Вы здесь

Общее землеведение. Тема 4. Литосфера (Ю. А. Гледко, 2015)

Тема 4

Литосфера

4.1. Состав и строение литосферы

Термин «литосфера» употребляется в науке с середины XIX в., но современное значение он приобрел менее полувека назад. Еще в геологическом словаре издания 1955 г. сказано: «литосфера – то же, что земная кора». В геологическом словаре издания 1973 г. и в последующих: «литосфера… в современном понимании включает земную кору… и жесткую верхнюю часть верхней мантии Земли». Верхняя мантия – это геологический термин, обозначающий очень большой слой; верхняя мантия имеет мощность до 500 км, по некоторым классификациям – свыше 900 км, а в состав литосферы входят лишь верхние от нескольких десятков до двух сотен километров (до астеносферы) (рис. 8).

Горные породы земной коры. Земная кора сложена горными породами разного происхождения и состава. По происхождению горные породы подразделяют на магматические, осадочные и метаморфические.

Магматические породы образуются в недрах Земли в условиях высоких температур и давлений в результате кристаллизации магмы. Они составляют 95 % массы вещества, слагающего земную кору. В зависимости от условий, в которых происходил процесс застывания магмы, формируются интрузивные (образовавшиеся на глубине) и эффузивные (излившиеся на поверхность) горные породы. К интрузивным породам относятся гранит, габбро, к изверженным – базальт, липарит, вулканический туф и др.


Рис. 8. Соотношение земной коры, мантии и литосферы


Осадочные породы образуются на земной поверхности различными путями. Часть из них формируется из продуктов механического разрушения пород, образовавшихся ранее (обломочные – пески, галечники); часть – за счет жизнедеятельности организмов (органогенные – известняки, мел, ракушечник; кремнистые породы, каменный и бурый уголь); часть – в результате химического осаждения из водных растворов или при испарении воды (химические: каменная соль, гипс).

Метаморфические породы образуются в результате превращения пород другого происхождения (магматических, осадочных) под воздействием различных факторов: высокой температуры и давления в недрах, контакта с породами другого химического состава и т. д. (гнейсы, кристаллические сланцы, мрамор и др.).

Большую часть объема земной коры занимают кристаллические породы магматического и метаморфического происхождения (около 90 %). Однако для географической оболочки более существенна роль маломощного и прерывистого осадочного слоя, который на большей части земной поверхности непосредственно контактирует с водой, воздухом, принимает активное участие в географических процессах (мощность 2,2 км – от 12 км в прогибах до 400–500 м в океаническом ложе). Наиболее распространены глины и глинистые сланцы, пески и песчаники, карбонатные породы. Важную роль в географической оболочке играют лёссы и лёссовидные суглинки, слагающие поверхность земной коры во внеледниковых районах северного полушария.


Рис. 9. Типы земной коры (по М.В. Муратову):

1 — вода; 2 – осадочный слой; 3 — гранитный слой; 4 – базальтовый слой; 5 — мантия Земли; 6 — участки мантии, сложенные породами повышенной мощности; 7 – участки мантии, сложенные породами пониженной мощности; 8 – глубинные разломы; 9 — вулканический конус


В земной коре – верхней части литосферы – обнаружено 90 химических элементов, но только 8 из них широко распространены и составляют 97,2 %. По А.Е. Ферсману, они распределяются следующим образом: кислород – 49 %, кремний – 26, алюминий – 7,5, железо – 4,2, кальций – 3,3, натрий – 2,4, калий – 2,4, магний – 2,4 %.

Типы земной коры. По строению и мощности выделяют четыре типа земной коры, которые соответствуют четырем наиболее крупным формам поверхности Земли (рис. 9).

Первый тип называется материковым, его мощность 30–40 км, под молодыми горами он увеличивается до 80 км. Этот тип земной коры соответствует в рельефе материковым выступам (включается подводная окраина материка). Наиболее распространено деление коры на три слоя: осадочный, гранитный и базальтовый. Осадочный слой, толщиной до 15–20 км, сложен слоистыми осадками (преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы). Гранитный слой, толщиной 10–15 км, состоит из метаморфических и изверженных кислых пород с содержанием кремнезема свыше 65 %, близких по своим свойствам к граниту; наиболее распространены гнейсы, гранодиориты и диориты, граниты, кристаллические сланцы. Нижний слой, наиболее плотный, толщиной 15–35 км, получил название базальтового за сходство с базальтами. Средняя плотность материковой коры 2,7 г/см3. Между гранитным и базальтовым слоями лежит граница Конрада, названная по фамилии открывшего ее австрийского геофизика. Названия слоев – гранитный и базальтовый – условны, они даны по скоростям прохождения сейсмических волн. Современное название слоев несколько иное (Е.В. Хайн, М.Г. Ломизе): второй слой называется гранитно-метаморфическим, так как собственно гранитов в нем почти нет, сложен он гнейсами и кристаллическими сланцами. Третий слой – гранулитобазитовый, его образуют сильнометаморфизованные горные породы (табл. 4, рис. 10).


Таблица 4

Химический состав континентальной и океанической коры (по Аплонову, 2001)




Второй тип земной коры – переходный, или геосинклинальный, – соответствует переходным зонам (геосинклиналям[1]). Расположены переходные зоны у восточных берегов материка Евразии, у восточных и западных берегов Северной и Южной Америки. Имеют следующее классическое строение: котловина окраинного моря, островные дуги и глубоководный желоб. Под котловинами морей и глубоководными желобами нет гранитного слоя, земная кора состоит из осадочного слоя повышенной мощности и базальтового. Гранитный слой появляется только в островных дугах. Средняя мощность геосинклинального типа земной коры 15–30 км.


Рис. 10. Строение континентальной и океанической земной коры по современным представлениям


Третий тип – океаническая земная кора – соответствует ложу океана, мощность коры 5—10 км. Имеет двухслойное строение: первый слой – осадочный, образован глинисто-кремнисто-карбонатными породами; второй слой состоит из полнокристаллических магматических пород основного состава (габбро). Между осадочным и базальтовым слоями выделяется промежуточный слой, состоящий из базальтовых лав с прослоями осадочных пород. Поэтому иногда говорят о трехслойном строении океанической коры (рис. 10).

Четвертый тип – рифтогенная земная кора – характерен для срединно-океанических хребтов, мощность коры 1,5–2 км. В срединноокеанических хребтах близко к поверхности подходят породы мантии. Мощность осадочного слоя 1–2 км, базальтовый слой в рифтовых долинах выклинивается.

4.2. Концепции развития литосферы

До настоящего времени нет единого представления о путях развития литосферы. Существует несколько тектонических концепций, каждая из которых хотя и основана на бесспорных фактах, однако отражает одну сторону тектонической истории Земли, не охватывая общего ее хода, и противоречит другим фактам, которые, в свою очередь, удачно объясняются другой теорией. Такое состояние тектонической проблемы объясняется тем, что геология и геофизика основывают свои выводы на исследовании материков, которые занимают всего 29,2 % Земли, а изучение океанского дна, т. е. большей части планеты, только еще началось.

Сторонники теории мобилизма (от лат. mobilis – подвижный) доказывают, что блоки литосферы движутся, и первостепенную роль отводят горизонтальным движениям. Основные идеи мобилизма были сформулированы А. Вегенером (1880–1930) как гипотеза дрейфа материков. Новые данные, полученные во второй половине XX в., позволили развить это направление до современной теории неомобилизма, объясняющей динамику процессов в земной коре дрейфом крупных литосферных плит.

Согласно гипотезе Вегенера, до верхнего палеозоя земная кора была собрана в материк Пангею, окруженный водами океана Панталласса (частью этого океана было море Тетис). В мезозое начались расколы и дрейф (плавание) отдельных ее глыб (материков). Материки, сложенные относительно легким веществом, которое Вегенер называл «сиаль» (силициум-алюминий), «плавали» по поверхности более тяжелого вещества – «сима» (силициум-магний). Первой отделилась и сместилась к западу Южная Америка, затем Африка, позднее Антарктида, Австралия и Северная Америка.

Разработанный позднее вариант гипотезы мобилизма допускает существование в прошлом двух гигантских праматериков – Лавразии и Гондваны. Из первой образовались Северная Америка и Азия, из второй – Южная Америка, Африка, Антарктида и Австралия, Аравия и Индостан.

Поначалу теория мобилизма покорила всех, ее приняли с восторгом, но через 2–3 десятилетия выяснилось, что физические свойства пород не допускают такого «плавания», и на теории дрейфа материков был поставлен жирный крест.

Вплоть до 1960-х гг. господствующей системой воззрений на динамику и развитие земной коры была теория фиксизма (от лат. flxus – неподвижный, неизменный), утверждавшая неизменное (фиксированное) положение континентов на поверхности Земли и ведущую роль вертикальных движений в развитии земной коры.

Лишь к 1960-м гг., когда была открыта общемировая система срединно-океанических хребтов, возникла практически новая теория – теория современной тектоники плит (новая глобальная тектоника), из гипотезы Вегенера принявшая только изменение взаимного расположения материков, в частности объяснение сходства очертаний континентов по обе стороны Атлантики.

Новая теория утверждает: в движении материков участвуют плиты, в состав которых входят и участки суши, и дно океана; границы между плитами могут проходить и по дну океана, и по суше, и по границам материков и океанов. В этом ее важнейшее отличие от гипотезы Вегенера, считавшего, что материки двигались по веществу, которым сложено океанское дно.

К крупным литосферным плитам относятся Евразиатская, Индийско-Австралийская, Тихоокеанская, Африканская, Северо-Американская, Южно-Американская, Антарктическая. Наряду с крупными плитами выделяются более мелкие, отвечающие отдельным глубоководным океаническим бассейнам (плита Кокос, Наска и др.), окраинным морям или частям раздробленных континентальных блоков. Движение литосферных плит происходит по астеносфере – слою верхней мантии, который подстилает литосферу и обладает вязкостью и пластичностью (рис. 11). В местах срединно-океанических хребтов литосферные плиты наращиваются за счет вещества, поднимающегося из недр, и раздвигаются по оси разломов или рифтов в стороны, образуя дивергентные границы. Этот процесс впервые описан американским геологом Г. Хессом и геофизиком Р. Дитцем, который дал ему название спрединга океанского дна (англ, spreading – расширение, распространение). Но поверхность земного шара не может увеличиваться. Возникновение новых участков земной коры по сторонам от срединно-океанических хребтов должно где-то компенсироваться ее исчезновением. Если считать, что литосферные плиты достаточно устойчивы, естественно предположить, что исчезновение коры, как и образование новой, должно происходить на границах сближающихся плит.


Рис. 11. Типы границ и схема расположения основных литосферных плит: границы плит: 1 — оси спрединга (наращивания коры), 2 — зоны субдукции (поглощения коры), 3 — скольжения (трансформные разломы), 4 — условные границы; малые плиты и микроплиты: 1 — Аравийская, 2 — Филиппинская, 3 — Кокос, 4 — Карибская, 5— Наска, 6 — Южно-Сандвичева, 7— Индокитайская, 8— Эгейская, 9 — Анатолийская, 10 — Хуан-де-Фука, 11 – Ривера, 12— Китайская, 13— Охотская


Взаимодействие литосферных плит при встречном движении (т. е. на конвергентных границах) порождает сложные и многообразные тектонические процессы, проникающие глубоко в мантию. Различают два главных вида конвергентного взаимодействия литосферных плит: субдукцию и коллизию.

Субдукция (лат. sub – под, ductio – ведение) развивается там, где на конвергентной границе сходятся континентальная и океанская литосферные плиты или океанская с океанской. При их встречном движении более тяжелая литосферная плита (всегда океанская) уходит под другую, а затем погружается в мантию. Субдукцию нельзя свести ни к «поддвигу», ни к «наддвигу» литосферных плит. Установлено, что субдукция развивается по-разному в зависимости от соотношения векторов движения плит, от возраста субдуцирующей литосферы и ряда других факторов.

Характер взаимодействующих участков литосферы определяет различия между двумя главными тектоническими типами зон субдукции: окраинно-материковым (андским) и океанским (марианским). Первый формируется там, где океанская плита субдуцирует под континент, второй – при взаимодействии двух участков океанской литосферы.

Строение и субдукционный режим окраинно-материковых зон разнообразны и зависят от многих условий. Типичный пример – Кордильеры Центральной Америки и Центральноамериканский желоб, Анды Южной Америки и идущая вдоль берега система желобов – Перуанский и Чилийский. В данном случае океанская плита погружается под материковый край плиты, образуя глубоководные желоба (характерны интенсивные вулканические и сейсмические процессы), край материковой плиты поднимается, в результате чего образуется мощная цепь гор вдоль материка.

При образовании зон субдукции океанского (марианского) типа более древняя (и поэтому более мощная и тяжелая) океанская литосфера субдуцирует под более молодую, на краю которой образуется островная дуга, другой край уходит под него, здесь уровень верхней поверхности литосферы понижается, формируется глубоководный океанический желоб (рис. 12). Таковы Алеутские острова и обрамляющий их Алеутский желоб, Курильские острова и Курило-Камчатский желоб, Марианские острова и Марианский желоб в Тихом океане, Антильские острова и желоб Пуэрто-Рико, Южные Сандвичевы острова и Южно-Сандвичев желоб – в Атлантическом.


Рис. 12. Схема взаимодействия литосферных плит (по М.В. Муратову, В.М. Цейслеру с изменениями):

1 — водная оболочка; 2–5 — литосфера (2–4 — земная кора: 2 — осадочный слой, 3 — гранитно-метаморфический слой, 4 — гранулитобазитовый слой); 5–6 — верхняя мантия (5 – надастеносферный слой, 6 — астеносфера); 7— границы раздела слоев; 8 — разломы; 9 — вулканы; 10 — направления перемещений литосферных плит


Движение плит относительно друг друга сопровождается значительными механическими напряжениями, поэтому во всех этих местах наблюдаются высокая сейсмичность, интенсивная вулканическая деятельность. Очаги землетрясений располагаются в основном на поверхности соприкосновения двух плит и могут быть на большой глубине. Край плиты, ушедшей вглубь, погружается в мантию, где постепенно превращается в мантийное вещество. Погружающаяся плита подвергается разогреву, из нее выплавляется магма, которая изливается в вулканах островных дуг. Если зоне спрединга соответствуют рифтовые долины Мирового океана, то зоне субдукции отвечают системы «островная дуга – глубоководный желоб» или «активная окраина континента – глубоководный желоб».

Гораздо реже и на короткое время при конвергенции возникают условия для надвигания на край континентальной плиты фрагментов океанской: происходит ее обдукция.

Во всех рассмотренных случаях субдуцирует литосфера океанского типа. Иначе протекает процесс там, где к конвергентной границе с обеих сторон подходит континентальная литосфера. Она включает в себя мощную и низкоплотностную земную кору. Данный процесс носит название «коллизия».

Коллизия, т. е. столкновение литосферных плит, развивается там, где континентальная литосферная плита сходится с континентальной: их дальнейшее встречное движение затруднено, оно компенсируется деформацией литосферы, ее утолщением и «скучиванием» в складчатых горных сооружениях. Наблюдается вулканизм, но меньше, чем в первых двух случаях, так как земная кора в таких местах очень мощная. Так образовался Альпийско-Гималайский горный пояс, протянувшийся от Северной Африки и западной оконечности Европы через всю Евразию до Индокитая; в его состав входят самые высокие горы на Земле, по всему его протяжению наблюдается высокая сейсмичность, на западе пояса есть действующие вулканы.

Согласно прогнозу, при сохранении общего направления движения литосферных плит значительно расширятся Атлантический океан, Восточно-Африканские рифты (они заполнятся водами МО) и Красное море, которое напрямую соединит Средиземное море с Индийским океаном.

Основные положения новой глобальной тектоники:

1. Литосфера Земли, включающая кору и самую верхнюю часть мантии, подстилается более пластичной, менее вязкой оболочкой – астеносферой.

2. Литосфера разделена на ограниченное число крупных (несколько тысяч километров в поперечнике) и среднего размера (около 1000 км) относительно жестких и монолитных плит.

3. Литосферные плиты перемещаются друг относительно друга в горизонтальном направлении; характер этих перемещений может быть трояким:

✓ раздвиг (спрединг) с заполнением образующегося зияния новой корой океанического типа;

✓ поддвиг (субдукция) океанской плиты под континентальную или океанскую же с возникновением над зоной субдукции вулканической дуги или окраинно-континентального вулкано-плутонического пояса;

✓ скольжение одной плиты относительно другой по вертикальной плоскости так называемых трансформных разломов, поперечных к осям срединных хребтов.

4. Перемещение литосферных плит по поверхности астеносферы подчиняется теореме Эйлера, гласящей, что перемещение сопряженных точек на сфере происходит вдоль окружностей, проведенных относительно оси, проходящей через центр Земли; места выхода оси на поверхность получили название полюсов вращения или раскрытия.

5. В масштабе планеты в целом спрединг автоматически компенсируется субдукцией: сколько за данный промежуток времени рождается новой океанической коры, столько же более древней океанической коры поглощается в зонах субдукции, благодаря чему объем Земли остается неизменным.

6. Перемещение литосферных плит происходит под действием конвективных течений в мантии, включая астеносферу. Под осями раздвига срединных хребтов образуются восходящие течения; они превращаются в горизонтальные на периферии хребтов и в нисходящие в зонах субдукции на окраинах океанов. Сама конвекция имеет своей причиной накопление тепла в недрах Земли вследствие его выделения при распаде естественно-радиоактивных элементов и изотопов.

Геодинамика Земли развивается быстрыми темпами, возникают принципиально новые идеи, разрабатываются новые подходы, сменяются парадигмы. Новые геологические материалы о наличии вертикальных токов (струй) расплавленного вещества, поднимающихся от границ самого ядра и мантии к земной поверхности, легли в основу построения новой, «плюмовой» тектоники, или гипотезы плюмов. Так, используя новые данные сейсмической томографии, детально рисующие трехмерное строение глубоких недр Земли, японские исследователи С. Маруяма, М. Кумазава, С. Каваками и другие выделяют три главные зоны или области в разрезе Земли (рис. 13): кору и верхнюю мантию (тектоносферу); нижнюю мантию (плюмтектонику); ядро Земли (тектонику роста или тектонику ядра).


Рис. 13. Схема глубинного строения Земли по С. Маруяме (стрелками показано движение вещества)


Указанные исследователи, а также русские специалисты (Н.Л. Добрецов, М.И. Кузьмин, А.Г. Кирдяшкин, Ю.М. Пущаровский, В.Е. Хайн и др.) ведущее значение придают погружению холодных литосферных пластин в зонах субдукции, что рассматривается как естественное следствие существования Земли в холодном космическом пространстве и, очевидно, ее векового охлаждения. Холодные пластины погружаются первоначально до границы верхней и нижней мантии примерно на 670 км и здесь какое-то время (100–400 млн лет) находятся в состоянии относительного покоя, пока не наступает катастрофический гравитационный коллапс, вызывающий погружение пластины уже до границы мантии и ядра. Этому коллапсу способствует эндотермическая природа фазового перехода на границе 670 км. Наступающее вследствие коллапса взаимодействие холодной пластины с внешним ядром имеет два важных следствия. С одной стороны, оно вызывает охлаждение внешнего ядра и порождает в нем нисходящий вихрь, уносящий железо и никель во внутреннее ядро, которое благодаря этому испытывает разрастание. С другой стороны, оно провоцирует возникновение компенсационного восходящего течения на границе «ядро – мантия», которое порождает плюм, достигающий границы нижней и верхней мантии и здесь, так же как и холодный плюм, испытывающий задержку, а затем прорывающийся вверх. В современной картине Земли С. Маруяма и его коллеги различают один крупный нисходящий холодный суперплюм под Центральной Азией и два восходящих суперплюма – под южным Тихим океаном и под Африкой. Таким образом, в нижней мантии, а фактически и в переходной зоне, к верхней мантии навстречу друг другу на определенном расстоянии движутся колонны охлажденного и разогретого вещества, т. е. конвекция реализуется в форме адвекции.

Некоторые приверженцы плюмовой гипотезы склонны даже считать, что именно этот энергообмен лежит в основе всех физико-химических преобразований и геологических процессов в теле планеты.

В последнее время многие исследователи все больше стали склоняться к мысли, что неравномерным распределением эндогенной энергии Земли, как и периодизацией некоторых экзогенных процессов, управляют внешние по отношению к планете (космические) факторы. Из них наиболее действенной силой, непосредственно влияющей на геодинамическое развитие и преобразование вещества Земли, по-видимому, служит эффект гравитационного воздействия Солнца, Луны и других планет, с учетом инерционных сил вращения Земли вокруг своей оси и ее движения по орбите. Основанная на этом постулате концепция центробежно-планетарных мельниц позволяет, во-первых, дать логическое объяснение механизму дрейфа материков, во-вторых, определить главные направления подлитосферных потоков.

4.3. Движения литосферы. Эпейрогенез. Орогенез

Взаимодействие земной коры с верхней мантией – причина глубинных тектонических движений, возбуждаемых вращением планеты, тепловой конвекцией или гравитационной дифференциацией вещества мантии (медленное опускание более тяжелых элементов вглубь и поднятие более легких кверху), зона их появления до глубины около 700 км получила название тектоносферы.

Существует несколько классификаций тектонических движений, каждая из которых отражает одну из сторон – направленность (вертикальные, горизонтальные), место проявления (поверхностные, глубинные) и т. п.

С географической точки зрения удачным представляется деление тектонических движений на эпейрогенические (колебательные) и орогенические (складкообразовательные).

Сущность эпейрогенических движений сводится к тому, что огромные участки литосферы испытывают медленные поднятия или опускания. Они являются преимущественно вертикальными, глубинными, проявление их не сопровождается резким изменением первоначального залегания горных пород. Эпейрогенические движения были повсюду и во все времена геологической истории. Происхождение их удовлетворительно объясняется гравитационной дифференциацией вещества в Земле: восходящим токам вещества отвечают поднятия земной коры, нисходящим – опускания. Скорость и знак (поднятие – опускание) колебательных движений меняются и в пространстве, и во времени. В их последовательности наблюдается цикличность с интервалами от многих миллионов лет до нескольких тысяч столетий.

Для становления современных ландшафтов большое значение имели колебательные движения недавнего геологического прошлого – неогена и четвертичного периода. Они получили название новейших или неотектонических. Размах неотектонических движений очень значителен. В горах Тянь-Шаня, например, их амплитуда достигает 12–15 км, и без неотектонических движений вместо этой высокой горной страны существовал бы пенеплен – почти равнина, возникшая на месте разрушенных гор. На равнинах амплитуда неотектонических движений намного меньше, но и здесь многие формы рельефа – возвышенности и низменности, положение водоразделов и речных долин – связаны с неотектоникой. Новейшая тектоника проявляется и в настоящее время. Скорость современных тектонических движений измеряется миллиметрами, реже первыми сантиметрами (в горах). На Русской равнине максимальные скорости поднятия до 10 мм в год установлены для Донбасса и северо-востока Приднепровской возвышенности, максимальные опускания, до 11,8 мм в год, – в Печорской низменности.

Следствия эпейрогенических движений:

1. Перераспределение соотношения между площадями суши и моря (регрессия, трансгрессия). Лучше всего изучать колебательные движения, наблюдая за поведением береговой линии. При колебательных движениях граница между сушей и морем смещается из-за расширения площади моря за счет сокращения площади суши или вследствие сокращения площади моря за счет увеличения площади суши. Если суша поднимается, а уровень моря остается неизменным, то ближайшие к береговой линии участки морского дна выступают на дневную поверхность – происходит регрессия, т. е. отступание моря. Опускание суши при неизменном уровне моря либо повышение уровня моря при стабильном положении суши влечет трансгрессию (наступание) моря и затопление более или менее значительных участков суши. Таким образом, главной причиной трансгрессий и регрессий являются поднятия и опускания твердой земной коры. Значительное увеличение площади суши или моря не может не сказаться на характере климата, который становится более морским или более континентальным, что с течением времени отражается на характере органического мира и почвенного покрова, на конфигурации морей и материков. В случае регрессии моря некоторые материки, острова могут соединиться, если разделяющие их проливы были неглубокими. При трансгрессии, наоборот, происходит разъединение масс суши на обособленные материки или отделение от материка новых островов. Наличием колебательных движений в значительной степени объясняется эффект разрушительной деятельности моря. Медленная трансгрессия моря на крутые побережья сопровождается выработкой абразионной (абразия – срезание морем берега) поверхности и ограничивающего ее со стороны суши абразионного уступа.

2. В связи с тем что колебания земной коры происходят в разных точках либо с разным знаком, либо с разной интенсивностью, меняется сам вид земной поверхности. Чаще всего поднятия или опускания, охватывающие обширные районы, создают на ней крупные волны: при поднятиях – купола огромных размеров, при опусканиях – чаши и огромные депрессии.

При колебательных движениях может случиться, что один участок поднимается, а соседний с ним опускается. На границе между такими различно движущимися участками (а также и внутри каждого из них) происходят разрывы, в силу чего отдельные глыбы земной коры приобретают самостоятельное движение. Подобный разрыв, при котором горные породы перемещаются вверх или вниз друг относительно друга вдоль вертикальной или почти вертикальной трещины, называется сбросом. Образование сбросовых трещин есть следствие растяжения земной коры, а растяжение почти всегда связывается с областями поднятия, где литосфера вспучивается, т. е. профиль ее делается выпуклым.

Орогенические движения – движения земной коры, в результате которых образуются складки, т. е. различной сложности волнообразный изгиб пластов. Они отличаются от эпейрогенических рядом существенных признаков: эпизодичны во времени (тогда как эпейрогенические движения никогда не прекращаются), не повсеместны и каждый раз приурочены к относительно ограниченным участкам земной коры. Охватывая очень большие промежутки времени, складкообразовательные движения, тем не менее, протекают быстрее, чем колебательные, и сопровождаются высокой магматической активностью. В процессе складкообразования движение вещества земной коры всегда идет по двум направлениям – и горизонтально, и вертикально, т. е. тангенциально и радиально. Следствием тангенциального движения и является образование складок, наддвигов и т. п. Движение радиальное приводит к поднятию сминаемого в складки участка литосферы и к его геоморфологическому оформлению в виде высокого вала – горного хребта. Складкообразовательные движения характерны для геосинклинальных областей и слабо представлены или совсем отсутствуют на платформах.

Колебательные и складкообразовательные движения – это две крайние формы единого процесса движения земной коры. Эпейрогенические движения первичны, универсальны, временами, при определенных условиях и на определенных территориях, они перерастают в движения орогенические: в поднимающихся участках возникает складчатость.

Наиболее характерным внешним выражением сложных процессов движения земной коры является образование гор, горных хребтов и горных стран. Вместе с тем на участках различной «жесткости» это движение протекает по-разному:

✓ в областях развития мощных толщ осадков, еще не подвергавшихся складкообразованию и, следовательно, не утерявших способность к пластическим деформациям, сначала происходит образование складок, а затем вздымание всего сложного складчатого комплекса; возникает громадная выпуклость антиклинального типа, которая впоследствии, будучи расчлененной деятельностью рек, превращается в горную страну;

✓ в областях, уже подвергшихся складчатости в прошлые периоды своей истории, поднятие земной коры и образование гор совершается без нового складкообразования, с господствующим развитием сбросовых дислокаций.

Эти два случая соответствуют двум главным типам горных стран: типу складчатых гор (Альпы, Кавказ, Кордильеры, Анды) и типу глыбовых гор (Тянь-Шань, Алтай).

Подобно тому как горы на Земле свидетельствуют о поднятиях земной коры, равнины свидетельствуют об ее опусканиях. Чередование выпуклостей и впадин наблюдается и на дне океана, следовательно, оно также затронуто колебательными движениями (подводные плато и котловины говорят о погруженных платформенных структурах, подводные хребты – о затопленных горных странах).

4.4. Геосинклинали и платформы

Геосинклинальные области и платформы образуют главнейшие структурные блоки земной коры, находящие отчетливое выражение в современном рельефе.

Самыми молодыми структурными элементами материковой земной коры являются геосинклинали. Геосинклиналь – это высокоподвижный, линейно-вытянутый и сильно расчлененный участок земной коры, характеризующийся разнонаправленными тектоническими движениями высокой интенсивности, энергичными явлениями магматизма, включая вулканизм, частыми и сильными землетрясениями. Геологическая структура, возникшая там, где движения имеют геосинклинальный характер, носит название складчатой зоны. Таким образом, очевидно, что складкообразование характерно, прежде всего, для геосинклиналей, здесь оно проявляется в наиболее полной и яркой форме. Процесс геосинклинального развития сложен и во многом еще не достаточно изучен.

В своем развитии геосинклиналь проходит несколько стадий. На ранней стадии наблюдается общее погружение и накопление в геосинклинали мощных толщ морских осадочных (характерны флиши – закономерное, тонкое чередование песчаников, глины и мергелей) и вулканогенных (лавы основного состава) пород. На средней стадии, когда в геосинклиналях накапливается толща осадочно-вулканических пород мощностью 8—15 км, процессы погружения сменяются постепенным вздыманием, осадочные породы подвергаются складкообразованию, а на больших глубинах – метаморфизации, по трещинам и разрывам, пронизывающим их, внедряется и застывает кислая магма. В позднюю стадию на месте геосинклинали под влиянием общего вздымания поверхности возникают высокие складчатые горы, увенчанные активными вулканами с излиянием лав среднего и основного состава; впадины заполняются континентальными отложениями, мощность которых может достигать 10 км и более. С прекращением процессов вздымания высокие горы медленно, но неуклонно разрушаются, пока на их месте не образуется холмистая равнина – пенеплен – с выходом на поверхность «геосинклинальных низов» в виде глубоко метаморфизованных кристаллических пород.

Пройдя геосинклинальный цикл развития, земная кора утолщается, становится устойчивой и жесткой, не способной к новому складкообразованию. Геосинклиналь переходит в иной качественный блок земной коры – платформу. Выровненные жесткие глыбы впоследствии испытывали медленные поднятия или опускания. В периоды опусканий на их поверхности в результате трансгрессий отлагались толщи осадочных пород – так на складчатом основании молодой платформы формируется осадочный чехол.

На протяжении геологической истории Земли наблюдался ряд эпох интенсивного складчатого горообразования с последующей сменой геосинклинального режима на платформенный. Наиболее древние из эпох складкообразования относятся к докембрийскому периоду, затем следуют байкальская (конец протерозоя – начало кембрия), каледонская, или нижнепалеозойская (кембрий, ордовик, силур, начало девона), герцинская, или верхнепалеозойская (конец девона, карбон, пермь, триас), мезозойская (,киммерийская), альпийская (конец мезозоя – кайнозой) эпохи.

В нижнем палеозое около докембрийских платформ существовала геосинклиналь, получившая название каледонской. В конце силура и начале девона – в каледонскую горообразовательную эпоху – на месте этой геосинклинали возникли складчатые горы. Они занимали огромные площади в Европе, Азии, Америке и частично в Африке. До настоящего времени каледонские структуры сохранились в Шотландии (Северо-Шотландское нагорье), Скандинавии (Скандинавские горы), на Шпицбергене, в Гренландии (Восточно-Гренландские горы), Лабрадоре, а также в Забайкалье, по Енисею, на западе Казахстана (Казахский мелкосопочник) и местами в Центральной Азии, т. е. вокруг всех трех северных платформ, а также частично в Австралии.

Во второй половине девонского и в каменноугольном периоде существовала герцинская геосинклиналь. Герцинский возраст имеют Урал, складчатый фундамент Западно-Сибирской низменности, Таймыр, равнины и многие горы Средней и Центральной Азии, Месета, Центральный Французский массив, горы Средней Европы, Аппалачи, Капская область, Австралийские Альпы.

Мезозойская геосинклиналь – система островов и горных хребтов – протягивается вдоль побережья Тихого океана по Восточной Азии, Новой Гвинее, Австралии, Новой Зеландии, Антарктическому полуострову и по западным берегам обеих Америк.

Альпийская геосинклиналь простирается от Атласа через Южную Европу, Крым, Кавказ, Переднюю Азию, Гималаи, Бирму до Индонезии, где она пересекается с Тихоокеанской.

Горообразовательные процессы происходили в конце мезозоя в Тихоокеанской геосинклинали и в кайнозое – в Альпийской.

Геосинклинали в процессе своего развития переходят в платформенные области и таким образом увеличивают площади материков. Горы, возникшие в геосинклиналях, в последующем снижаются выветриванием и денудацией, а корни складок превращаются в фундамент платформы. Многие палеозойские платформы во время альпийской складчатости были затронуты повторным горообразованием и превратились в возрожденные горы.

Современными геосинклиналями на Земле являются области, занятые глубоководными морями, относимыми к группам внутренних, полузамкнутых и межостровных морей. Примером современного геосинклинального пояса на стадии своего закрытия может служить бывший океан Тетис. В его состав входят морские впадины Средиземного,

Черного и южной части Каспийского моря с окружающими их сложно построенными кайнозойскими складчатыми горными странами. Современный вулканизм и активная сейсмичность указывают на продолжающуюся активность тектонических движений.

Среди геосинклинальных поясов, находящихся на различных стадиях развития, в настоящее время кроме Средиземноморского выделяют еще четыре – Тихоокеанский, Атлантический, Арктический и Урало-Монгольский (древний закрывшийся). Они располагаются между древними платформами или на их границе с океанскими областями.

Для современных геосинклинальных областей характерно сочетание глубоководных океанических желобов (Марианский, Курило-Камчатский), котловин окраинных морей (Японского, Охотского и др.), архипелагов островов (Японских, Курильских и др.) (рис. 14).

Области земной коры, охваченные колебательными движениями малого размаха и малой скорости, называются платформами. Геологическая структура, возникающая в платформенных условиях, тоже называется платформой. Общей чертой всех платформ помимо их жесткости служит двухъярусная структура. Нижний ярус, или фундамент, состоит из смятых в складки, разбитых на блоки метаморфических пород – гнейсов, кристаллических сланцев и т. д., представляющих собой продукты древнейших складчатостей, которые завершились более 1,5 млрд лет назад. На фундаменте горизонтально залегает платформенный чехол (верхний ярус) – толща слоистых осадочных горных пород, накопившихся в течение фанерозоя. Это свидетельствует о небольшом размахе колебательных движений, вызывавших трансгрессии мелководных морей, сменявшихся затем регрессиями морей. Древние платформы отличает относительная стабильность, отсутствие складчатых движений, слабая дислоцированность.


Рис. 14. Схема строения современных геосинклинальных областей:1 – осадочный слой; 2 – гранитно-метаморфический слой; 3 – гранулитобазитовый слой; 4 – разломы


В рельефе им соответствуют большие равнины (включая отдельные внутриплатформенные горные страны). В пределах платформы выделяются следующие крупнейшие структурные единицы: щиты (участки выхода на поверхность кристаллических пород) и плиты (перекрытые осадочным чехлом участки пород фундамента, погруженных на глубину). Для платформ также характерно чередование антеклиз — обширных пологих поднятий и синеклиз — столь же обширных и пологих прогибов. Средняя скорость новейших тектонических движений на платформах – 0,07— 0,25 мм/год (в складчатых зонах – 1–3 мм/год).

Таким образом, все древние платформы имеют кристаллический фундамент архей-протерозойского возраста, его формирование завершилось в докембрийское время. Осадочный же чехол этих платформ, при благоприятном тектоническом режиме, продолжает накапливаться и в настоящее время.

Выделяют 10 крупных (основных) древних платформ и ряд более мелких фрагментов (Таримская, Индо-Синийская и др.). Древнейшие докембрийские платформы расположены на Земле двумя широтными рядами. Первый находится в северных умеренных широтах (служит основой северных материков) и состоит из Северо-Американской (включая Гренландию), Восточно-Европейской (Русской) и Сибирской платформ, второй ряд составляют платформы экваториальных материков – Южной Америки, Африки (с Аравией), Индостана, Китая (Восточно-Китайская, Южно-Китайская) и Австралии. В стороне лежит Антарктическая платформа (рис. 15).

Гипотеза горизонтального движения материков связывает северный ряд платформ с расколом материка Лавразии, а южный ряд рассматривает в качестве частей огромного материка Гондваны.

Кроме докембрийских (по возрасту фундамента – надпротерозойские, или эпипротерозойские, от греч. ері – после, над) существуют платформы байкальские, каледонские и герцинские, получившие название молодых платформ (эпибайкальские, эпикаледонские, эпигерцинские): Туранская, Западно-Сибирская, Патагонская, Скифская, Примексиканская, Приатлантическая. Образуются они в условиях активной денудации орогенных поясов в условиях последующих нисходящих тектонических движений с трансгрессией морей. В результате складчатое основание (корни гор) перекрывалось толщами осадочных пород – так на складчатом основании молодой платформы формируется осадочный чехол. Подобно древним платформам молодые также имеют двухслойное строение, однако кристаллический (складчатый) фундамент их значительно моложе – палеозойского возраста, для них характерен и сходный набор структур более низкого ранга: синеклизы, антеклизы; краевые прогибы, впадины, седловины, континентальные рифты и др.


Рис. 15. Докембрийские платформы:1 – Северо-Американская; 2 – Русская; 3 – Сибирская; 4 – Южно-Американская; 5 – Африкано-Аравийская; 6— Индостанская; 7,8— Китайская; 9 — Австралийская; 10 – Антарктическая


Однако, в силу того что располагаются молодые платформы, как правило, на периферийных окраинах древних платформ и обрамляются геосинклиналями, здесь наиболее широко представлены краевые (передовые) прогибы, образование которых связано с орогенными процессами в геосинклиналях либо с проявлением коллизии – лобового столкновения континентальных литосферных плит. Кроме того, в связи с интенсивными процессами складкообразования, которые в фанерозое, и особенно в неогене, имели глобальный характер, на молодых эпипалеозойских платформах (в отличие от более устойчивых докембрийских платформ, сохранявших стабильность) более широкий размах получили эпиплатформенные орогенные пояса. Ряд крупных регионов эпипалеозойских платформ испытывал серьезную перестройку, выразившуюся в общем сводовом поднятии древних пенепленизированных складчатых сооружений, глубоких разломах и крупных вертикальных перемещениях глыб относительно друг друга.

На материках в платформенных областях преобладают низменности, равнины, плато, плоскогорья. Так, в области Восточно-Европейской платформы сформировалась Восточно-Европейская равнина, Южно-Американской платформе отвечают два элемента планетарного рельефа – Амазонская низменность и Бразильское плоскогорье, Западно-Сибирской молодой платформе соответствует Западно-Сибирская равнина, Патагонской – Патагонская равнина и др.

Эпохи складкообразования в фанерозое имели глобальный характер и отразились на структуре сложившихся к тому времени платформ. Докембрийские платформы сохраняли стабильность, но более молодые, эпипалеозойские, в ряде крупных регионов испытывали серьезную перестройку, выразившуюся в общем сводовом поднятии, глубоких разломах и крупных вертикальных перемещениях глыб относительно друг друга. В результате вторичного эпиплатформенного орогенеза возникают складчато-глыбовые горы (возрожденные горы). Классический пример – Тянь-Шань, где возрождение горного рельефа произошло во время альпийского орогенеза.

Отдельным типом структурных элементов земной коры в пределах платформ, усложняющих строение как щитов, так и плит, являются континентальные рифты (от англ, rift – щель, разлом), которые подобно геосинклиналям отличаются повышенной подвижностью земной коры, высокой сейсмичностью и вулканизмом. Однако рифтовые зоны как структурные элементы земной коры – полная противоположность геосинклиналям. В геосинклиналях за погружением следует накопление мощных толщ осадков, затем орогенез и как конечный результат – утолщение континентальной коры. Рифтовые зоны возникают под влиянием восходящих движений в мантии, которая, внедряясь в земную кору, приподнимает, дробит и частично перерабатывает ее. Осью рифтовой зоны является узкая тектоническая впадина – грабен (от нем. Graben – ров). Рифтовые зоны на материках – это области деградации континентальной коры, ее перерождения в кору океаническую. При поступательном рифтогенезе в своем развитии рифт проходит последовательный ряд стадий: внутриконтинентальный (Восточно-Африканская система разломов) – межконтинентальный (Красно – морский, Аденский и Калифорнийский рифты) – срединно-океанический (рис. 16).

Рифты имеют разный возраст. Древние рифтовые зоны платформ называют авлакогенами (развивались на протяжении от рифея до кайнозоя). На Русской платформе крупнейшим авлакогеном является Припятско-Днепровско-Донецкий, заложенный в рифее, но окончательное обособление его, сопровождавшееся глубинными разломами кристаллического фундамента, произошло в девоне, а восточная окраина в конце палеозоя даже подвергалась складкообразованию. Этот и подобные ему древние «борозды» земной коры (Сарматско-Туран-ский рифт в теле древней Восточно-Европейской платформы и др.) давно уже прекратили свое развитие и сглажены – заполнены осадочными отложениями.


Рис. 16. Зарождение (а) и развитие (б) континентального рифта, его переход в межконтинентальный (в), начало (г) и развитие (д) спрединта (по В.Е. Хайну):

1 — континентальная кора; 2 — кора «переходного» типа (утоненная и переработанная континентальная); 3 — океаническая кора (вверху – слой осадков); 4 — разогретая и разуплотненная мантия; 5 – континентальные осадки; 6 — эвапориты; 7 – мелководные морские осадки; 8 — щелочные вулканиты; 9 — толеитовые базальты; 10— нормальная мантия; 11 — вулканы


Современные рифтовые системы были заложены в кайнозое. В их числе – Восточно-Африканская рифтовая система, в Западной Европе – Верхнерейнский грабен, в России – Байкальская рифтовая система (последние находятся за пределами древних платформ).

4.5. Основные геотектуры поверхности Земли: материки и океаны

Рассмотренные научные концепции с разных позиций объясняют происхождение и развитие основных форм рельефа (совокупность неровностей земной поверхности определенного геологического строения) поверхности Земли.

Генетическую классификацию форм рельефа предложили И.П. Герасимов и Ю.А. Мещеряков. Они разделили рельеф на три крупные группы: геотектуры, морфоструктуры и морфоскульптуры.

Геотектури – это самые крупные (планетарные) формы рельефа, образованные космическими (осевое вращение, взаимодействие планет и спутников) и эндогенными процессами. К геотектурам относятся материковые выступы, ложе океана, переходные зоны и срединноокеанические хребты.

Под морфоструктурами в физической географии понимаются крупные подразделения рельефа земной поверхности, в формировании которых ведущая роль принадлежала эндогенным процессам (в основном тектоническим движениям), протекающим в литосфере. Морфоструктурами являются мегаформы и макроформы рельефа: горы в пределах горных стран, части платформенных равнин.

Под воздействием экзогенных (внешних) факторов (текущих вод, ветра, колебаний температуры, снежного и ледникового покрова) земная поверхность расчленяется на морфоскульптуры – более мелкие формы рельефа (макроформы – крупные речные долины; мезоформы, микроформы и наноформы). Главная особенность морфоскульптур – их зональность, так как своеобразие форм, интенсивность их развития зависят от деятельности экзогенных процессов, источником энергии которых служит солнечная радиация.

Площадь поверхности Земли составляет 510 млн км2. На долю МО приходится 70,8 %, или 361,06 млн км2, на долю суши – 29,2 %, или 149,02 млн км2.

Двум качественно различным типам земной коры – материковому и океаническому – соответствуют два основных уровня планетарного рельефа (геотектуры) – поверхность материков и ложе Мирового океана, а также переходные зоны и срединно-океанические хребты.

Материки – изостатически уравновешенный массив материковой земной коры, имеющий структурное ядро в виде древней платформы, к которому примыкают более молодые складчатые структуры.

Материков шесть: Евразия, Африка, Северная Америка, Южная Америка, Антарктида и Австралия. Все материки достаточно хорошо изолированы друг от друга. Соединения Африки с Евразией и Южной Америки с Северной, будучи узкими и геологически очень молодыми, в сущности, не нарушают этого правила.

Кроме геологически обусловленного деления суши на материки существует деление ее на части света (сложились в ходе культурно-исторического развития), которых тоже шесть: Европа, Азия, Америка, Африка, Антарктида и Австралия. Часть света включает не только материк, но и примыкающие к нему острова. Значительно удаленные от материков острова Тихого океана образуют особую группу, называемую Океанией.

Расположение материков, а также различия в температуре и солености воды, системе течений, приливов и отливов позволяют разделить Мировой океан на части, называемые океанами. С 1996 г. решением комиссии по географическим названиям выделяют Южный океан, который включает воды трех океанов (Тихого, Атлантического и Индийского), окружающих Антарктиду (границы его варьируют от 37 до 48° ю.ш. на разных меридианах).

Вдаваясь в сушу, океан образует моря, заливы и проливы, которые, в свою очередь, отчленяют от материка полуострова и острова. По положению в отношении материков и характеру соединения с океанами моря могут быть окраинными, внутриматериковыми и средиземными.

Чем больше морей вдается в материк, тем сильнее он расчленен и тем извилистее его береговая линия. Степень расчлененности суши лучше всего выражается отношением площади полуостровов и островов к общей поверхности материка или части света. Из общей площади частей света на острова и полуострова приходится: в Европе – 34 %, Северной Америке – 25, Азии – 24, Австралии – 19, Африке – 2,1, Южной Америке – 1,1 %.

Обобщенный профиль земной поверхности можно представить гипсографической кривой, которая показывает соотношение площадей, лежащих на разных высотах на суше и в океане. Эти соотношения дают очень важную характеристику природы земной поверхности (рис. 17).

Профиль строится следующим образом: размеры площадей, занимающих различные высоты и глубины, снимаются с гипсометрических и батиграфических карт. Затем чертятся координатные оси. По линии ординат откладывают от 0 вверх высоты, а вниз – глубины; по линии абсцисс – площади в миллионах квадратных километров. Средняя высота суши – 840 м (преобладают высоты менее 1000 м). Средняя глубина океана – 3800 м (преобладают глубины от 3000 до 6000 м).

В расположении материков и океанов на Земле выявляются следующие закономерности:

1. Большая часть суши сосредоточена в северном полушарии. Южное полушарие – океаническое, 81 % его площади покрыто водой и только 19 % приходится на сушу. Северное полушарие – материковое, суша в нем занимает 39 %, а вода – 61 % общей поверхности. Наиболее материковой является полоса, расположенная между 40 и 70° с.ш., именно те же широты, только южного полушария, оказываются наиболее океаническими.

2. Материки образуют два ряда: северный, включающий Евразию и Северную Америку, и южный, или приэкваториальный, состоящий из Южной Америки, Африки и Австралии. Вне рядов остается Антарктида. Северные материки имеют разнообразный пересеченный рельеф, широкую материковую отмель и изрезанную береговую линию, что обусловлено сложным геологическим строением. Приэкваториальные континенты, как это видно на карте, характеризуются относительной простотой рельефа и береговой линии и почти отсутствием шельфа, что объясняется сравнительно однородным их геологическим строением.


Рис. 17. Гипсографическая кривая Земли (по Ф.Н. Милькову)


3. Северные материки простираются от тропических широт через умеренные в субполярные, тогда как южные находятся по обе стороны от экватора и не выходят за пределы субтропического пояса. Крайние северные точки материков северного полушария: Азия – мыс Челюскина (74°43′ с.ш.); Европа – мыс Нордкин (71°08′ с.ш.); Америка – мыс Мерчисон (71°50′ с.ш.). Южные материки оканчиваются в субтропиках. Их крайние южные мысы: Африка – мыс Игольный (34°51′ ю.ш.); Австралия – мыс Вильсон (39° 11′ ю.ш.); континентальная плита Южной Америки заканчивается мысом Фроуорд (53°54′ ю.ш.).

4. Материки располагаются антиподально: каждому материку на противоположном конце земного диаметра соответствует океан.

5. Описанные особенности расположения и характера материков свидетельствуют о зональности в распределении суши и моря по земной поверхности. Общепланетарная геоморфологическая зональность антисимметрична: материкам северного полушария в южном соответствуют океанические площади; морской Арктике отвечает материковая Антарктида; суша господствует над океаном между 40 и 70° с.ш., а в южном полушарии именно в этих широтах простирается сплошное водное кольцо.

6. Все материки имеют форму клиньев или треугольников, острые вершины которых обращены на юг (менее выражена эта форма только у Австралии).

7. Меридионально вытянутые планетарные формы рельефа простираются S-образно. Такое направление свойственно Кордильерам, Андам, подводному Атлантическому хребту, восточному побережью Азии и Австралии и др.

8. Кроме зональности в расположении материков проявляется вторая обязательная черта природы – секторность. Материки, как это показал еще А.П. Карпинский, располагаются в секторах наименьшей экваториальной оси земного сфероида.

9. Между площадями континентов и их средними высотами имеется прямая зависимость: чем больше площадь континента, тем больше его средняя высота и мощность литосферы в его пределах; чем больше океан, тем он глубже и тем тоньше кора под ним. Максимальной мощности земная кора достигает под горами (60–70 км), минимальной – под океаном (5—10 км). Такая зависимость определяется изостазией: большим материкам соответствует мощная литосфера, которая и глубоко погружается в мантию, и высоко поднимается над ней.

10. Через земную кору зонально и меридионально проходят пояса разломов:

Средиземноморский пояс разлома. Возник на месте океана Тетис, проходит около 35° с.ш. через Средиземное море, систему альпийских гор Северной Африки и Южной Европы, Кавказ, Переднюю Азию, Гималаи и Индокитай; он выражен молодыми горными цепями, повышенным вулканизмом и сейсмичностью.

Пояс разлома южного полушария. Проходит параллельно первому в южном полушарии около 35° ю.ш. Выражен окончанием материков (в Южной Америке – материковой плиты).

Тихоокеанский пояс разлома. Проходит вдоль обоих берегов Тихого океана в меридиональном направлении. К нему также приурочены молодые горы, цепочки островных дуг, сильный вулканизм и большая сейсмичность.

В Центральной Америке и Юго-Восточной Азии Тихоокеанский и Средиземноморский пояса разломов пересекаются.

Рифтовые зоны срединно-океанических хребтов.

11. Материки попарно группируются в континентальные «лучи» (Северная Америка с Южной, Европа с Африкой, Азия с Австралией), которые сходятся к северному полярному пространству. Образуется так называемая «континентальная звезда», которая особенно отчетливо вырисовывается на картах, построенных в звездной проекции. В каждой паре северный материк отделен от южного областью разлома земной коры.

Сходства, соответствия или подобия в расположении и конфигурации материков или их частей называются географическими гомологиями (сходство направлений западного берега Африки и восточного берега Южной Америки; общность в конфигурации атлантических берегов Европы и Северной Америки и др.).

В рельефе материков выделяют платформенные равнины и горные страны. Платформенные равнины составляют 64 % суши, горные страны – 36 %.

Платформенные равнины – наиболее распространенный тип рельефа докембрийских и эпипалеозойских платформ – выровненные участки поверхности с небольшим превышением относительных высот, соответствующие устойчивым участкам суши (платформам). Общая черта равнин – небольшие (меньше 200 м) колебания высот при значительной протяженности. Они располагаются на разной высоте над уровнем моря, в связи с чем различают:

депрессии – лежащие ниже уровня моря равнины (Прикаспийская низменность);

низменные равнины высотой от 0 до 200 м (Западно-Сибирская равнина, Амазонская низменность);

возвышенные равнины высотой от 200 до 500 м (Белорусская гряда, Смоленско-Московская возвышенность);

нагорные равнины, поднимающиеся выше 500 м; чередуясь с приподнятыми над ними сильно разрушенными горными хребтами, они образуют нагорья (Армянское, Иранское, Мексиканское), входящие составной частью в обширные горные системы.

Крупные участки возвышенных и нагорных равнин, ограниченные крутыми уступами от соседних более низких равнинных пространств, известны под названием плато (Устюрт, Заангарское, Тунгусское и другие плато на Среднесибирском плоскогорье).

По геологическому строению и истории развития равнины делятся на аккумулятивные, денудационные, пластовые и цокольные. Выделяют также куэстовый рельеф, шельфовые равнины, плоскогорья.

Аккумулятивные равнины обладают хорошо развитым покровом осадочных отложений, полностью скрывающий докембрийский и эпипалеозойский складчатый фундамент платформ, и приурочены к областям прогибания в настоящее время (синеклизам). Подобные участки платформ принято называть плитами (Восточно-Европейская, Туранская, Западно-Сибирская, Амазонская равнины, Великие равнины в Северной Америке). Выступы складчатого фундамента на поверхности аккумулятивных равнин отражают возвышенности и низменности.

Денудационные равнины свойственны тем платформам или их участкам, которые на протяжении почти всей своей истории испытывали тенденцию к поднятию. Они приурочены к антеклизам и щитам. Поверхность денудационных равнин представляет нижний складчатый этаж платформ, имевший в далеком прошлом горный рельеф, а затем превращенный процессами выветривания в пенеплен.

Пластовые равнины (пластово-денудационные, по И.П. Герасимову) – это возвышенные равнины и плато, образовавшиеся на осадочных горных породах платформенного чехла, залегающих горизонтально или слабонаклонно. Характерны для областей с тенденцией к поднятию (антеклизам). Пластовые равнины также имеют два структурных этажа – складчатый фундамент и осадочный чехол. Однако мощность осадочного чехла намного меньше, чем у аккумулятивных равнин. Значительные площади Восточно-Европейской (Валдайская, Смоленско-Московская возвышенности, Северные Увалы) и Северо-Американской (Центральные равнины) платформ относятся к пластовым равнинам. Особый интерес представляют слабо расчлененные пластовые равнины с эоловым песчаным покровом. Сюда относится большая часть пустыни Кызылкум, где грядово-останцовый рельеф коренных пород перекрыт песчаной толщей с характерными эоловыми формами.

Цокольные равнины (цокольно-денудационные, по И.П. Герасимову) – равнины, сформированные на дислоцированных породах фундамента. Характерны для областей длительного поднятия (в противоположность областям опусканий, где образуются равнины аккумулятивные). Цокольные равнины широко представлены в Африке (плато Дарфур), Северной Америке (Лаврентийская возвышенность).

Куэстовый рельеф образуется в случае моноклинального (с наклоном в одну сторону) залегания пластов горных пород различной твердости (куэсты Парижского бассейна, Валдайская возвышенность).

Шельфовые равнины – затопленные мелководными морями аккумулятивные равнины материков, сохраняющие реликтовые формы рельефа (например, речные долины), образовавшиеся в надводных условиях.

Плоскогорья характерны для платформ с длительно выраженной тенденцией к поднятию. Это крупные приподнятые участки суши со сглаженными волнистыми водоразделами и глубоко расчлененным эрозией горным рельефом вблизи рек (Среднесибирское плоскогорье, размещающееся в пределах докембрийской Сибирской платформы; плоскогорье Декан, Бразильское, Восточно-Африканское плоскогорья). Плоскогорья есть и за пределами древних платформ, например Алазейское, Юкагирское, Оймяконское плоскогорья в Северо-Восточной Сибири (в области мезозойской складчатости), сложенные преимущественно вулканическими и метаморфическими породами.

Горная страна — территория, состоящая из хребтов и разделяющих их межгорных долин. Горный хребет – линейно-вытянутое крупное поднятие, ограниченное склонами. Гора – изолированное резко выраженное поднятие на фоне равнинной местности с высотами более 500 м, у нее есть вершина (наивысшая точка), подошва (линия пересечения с поверхностью равнины) и склоны. Горные цепи – система горных хребтов, тянущаяся в направлении общего простирания горной страны. Горный узел – область пересечения двух или более горных хребтов или цепей.

По высоте горы бывают: низкие (500—1000 м) – предгорья Крыма, Кавказа; средние (1000–2000 м) – Урал, Карпаты, Сихотэ-Алинь; высокие (2000–5000 м) – Альпы, Кордильеры; высочайшие (от 5000 м) – Гималаи, Тянь-Шань, Гиндукуш, Каракорум.

По происхождению горы делятся на тектонические, вулканические и эрозионные.

Тектонические горы, по классификации И.П. Герасимова и Ю.А. Мещерякова, подразделяются на молодые (эпигеосинклинальные) и возрожденные (эпиплатформенные). Области молодых гор занимают 41 %, возрожденных – 59 % общей площади гор. Молодые горы являются складчатыми горами.

Складчатые горы – молодые горы, образовавшиеся на месте геосинклиналей во время альпийской эпохи складкообразования. Отличаются большой высотой, чередованием хребтов с крутыми склонами, совпадающих обычно с антиклиналями, и узких долин, соответствующих синклиналям (Альпы, Кавказ, Гималаи).

Складчато-глыбовые горы называют возрожденными, так как после своего возникновения в одну из древнейших эпох складкообразования они были пенепленезированы, а затем под влиянием неотектонических движений подверглись омоложению. Хребты, достигающие очень значительных высот (свыше 7000 м на Тянь-Шане), плосковершинны – следы древнего пенеплена. Другими словами, это бывшие платформенные равнины, раздробленные на глыбы, одни из которых взброшены вверх, другие опущены (Тянь-Шань, Саяны, горы Забайкалья, Урал).

Вулканические горы формируются при извержении вулканов и накоплении вулканических осадков (вулканы Гавайских островов).

Эрозионные горы образуются в результате эрозионного расчленения участка поверхности, сложенного горизонтально залегающими горными породами и поднятого на большую высоту. Для эрозионных гор характерны плоские вершины, крутые склоны, от подножий тянется шлейф, сложенный продуктами выветривания (типичные эрозионные горы распространены в Африке).

В горных станах часто встречаются нагорья – обширные территории, состоящие из чередующихся хребтов, плато и плоскогорий.

4.6. Современные тектонические проявления: вулканизм, землетрясения

Внутренние части земного шара находятся в твердом состоянии, переход вещества в жидкую фазу всегда локально ограничен и вызывается либо местным разогревом под действием скопления радиоактивных веществ, либо ослаблением давления без дополнительного нагрева. Таким образом, в земной коре имеются отдельные более или менее обширные очаги жидких или тестообразных минеральных масс, возникающие преимущественно в участках, которые подверглись разломам с образованием трещин и в которых наиболее вероятно уменьшение давления на глубине. Содержащиеся в этой жидкой массе, называемой магмой, газы увлекают ее вверх, по направлению к земной поверхности. Движение это может закончиться, когда магма еще не достигла поверхности; тогда она медленно застывает под землей и вновь становится твердым телом, дав начало магматическим горным породам, а именно интрузивным, или глубинным. Если же магма, достигая поверхности, выльется из нее и здесь затвердеет, то получившиеся в результате этого магматические породы называются эффузивными или излившимися.

Вулканизмом называют совокупность процессов, связанных с проникновением в земную кору и излиянием на поверхность изнутри Земли расплавленной и насыщенной газами минеральной массы – магмы. Излившись на поверхность и потеряв летучие компоненты, магма превращается в лаву Вулканы извергают также рыхлые продукты – пепел и камни.

Вулкан – геологическое образование, возникающее над тектоническими трещинами и каналами в земной коре, по которым из глубинных магматических очагов на земную поверхность извергаются вулканические продукты: лава, пепел, газы, водяные пары, обломки горных пород и др. Вулканическая деятельность проявляется в создании специфических вулканических форм рельефа. Она же участвует в преобразовании океанической коры в континентальную.

Вулканизм – следствие и одно из проявлений современной тектонической активности Земли. В настоящее время на материках насчитывается около 2000 вулканов, из которых 616 – действующие, т. е. проявившие свою активность на памяти человечества. Лишь 76 из активных вулканов находятся на дне морей и океанов, остальные расположены на суше. Всего же на дне Мирового океана насчитывается около 10 000 вулканов.

Современные вулканические процессы распространены вдоль молодых складчатых и тектонических подвижных областей и крупных разломов. Выделяют следующие вулканические пояса:

Тихоокеанский пояс («огненное кольцо»): начинается на полуострове Камчатка, далее проходит через систему Курильских, Японских, Филиппинских островов, Новую Гвинею, Соломоновы, Ново-Гебридские, Ново-Зеландские острова, через море Росса, вулканические острова около Антарктиды, Огненную Землю, Анды, Центральную Америку, вдоль Кордильер и замыкается вулканами Алеутских островов;

Средиземноморский: включает вулканы Апеннинского полуострова, острова Сицилии, Липарских островов, Эгейского моря, полуострова Малой Азии, Кавказа, Иранского нагорья, Зондских островов;

Атлантический: занимает острова Срединно-Атлантического хребта – Ян-Майен, Исландию, Азорские, Вознесения, Св. Елены, Мадейру, Канарские, Зеленого Мыса, Тристан-да-Кунья и др.;

Индийский: расположен вдоль Срединно-Индийских подводных хребтов и охватывает Коморские острова, Мадагаскар, Маврикий, Реюньон, Кергелен, Крозе, Сен-Поль, Амстердам, Принс-Эдуард;

Восточно-Африканский: проходит вдоль Великих африканских разломов.

На материковых платформах и в возрожденных горах тоже есть вулканы, но из них действовали в историческое время только десятки. Потухшие вулканы имеются в Восточной Сибири, на Британских островах, в Центральной Европе, на Индостане, в Аравии, в Южной и Восточной Африке.

Формы вулканического рельефа зависят от характера извержения и от состава лавы.

При трещинных излияниях извергаются большие массы жидкой лавы, которая, широко изливаясь, образует огромные лавовые покровы. В настоящее геологическое время наибольшие трещинные излияния происходят в Исландии. Известны также на островах Азорских, Самоа, Новой Зеландии. В прежние геологические эпохи трещинных излияний было больше (лавовое плато Колумбии, трапповое плато Декан, вулканические плоскогорья Армении, область траппов в Восточной Сибири).

В вулканах центрального извержения магма поступает на поверхность по жерлу. Формы рельефа, формируемые при центральном извержении, зависят от характера деятельности и состава лавы:

1. Маары (в настоящее время не действуют) – отрицательная форма, образовавшаяся в результате взрыва. Древние трубки взрыва заполнены кимберлитовой породой и являются месторождениями алмазов (Якутия, Африка).

2. Вулканы гавайского типа извергают основную, т. е. содержащую мало кремния, базальтовую лаву, которая спокойно изливается и медленно застывает, растекаясь на большие площади. Такие вулканы образуют щитовые покровы, для которых характерна очень большая площадь и плоская приплюснутая форма. Самый большой из Гавайских островов – Гаваи – представляет собой три соединившихся вулкана (Мауна Лоа, Мауна Кеа, Гуалалаи). К щитовым относится также вулкан Толбачек на Камчатке.

3. Слоистые вулканы, или стратовулканы (типа Везувия), извергают водяные пары и газы, огромные массы пепла, каменные глыбы или вулканические бомбы (куски застывшей лавы, жидкую лаву). Они образуют вулканический конус слоистого строения (Ключевская и Кроноцкая Сопки, Фудзияма). Расширенный кратер называется кальдерой.

4. Вулканы типа Мон-Пеле извергают лаву кислую (окись кремния составляет 55 %), которая прочно закупоривает жерло и после извержения в застывшем виде торчит в виде иглы.

Нередко магма проникает в толщу горных пород, приподнимает и дислоцирует верхние пласты, но на поверхность не изливается, образуя интрузивные тела. На Северном Кавказе (район Пятигорска) среди ровного плато поднимается ряд конических и куполообразных гор высотой от 200 до 900 м (горы Лысая, Железная).

Вулканической деятельности сопутствуют поствулканические явления. К ним относят фумаролы (выделения паров и газов на остывающих лавовых потоках – «Долина десяти тысяч дымов» на Аляске в районе вулкана Катмай), гейзеры, горячие источники. На дне океанов распространены формы, получившие названия гайотов, – плосковершинные горы, образование которых связано с погружением древних вулканических островов.

Вулканические процессы оказывают влияние:

✓ на метеорологические явления: вулканический пепел, выброшенный на огромную высоту, разносится воздушными массами, как бы распределяясь по всей тропосфере и тем самым вызывая ее помутнение и ослабление притока солнечной радиации; в отдельных случаях потеря тепла из-за ослабления радиации вулканической пылью достигает 57–66 %);

✓ поступление в атмосферу углекислоты, необходимой для жизни растений;

✓ характер гидрографической сети: лавовые потоки, перегораживая реки, неоднократно служили причиной образования озер плотинного типа;

✓ характер рельефа: трещинные излияния способствуют нивелировке рельефа; извержения центрального типа, наоборот, усиливают неровности рельефа – возникают высокие аккумулятивные конусы, образующие в некоторых случаях целые горные цепи (восточное побережье Камчатки). Извержения вулканов в Исландии приводят к таянию огромных масс льда.

Ярким свидетельством наличия процессов горообразования служат землетрясения, они показывают, что отдельные участки Земли находятся в весьма активном состоянии и испытывают перемещения.

Землетрясением называют быстрые движения земной коры, вызывающие в ней устойчивые (т. е. сохраняющиеся и после прекращения движения) изменения. Сейсмические волны, порождаемые землетрясениями, распространяются во все стороны от очага подобно звуковым волнам. Точка, в которой начинается подвижка пород, называется фокусом, очагом или гипоцентром, а точка на земной поверхности над очагом – эпицентром землетрясения. Ударные волны распространяются во все стороны от очага, по мере удаления от него их интенсивность уменьшается. Глубина очагов землетрясений (гипоцентров) обычно не превышает 40–60 км, чаще всего составляет 15–20 км. Однако в отдельных случаях (преимущественно по окраинам бассейна Тихого океана) очаги лежат гораздо глубже – до 300–700 км. На Земле в среднем каждый год бывает более 100 тыс. землетрясений, из них около 10 % ощущается людьми. Вместе с тем землетрясения распределены по Земле далеко не равномерно. Их почти не бывает в центральной части Тихого океана (кроме Гавайских островов) и на всех древних платформах материков, что говорит об отсутствии здесь процессов горообразования (Канада, Бразилия, Русская платформа, Африка, Индия, Австралия и Антарктида).

Для оценки и сравнения землетрясений используются две шкалы: одна – для измерения интенсивности, другая – для измерения магнитуды.

Интенсивность землетрясения – степень сотрясения грунта на поверхности Земли, ощущаемого в различных точках зоны воздействия землетрясения. Величина интенсивности землетрясений измеряется по 12-балльной шкале, определяется на основании оценки фактических разрушений, воздействия на предметы, здания и почву, последствий для людей и является качественной характеристикой землетрясения (табл. 5). В мире используется несколько шкал интенсивности: в США – Модифицированная шкала Меркалли (ММ), в Европе – Европейская макросейсмическая шкала (EMS), в Японии – шкала Японского метеорологического агентства («Shindo»). Широкое распространение особенно в Европе, получила шкала Медведева – Шпонхойера – Карника (MSK-64).


Таблица 5

Двенадцатибалльная шкала интенсивности землетрясений




Магнитуда землетрясения — величина, пропорциональная энергии, выделяемой в очаге землетрясения. Она определяется с помощью прибора, называемого сейсмографом. Показания прибора (амплитуда и период сейсмических волн) указывают на количество энергии упругой деформации, выделяемой в процессе землетрясения. Чем больше амплитуда волны, тем сильнее землетрясение. Существует несколько магнитуд и, соответственно, магнитудных шкал: локальная магнитуда (ML); магнитуда, определяемая по поверхностным волнам (Ms); магнитуда, определяемая по объемным волнам (mb); моментная магнитуда (Mw).

Наиболее популярной шкалой для оценки энергии землетрясений является локальная шкала магнитуд Рихтера, разработанная американским сейсмологом Чарльзом Рихтером в 1935 г., в ней используются арабские цифры. Шкала Рихтера логарифмическая и открытая, т. е. нет ни верхнего, ни нижнего предела для магнитуд. Каждое увеличение магнитуды на одно целое число соответствует 32-кратному увеличению количества выделяемой энергии. Считается, что падение крупного метеорита может иметь магнитуду, близкую к 13, но в действительности на Земле землетрясений с магнитудой более 9,5 не бывает из-за того, что горные породы не выдерживают такого выделения энергии и разрушаются (магнитуда, равная 9,5, – максимальная из зарегистрированных, Великое Чилийское землетрясение 21 мая 1960 г. соответствует энергии 1019 Дж). Нулевая магнитуда означает, что землетрясения нет, она отвечает энергии 105 Дж). Магнитуда не измеряется в баллах.

По глубине расположения гипоцентра землетрясения делятся на мелко-, средне- и глубокофокусные. Если очаг расположен, например, на глубине от 0 до 60 км, землетрясение считается неглубоким; если на глубине от 60 до 300 км – землетрясение имеет среднюю глубину очага; при глубине очага от 300 до 700 км имеет место глубокофокусное землетрясение.


Рис. 18. Самые мощные землетрясения на Земле


Наиболее мощные по магнитуде (8,0–9,5) землетрясения на Земле за период наблюдений представлены на рис. 18 (землетрясение в зоне субдукции Каскадия, 1700 г.; землетрясение в центральной части Чили, провинция Вальпараисо, 1730 г.; Лиссабонское землетрясение, 1755 г.; Суматранское землетрясение, 1833 г.; Камчатское землетрясение, 1952 г.; Великое Чилийское землетрясение, 1960 г. и др.).

В XXI в. из четырех землетрясений с магнитудой более 8,5 три произошли на острове Суматра, причем землетрясение в Рождество 2004 г. не только имело магнитуду более 9, но и привело к большим человеческим жертвам в связи с огромной волной цунами. Выделяются также Соломоновы острова: таких землетрясений было также три – 1 апреля 2007 г. (8,1 магнитуды), 7 октября 2009 г. (7,8 магнитуды) и 6 февраля 2013 г. (8,0 магнитуды) (рис. 19).

Почти треть землетрясений с магнитудой более 6 баллов произошла в Индонезии и близких к этой стране районах, в Южной Америке за этот период число землетрясений было почти в 2 раза меньше. Но за весь период наблюдений южноамериканские страны, находящиеся на западе континента (Чили, Перу, Эквадор, Колумбия), намного чаще испытывали на себе последствия сильных землетрясений.

Большая часть эпицентров землетрясений сосредоточена в областях альпийской складчатости и современных геосинклиналей.

Прежде всего, надлежит выделить Тихоокеанский пояс, в котором высвобождается около 80 % сейсмической энергии Земли. Начинаясь дугой Алеутских островов, весьма активной в сейсмическом отношении, он тянется длинной полосой по западному краю Северной, Центральной и Южной Америки и через острова Южная Георгия, Южные Сандвичевы, Южные Оркнейские и Южные Шетландские.

Вторая часть Тихоокеанского пояса обрамляет океан с запада, захватывая острова Новую Зеландию, Кермадек, Тонга, Новые Гебриды, Новую Гвинею, Каролинские, Марианские, Японские, Тайвань, Филиппины, Молуккские, Зондские и полуостров Камчатку.

Такое распределение очагов землетрясений свидетельствует о наличии в земной коре и в подкоровой области наклонной поверхности разлома, вдоль которой либо материки надвигаются на океанское дно, либо подкоровое вещество перемещается от океанского дна под материк.

Менее сейсмичен Европейско-Азиатский пояс, на долю которого приходится 15 % сейсмической энергии, выделяемой Землей. Он охватывает Средиземноморский бассейн, Кавказ, Иран, Памир, Тянь-Шань, область Гималаев, горные цепи Бирмы и Китая, а в России от Тянь-Шаня идет по горным системам в Прибайкалье и бассейн Амура.


Рис. 19. Землетрясения с магнитудой более 7,0 с 2001 по 2014 г.


К второстепенным сейсмическим поясам Земли относятся:

✓ Атлантический – вдоль Атлантического подводного хребта (от островов Тристан-да-Кунья к Исландии) и далее через Ян-Майен и Шпицберген к устью Лены;

✓ Индийский, совпадающий с расположением подводных хребтов Центрального Индийского и Кергелен-Гауссберг;

✓ Восточно-Африканский – в области Восточно-Африканских грабенов: от Аденского залива через Красное море, Великие Африканские озера к устью Замбези.

Анализ распространения землетрясений показывает, что они бывают не в любых местах, а только там, где земная кора рассечена сбросами, разломами, где наибольшие контрасты рельефа, где самые высокие горы находятся по соседству с самыми глубокими океаническими впадинами, вдоль стыков разнородных геологических структур, в областях молодых и еще только зарождающихся складок, т. е. в районах интенсивных тектонических подвижек земной коры. Именно этими подвижками землетрясения и вызываются.

Географические следствия землетрясений:

✓ деформации земной поверхности (особенно сильные в рыхлых горных породах: лёсс, аллювий и др.);

✓ оползни, обвалы, оплывни и снежные лавины;

✓ цунами – особые волны на поверхности моря, порождаемые землетрясением на его дне;

✓ иногда – ускорение движения ледников и нарушение режима подземных вод (исчезают источники или меняется их дебит, свойства, появляются новые источники).

Конец ознакомительного фрагмента.