонентных датчиков, включающих акселерометры и гироскопы. Измерения нагрузок особо актуальны во время ледовых сжатий, когда дрейфующая платформа испытывает наибольшее ледовое воздействие. При этом исследования нагрузок дополняются исследованиями прочностных свойств натурного льда, действующего на платформу.

Наиболее информативными испытаниями прочности льда являются крупномасштабные испытания, при которых нагружается вся толща ледяного покрова. Для определения прочности льда при изгибе крупномасштабными являются традиционные испытания консолей на плаву. Крупномасштабные испытания прочности льда при сжатии не являются общепринятыми, ввиду их большой трудоемкости и сложности экспериментального оборудования. Однако выполнение крупномасштабных испытаний является весьма важным, поскольку совместно с традиционными испытаниями малых образцов это позволяет установить взаимосвязь между прочностью образцов льда (основной объем данных о прочности льда при сжатии получен именно по результатам таких испытаний) и прочностью всей толщи ледяного покрова, которая, в рамках существующих подходов к расчетам ледовых нагрузок, и должна, по-видимому, подставляться в расчетные формулы.

В настоящее время в ААНИИ разработано оборудование для определения крупномасштабной прочности льда при сжатии (Лихоманов, Крупина, 2007). Его использование в натурных условиях показало его работоспособность и эффективность. Существуют две модификации оборудования: для определения крупномасштабной прочности при сжатии и для определения нагрузок при внедрении цилиндрического индентора (рис. 3–5).


Рис. 3. Силовой блок для крупномасштабных испытаний прочности льда при сжатии (слева) и испытаний по внедрению цилиндрического индентера (справа)


Рис. 4. Вид сверху на размещенный в майне силовой блок (слева) и лед в месте воздействия нагрузочной плиты во время испытания прочности льда при крупномасштабном сжатии (справа)


Рис. 5. Вид сверху на размещенный в майне силовой блок (слева) и лед в месте воздействия индентера во время испытания (справа)


Ввиду того, что существующее оборудование для крупномасштабных испытаний разрабатывалось для использования в краткосрочных экспедициях, оно было спроектировано максимально мобильным, что повело за собой ограничения в использовании: оно может применяться только на ровном льду толщиной не более 70 см и создавать усилие не более 70 т. Для долговременных дрейфующих обсерваторий оборудование должно быть усовершенствовано. Оно может быть менее мобильным, но более мощным и пригодным к использованию на существенно больших толщинах льда.

Совместно с проведением и по результатам испытаний ледовых нагрузок и прочностных свойств льда могут быть разработаны и апробированы системы мониторинга ледовых нагрузок на промышленные объекты и системы мониторинга состояния этих объектов с целью повышения уровня безопасности их эксплуатации.

Заключение

С целью выработки требований к оптимальным параметрам инженерного сооружения для обеспечения заданной автономности, грузо– и пассажировместимости, возможности проведения широкого спектра научных исследований проанализированы логистические и финансовые затраты на организацию 37 советских и российских станций дрейфующих станций «СП».

В результате выполненного анализа проработаны и проанализированы технико-экономические показатели трех вариантов плавучих инженерных сооружений для долговременного базирования научно-исследовательских обсерваторий типа станций «Северный Полюс»: Наиболее перспективным представляется вариант самоходной водоизмещающей платформы с упрощенными формами и высокой ледовой прочностью корпуса, способной автономно дрейфовать в высоких широтах СЛО не менее двух лет и самостоятельно (своим ходом) возвращаться из точки окончания дрейфа в точку начала следующего дрейфа по чистой воде (способностью самостоятельного движения во льдах платформа не обладает).

К числу факторов, повышающих экономический эффект использования платформы и не имеющих в настоящее время количественного выражения, следует отнести:

– возможность существенного расширения круга научных исследований;

– использование нового оборудования, которое по своим техническим параметрам не может быть использовано в условиях дрейфующей льдины;

– качество и скорость обработки результатов наблюдений;

– условия работы и жизни полярников.

Литература

Ю.П. Гудошников, Г.К. Зубакин, А.В. Чернов. Вопросы обеспечения безопасности морских инженерных сооружений от айсбергов. //«Морская Биржа», № 3 (25), 2008. С. 70–73.

Ю.П. Гудошников, В.А. Лихоманов, А.В. Чернов, Н.А.Крупина. Натурные исследования ледовых нагрузок. // «Oil&Gas Journal Russia», № 6 (30), 2009. С. 28–34.

В.А. Лихоманов, Н.А. Крупина. Инженерные аспекты в задачах оценки воздействия льда на суда и другие сооружения. //«Морская Биржа», № 2 (20), 2007. С. 66–68.

Правила классификации и постройки морских судов. Российский морской регистр судоходства. СПб.: 2010. Том 1. 480 с.

Vladimir A. Likhomanov, Nina A. Krupina, Alexey V. Chernov. Prospects for the use of floating engineering structures for long-term location of research observatories of the North Pole stations type. Arctic and Antarctic Research Institute, Saint Petersburg, Russia

Abstract

The feasibility study for design and construction of floating engineering structures for long-term location of research observatories similar the North Pole was carried out based on analysis of organization and work results of drifting stations North Pole. Main dimensions and displacements that are necessary and sufficient for life support and successful research activity of 3 variants of such structures were defined at the beginning stage of designing after detailed analysis. The variants of the general arrangement of living areas and staff rooms that give optimal conditions for scientists’ life and work were proposed. New prospective lines of investigation which possibility are provided by design features of a self-propelled floating platform were considered.

В.Т. Соколов, А.Л. Румянцев, А.Э. Клейн, В.М. Смоляницкий

Новые методы и технологии экспериментальных исследований морского льда в Арктике

Арктический и антарктический научно-исследовательский институт, Санкт-Петербург, Россия

Аннотация

В последнее десятилетие в области исследований морского ледяного покрова широко внедряются не только новые приборы, но также и разные методы и технологии, позволяющие наряду с традиционными контактными измерениями осуществлять высокоинформативные дистанционные наблюдения. Очень важно, что информация о ледяном покрове и ряде других параметров природной среды с этих комплексов поступает в цифровом виде. Эот дает возможность оперативно ее обрабатывать, отображать и усваивать. Применять новые методы и технологии в области исследования ледяного покрова позволяют следующие аппараты и приборы: беспилотные летательные аппараты (БЛА), магниторезонансные измерители толщины льда, ледовые масс-балансовые буи (ЛМБ – Ice Mass Balance Buoy), мобильные телеуправляемые подводные комплексы. В настоящей работе рассматриваются основные результаты применения различных новых приборов, методов и технологий на научно-исследовательских дрейфующих станциях «Северный Полюс».

Наблюдения с применением беспилотных летательных аппаратов типа «ЭЛЕРОН»

В настоящее время в ААНИИ накоплен большой опыт по применению беспилотных летательных аппаратов (БЛА). Основным полигоном для их использования являлись научно-исследовательские дрейфующие станции «Северный полюс» (СП). Использование БЛА началось с весны 2007 г. В начальный период данные системы применялись в экспериментальном варианте на дрейфующем льду в ходе сезонных экспедиций СП-35 и СП-36. Но уже на дрейфующей станции СП-37 аппараты применялись практически круглогодично для решения целого ряда практических и исследовательских задач.

ААНИИ располагает двумя БЛА производства фирмы «Эникс» (г. Казань). На рис. 1 представлен общий вид БЛА. Полётная масса аппарата составляет около 6 кг; размах крыльев – 1,2 м; средняя скорость в полёте – около 60 км/час; максимальная высота полёта – около 3000 м; дальность полета – 10–15 км; продолжительность полета – до 2 часов. Запуск аппарата производится с помощью резиновой или пневматической катапульты. Посадка аппарата производится с помощью парашюта в ручном или автоматическом режимах на планировании.


Рис. 1. Общий вид БЛА


Для применения в светлое и тёмное время года в условиях высокоширотной Арктики используются БЛА модели «ЭЛЕРОН». Они оснащены телекамерами двух видов – для видимого и для ИК-диапазонов. Для видимого диапазона используется телевизионная телекамера «MTV-54G10HP», а для ИК-диапазона – инфракрасная камера «Photon-320». На аппарате, оснащённом телекамерой в видимом диапазоне, дополнительно установлена фотокамера, которая используется для проведения аэрофотосъемки. Характеристики фото– и телекамер приведены в табл. 1.


Таблица 1. Технические характеристики оборудования БЛА Т23Э «Элерон»


В настоящее время БЛА «ЭЛЕРОН» используется для решения следующих задач:

– видео и фотосъемка подстилающей поверхности;

– получение картированной информации по основным элементам ледовой обстановки в районе полета;

– выполнение специальных метеорологических измерений.

С помощью БЛА выполняются следующие работы:

– облет районов с целью составления детализированных ледовых карт;

– профильные измерения скорости ветра, температуры и влажности воздуха.

На основании полученных фото– и видеоматериалов выполняется программная сшивка отдельных снимков для детализированного картирования элементов ледяного (подстилающего) покрова.

Измерения метеорологических параметров среды осуществляются с помощью встроенного в БЛА аэрологического комплекта датчиков производства фирмы «VAISALA». Метеорологическая информация принимается на приемную станцию Диджикора.

Дальность действия данной модели БЛА в реальных условиях Арктики не превышает 10 км. Она ограничивается исключительно энергоемкостью аккумуляторных батарей аппарата. Эффективность батарей, в свою очередь, зависит от температуры окружающего воздуха. В условиях морозной погоды, с температурой воздуха ниже −20° С, радиус действия аппарата снижается.

В связи с указанными ограничениями по дальности полета, применение аппарата и получаемые им данные, представляют интерес при изучении мезомасштабных особенностей в распределении льда и для выполнения профильных измерений по температуре и влажности воздуха над подстилающей поверхностью разных типов. Получаемые материалы наблюдений используются для детализации и углублённого изучения процессов тепло и влагообмена над океаном с реальным неоднородным покрытием в виде дрейфующего льда.

Получаемые с помощью БЛА данные о распределении льда имеют высокое пространственное разрешение, что может быть использовано для валидации спутниковой ледовой информации. Так, в период работы станции СП-37, данные БЛА были использованы для валидации снимков ИСЗ ENVISAT и Radarsat.

На рис. 2 приведена комплексная ледовая информация, полученная на основе аэрофотосъемки с БЛА.


Рис. 2. Ледовая обстановка в районе станции СП-37 по данным аэрофотосъёмки с БЛА на 22.03.10


Наряду с исследовательскими задачами, получаемая с помощью БЛА информация о состоянии ледового покрова в районе станции имеет важное практическое значение для обеспечения безопасности работы дрейфующих станций на морском льду. Эта информация позволяет своевременно принимать управленческие решения по возможной передислокации отдельных инфраструктурных элементов дрейфующей станции в рамках задач по обеспечению безопасности персонала, сохранности материальных ценностей и охраны окружающей среды. На рис. 3 приведен пример карты ледовой обстановки в районе дрейфующей станции СП-37 по данным аэрофотосъёмки с БЛА.


Рис. 3. Карта ледовой обстановки в районе «СП-37» на 06.04.10 г.


В ходе проведения работ с БЛА успешно и эффективно применялось программное обеспечение разработки фирмы ООО «Транзас» (программа TopoAxis), предназначенное для автоматической обработки данных аэрофотосъемки. Программа допускает получение единой карты ледовой обстановки в районе с общей площадью до 100 км2 путём «сшивки» полётных данных последовательных съемок при небольшом перекрытии обследуемых участков. На рис. 4 представлен пример ледовой карты, подготовленной по данным двух последовательных полётов БЛА.


Рис. 4. Карта ледовой обстановки в районе СП-37 27.04.10


Факторами, затрудняющими применение БЛА в зимнее время года в Арктике, являются низкие температуры воздуха и полярная ночь. Первый фактор ограничивает возможность полётов не только по энергозапасу, но и по надёжности функционирования механизмов, что оговаривается производителем БЛА. Фактор темноты повышает риск потери аппарата в случае его нештатной посадки. Тем не менее, полёты в ночное время на СП-37 предпринимались регулярно. Результаты, полученные при выполнении этих полетов, были признаны положительными в рамках всех исследуемых возможностей применения аппарата.

Представляются очень интересными материалы опытов, полученных на СП-38 по «сшивке» фрагментов видеофайла ИК-камеры. Результаты этой работы приведены на рис. 5. Такое представление отчетного материала более информативно и доступно для оперативной передачи по каналам связи «Иридиум» по сравнению с видеофайлом, получаемом в результате полета БЛА.


Рис. 5. «Сшивка» кадров видеофайла с ИК камеры БЛА


В настоящее время накопленный в ААНИИ опыт применения БЛА подтверждает широкие возможности по использованию подобных аппаратов для получения качественной информации в рамках профильных задач наблюдательного комплекса как на дрейфующих станциях «Северный полюс», так и в условиях других экспедиционных программ. Полученная информация может быть использована для решения научных, исследовательских и практических задач. Необходимо отметить, что возможность получения такого рода информации за счёт использования иных средств наблюдений на текущий момент представляется либо невозможной вообще, либо весьма затратной (например, использование авиационной ледовой разведки с пилотируемых аппаратов). Спутниковая информация, которая также имеет большие возможности и высокое разрешение, является в настоящее время достаточно дорогой и предоставляется только зарубежными компаниями. Следует отдельно отметить, что применение БЛА в последнее время активно развивается, как для мониторинга природной среды с использованием различных датчиков, так и для решения специализированных прикладных задач: для выполнения ледовой разведки в целях проводки судов, учет айсберговой и иной ледовой обстановки и т. д.

Масс-балансные измерения в ледяном покрове (ледовый масс-балансовый буй)

Начиная с дрейфующей станции СП-37, в программу работ всех последующих станций «Северный Полюс» включается установка и эксплуатация ледового масс-балансового буя (ЛМБ) производства компании Metocean Data Systems (Канада/США).

ЛМБ-буи были включены в оперативную практику метеорологических наблюдений в период Международного Полярного года 2007/2008 и предназначались для долговременного автономного измерения в точке параметров тепло– и массообмена снежно-ледяного покрова. Измеренные параметры оперативно передавались в национальные и международные системы сбора данных ВМО (с целью последующей ассимиляции в численных синоптических моделях) посредством спутниковой системы АРГОС (метеорологические ИСЗ серий «МЕТОР», «NОАА»). Первичный сбор и обработка информации выполняется в Лаборатории по инженерии и исследованиям холодных районов США (http://imb.crrel.usace.army.mil/).

Одновременно с этим данные ЛМБ-буя дополняли другие измерения, выполняемые на дрейфующей станции СП, и обеспечивали уникальную возможность комплексного мониторинга тепло и массообмена в системе атмосфера-снежно-ледяной покров-океан в сезонном цикле. ЛМБ-буй может выполнять измерения с дискретностью 2 часа или 5 минут (устанавливается оператором в момент установки). Измеряются следующие метеорологические характеристики: профиль температуры снежно-ледяного покрова и прилегающих дециметровых слоев воды и воздуха (с помощью косы термисторных датчиков температуры длиной 4 м с интервалом расстановки 10 см); температура и давление воздуха на высоте 1 м; толщина снежного покрова и толщина льда с помощью ультразвукового датчика.

Установка ЛМБ-буя выполняется вблизи или непосредственно на ледовом полигоне дрейфующей станции СП, что обеспечивает, во-первых, возможность сравнительного анализа различных инструментальных данных, а во-вторых, возможность оперативного доступа к прибору при необходимости устранения поломок или экстренного снятия. Установка буя выполняется на ледяной покров с толщиной льда порядка 140–180 см, вдали от снежниц.

На рис. 6 представлены результаты измерений метеорологических параметров, профилей температуры и толщины снежного покрова с помощью ЛМБ-буя на дрейфующей станции СП-37 в период сентябрь – октябрь 2009 г.


Рис. 6. Профиль температуры в слое воздух/снег/лед/вода (а), толщина снега/льда (б) и температура и давление воздуха (в), переданные ЛМБ-буем дрейфующей станции СП-37

Магниторезонансные измерения (электромагнитный ледовый толщиномер EM31Ice)

Электромагнитный ледовый толщиномер EM31Ice (ЭМЛТ) производства компании Geonics (Канада) введен в опытную эксплуатацию дрейфующих станций «Северный Полюс», начиная с СП-37, и предназначен для выполнения автоматизированных измерений толщин морского льда в одной точке или по отдельным профилям. Опция подключения GPS и автономность работы прибора, составляющая до 20 часов, обеспечивают возможность выполнения морфометрических съемок как непосредственно в районе станции, так и в целом по льдине, на которой располагается станция.

Принцип измерения толщины льда с помощью ЭМЛТ основан на существенном различии электропроводности льда (<<2,0 S/m) и морской воды (порядка 2–3 S/m для диапазона солености 20–35 ‰). Технические характеристики ЭМЛТ позволяют обеспечить временную дискретность измерений толщины льда, начиная от 1 сек, в диапазоне толщины 0–999 см с относительной точностью 1 см.

Тестовая работа с ЭМЛТ выполнялась в пределах ледового полигона СП-37 (80×100 метров) и включала:

– развертывание, первичную калибровку, тестовые площадные измерения и их верификацию в период высадки дрейфующей станции СП-37;

– методические работы по оценке зависимости результатов измерений от позиционирования прибора по отношению к объекту измерения и влияния задаваемого параметра электропроводности на результаты измерений;

– оценка предельно допустимого диапазона измеряемой толщины льда (минимальная и максимальная толщины, доступные измерению);

– оценка сопоставимости и согласованности результатов измерений общей толщины льда толщиномером и прямых традиционных прямых измерений (рейкой).

Внешний вид и рабочее положение ЭМЛТ приведено на рис. 7. Пример двумерного картирования измерений толщин льда с помощью прямых измерений (рейкой) и ЭМЛТ представлен на рис. 8. На рис. 9 приведены результаты синхронного измерения толщин льда с помощью прямых измерений (рейкой) и ЭМЛТ.


Рис. 7. Общий вид ЭМЛТ и его рабочее положение при тестовой съемке толщин льда 08.09.2009 г. 1 – блок регистрации ЭМЛТ; 2 – наладонный компьютер Allegro CX; 3, 4 – дипольные катушечные излучатель/приемник; 5 – секция ледового полигона


Рис. 8. Карта толщины льда (см) на ледовом полигоне СП-37 08.09.2009 г. на основе измерений контактными методами (слева) и с помощью ЭМЛТ (справа)


Рис. 9. Результаты синхронного измерения толщины льда на ледовом полигоне, выполненные 04.03.10, с помощью прямых измерений (рейкой) и ЭМЛТ


Опыт применения ЭМЛТ на дрейфующей станции СП-37 показал, что при оптимальных условиях эксплуатации (предварительная тарировка прибора прямыми измерениями, соблюдение горизонтального положения и постоянства высоты измерений, минимизация наклона) погрешность измерений ЭМЛТ относительно прямых контактных измерений приближается к естественной изменчивости толщин льда в ~2–3 см/м.

ЭМЛТ (в комплексе с наладонным компьютером Allegro CX и GPS) может расцениваться как достаточно эффективное и удобное средство выполнения экспресс-съёмок общей толщины льда на значительных площадях и ледовых полях, на которых расположены дрейфующие станции СП. Абсолютная калибровка результатов достигается сопровождением измерений ЭМЛТ прямыми измерениями (рейкой), однако возможно и автономное использование прибора.

Измерения параметров экзарации дна с использованием ТПА

Одной из совершенно новых методик и технологий, внедряемых в арктические морские исследования, являются телеметрические системы на базе необитаемых подводных аппаратов. Наиболее простые их модификации именуются телевизионными подводными аппаратами (ТПА). Их использование позволяет получать визуальную информацию о состоянии подводной части ледяного покрова для изучения особенностей рельефа нижней поверхности льда и подводной части торосов. Еще одним направлением работ является проведение подводных осмотровых работ с целью выявления деформаций дна ледяными образованиями. Так, использовавшийся в экспедиции «Байдара-2010» ТПА «ГНОМ-стандарт» (рис. 10), является аппаратом среднего уровня по габаритам и оснащению. Его размеры позволяют погружаться в лунку диаметром 250 мм, работать под килями ледяных образований при зазоре между ними и дном не более 50 см.


Рис. 10. Комплект оборудования ТПА


Технические данные ТПА:

– число движителей – 3, ресурс работы (данные производителя) – 500 час;

– скорость горизонтального движения – до 1 м/с, вертикального – до 0,5 м/с;

– рабочая глубина – 100 м, предельно допустимая – 120 м;

– длина кабеля – до 150 метров;

– тип кабеля – специальный подводный, упрочненный кевларом;

– диаметр кабеля – 3 мм;

– усилие на разрыв – 50 кг, функциональные повреждения при усилии

> 25 кг;

– осветители – 35 светодиодов белого свечения, плавная регулировка яркости;

– видеокамера – цветная PAL CCD 1/3'', 0,1 лк, 450 твл фирмы SNB (Корея);

– вторая камера (вместо заднего вертикального мотора);

– лазерные указатели (для определения размеров объекта под водой);

– 2 дополнительные осветители (с боков);

– датчик глубины (точность 105 см);

– режим автоматической стабилизации глубины «автоглубина»;

– компас с выводом информации на видеомонитор в режиме «Телетекст».

Блок питания и управления:

– питание от сети 220 В или от встроенного аккумулятора емкостью 7–12 а/ч;

– влажность окружающей среды – до 100 %;

– диапазон рабочих температур: -5° … +45° С;

– вес аппарата ГНОМ 3 кг, полной системы – 18 кг;

– размеры аппарата ГНОМ 320150120 мм.


Система ТПА состоит из собственно подводного аппарата «ГНОМ» (2), катушки с кабелем (1) и надводного блока управления (3). Подготовка к работе системы занимает 10–15 минут.

Всего для определения геометрических параметров экзарации дна за время проведения полевых работ (общей продолжительностью 16 часов) было выполнено 17 погружений.

Вертикальные размеры объектов при съемке определялись с помощью глубиномера ТПА.

Ниже приведен ряд снимков, выполненных ТПА в период экспедиции «Байдара-2010» в 2010 г. На рис. 11 приведена съемка, выполненная 20.05.2010 г. на стамухе № 1. Дно песчаное, плоское, волнообразное, глубина 6,0–7,0 м. На обследованном участке на глубине 6,6 м обнаружены деформации дна килем стамухи в виде углублений и валов высотой до 30–40 см.


Рис. 11. Деформация дна килем, стамуха 1, 20.05.2010


Использование подводных необитаемых аппаратов, включая ТПА, позволяет существенно расширить возможности проведения подводных исследований ледяного покрова и его влияния на зоны контакта льда с дном. С помощью ТПА можно проводить исследования нижней поверхности ледяного покрова и изучение процессов образования торосов, осуществлять взятие проб воды и льда, а также проводить специальные гидрофизических эксперименты с использованием высокоточной СТД техники и т. д.

Заключение

Использование современных дистанционных измерительных комплексов и телеметрических систем открывает новые возможности в высокоточном и высокоинформативном исследовании процессов в полярных регионах. Использование беспилотных летательных аппаратов и данных ИСЗ открывает широкие возможности по эффективному проведению подспутниковых экспериментов для изучения ледяного покрова, проведения мониторинга загрязнения природной среды по широкому спектру параметров. Использование магниторезонансных систем для изучения ледяного покрова существенно увеличивает возможности по получению значительных объемов информации о состоянии ледяного покрова. Это позволяет улучшить систему мониторинга ледяного покрова на специальных полигонных исследованиях и существенно повышает оперативность и количество получаемых данных при решении различных прикладных задач при проектировании и строительстве инженерных сооружений в замерзающих морях. Система ледовых масс-балансовых буев находит широкую поддержку у исследователей ледяного покрова в Арктике, но опыт применения этой системы на СП-37 показал, что нельзя однозначно доверять всей информации, поступающей как с сонаров, так и с метеодатчиков без соответствующей проверки. Телеметрические подводные системы и аппараты имеют большую перспективу в применении для решения исследовательских и инженерных задач в районах, покрытых дрейфующими льдами.

V.T.Sokolov, A.L.Rumyantsev, A.E.Klein, V.M.Smolyanitsky. New methods and techniques of experimental studies of sea ice in the Arctic. Arctic and Antarctic Research Institute, St.Petersburg, Russia

Abstract

In the last decade new instruments, methods and techniques have been widely introduced in the field of sea ice cover studies, allowing us to perform highly informative remote sensing observations in addition to traditional contact measurements. It is very important that information on the ice cover and a number of other environmental parameters from these facilities is reported in the digital form, which makes it possible to operationally process, present and assimilate it into the models. The following equipment and instruments allow us to apply new methods and techniques in the ice cover studies: unmanned aircraft systems (UAS), magnetic-resonance ice thickness profiler, ice mass balance buoys, and mobile underwater TV complexes. This paperwork considers the main results of application of different new instruments, methods and technologies at the research «North Pole» drifting stations.