Вы здесь

Общая и прикладная экология. Глава 1. Введение в предмет (А. А. Челноков, 2014)

Глава 1

Введение в предмет

1.1. Краткая история становления экологии как науки

Экология приобрела практический интерес еще на заре развития человечества. В примитивном обществе каждый человек для своего выживания должен был иметь определенные знания об окружающем его пространстве, растениях и животных. Принято утверждать, что цивилизация возникла тогда, когда человек научился использовать огонь и другие средства и орудия, позволяющие ему изменять среду своего обитания.

Как и другие области знания, экология развивалась непрерывно, но неравномерно на протяжении истории человечества. Судя по дошедшим до нас орудиям охоты, наскальным рисункам, обрядам, люди еще на заре становления человечества уже хорошо знали о повадках животных, образе их жизни, сроках сбора съедобных и лекарственных растений, о местах их произрастания, способах выращивания и ухода за ними.

Некоторые сведения подобного рода находим в сохранившихся памятниках древнеегипетской, индийской и тибетской культур. В древнеиндийских сказаниях «Махабхарата» (VI–II вв. до н. э.) даются сведения о повадках и образе жизни около 50 видов животных, сообщается об изменениях численности некоторых из них. В рукописных книгах Вавилонии есть описания способов обработки земли, указывается время посева культурных растений, перечисляются птицы и животные, вредные для земледелия. В китайских хрониках IV–II вв. до н. э. описываются условия произрастания различных сортов культурных растений.

В работах древнегреческих философов Гераклита (530–470 гг. до н. э.), Гиппократа (460–356 гг. до н. э.), Аристотеля (384–322 гг. до н. э.), Теофраста Эрезийского (372–287 гг. до н. э.), Плиния Старшего (23–79 гг.) и других содержатся сведения экологического характера. Например, Аристотель описал 500 известных ему видов животных, особенности их поведения и приспособления к условиям окружающей среды. Его ученик Теофраст Эрезийский описывал особенности роста растений и их формы в зависимости от грунта и климата. В его работах впервые было предложено разделить покрытосеменные растения на основные жизненные формы: деревья, кустарники, полукустарники, травы. К этому же периоду относится знаменитая «Естественная история» Плиния Старшего (23–79 гг. н. э.).

В Средние века в Европе интерес к изучению природы ослабевает, подменяясь схоластикой и богословием. Жизнь на Земле толковалась исключительно как воплощение воли Бога. Людей сжигали на кострах не только за идеи развития природы, но и за чтение книг древних философов. В этот период, затянувшийся на целое тысячелетие, только единичные труды содержат факты научного значения. Большинство же сведений имеют прикладной характер. Описываются целебные травы, сельскохозяйственные растения и животные, природа далеких стран (Марко Поло, XIII в., Афанасий Никитин, XV в.).

Началом новых веяний в науке в период позднего Средневековья являются труды Альберта Великого (Альберт фон Больштедт, 1193–1280 гг.). В своих книгах о растениях он придает большое значение условиям их местообитания, где помимо почвы важное место уделяет солнечному теплу; рассматривая причины зимнего сна у растений, размножение и рост организмов, ставит их в неразрывную связь с питанием.

Крупными сводами средневековых знаний о живой природе являлись многотомное «Зеркало природы» Венсенаде Бове (XIII в.), «Поучение Владимира Мономаха» (XI в.), «О поучениях и сходствах вещей» доминиканского монаха Иоанна Сиенского (начало XIV в.).

В эпоху Возрождения продолжалось накопление данных о растительном и животном мире. Первые систематики Д. Цезалпин (1519–1603), Д. Рей (1627–1705), Ж. Турнефор (1656–1708) в своих трудах приводят сведения экологического характера, в частности, зависимость распространения растений от условий их произрастания. Все перечисленные творения представляют собой первый этап «стихийной» экологии – этап накопления эмпирических знаний.

Второй этап развития науки связан с крупномасштабными ботанико-географическими исследованиями в природе. Подлинным основоположником экологии растений принято считать А. Гумбольдта (1769–1859), опубликовавшего в 1807 г. работу «Идеи о географии растений», где на основе своих многолетних наблюдений в Центральной и Южной Америке он показал значение климатических условий, особенно температурного фактора, для распределения растений. В сходных зональных и вертикально-поясных географических условиях у растений разных таксономических групп вырабатываются сходные «физиономические» формы, т. е. одинаковый внешний облик. По распределению и соотношению этих форм можно судить о специфике физико-географической среды.

Появились первые специальные работы, посвященные влиянию климатических факторов на распространение и биологию животных.

В 1832 г. О. Декандоль (1778–1841) обосновал необходимость выделения особой научной дисциплины «эпиррелогии», изучающей влияние на растения внешних условий и воздействие растений на окружающую среду. Декандоль писал: «Растения не выбирают условия среды, они их выдерживают или умирают. Каждый вид, живущий в определенной местности, при известных условиях представляет как бы физиологический опыт, демонстрирующий нам способ воздействия теплоты, света, влажности и столь разнообразных модификаций этих факторов», т. е. рассматривал влияние факторов среды и образование биоценозов.

Число таких факторов по мере расширения и углубления исследований по экологии растений возрастало, а оценка значимости отдельных факторов изменялась.

Русский ученый Э.А. Эверсман (1794–1860) рассматривал организмы в тесном единстве с окружающей средой. В работе «Естественная история Оренбургского края» (1840) он четко разделил факторы среды на абиотические и биотические, привел примеры борьбы и конкуренции между организмами, между особями одного и разных видов.

Дальнейшее развитие науки экологии произошло на базе эволюционного учения Ч. Дарвина (1809–1882). Он по праву является одним из основоположников классической экологии. В книге «Происхождение видов» (1859) им показано, что борьба за существование в природе приводит к естественному отбору, т. е. является движущим фактором эволюции. Взаимоотношения живых существ и связи их с неорганическими компонентами среды – большая самостоятельная область исследований.

Третий этап системных исследований охватывает конец XIX – первую половину XX в. и связан с именами российских ученых В.В. Докучаева (1846–1903), В.И. Вернадского (1863–1945), Г.Ф. Морозова (1867–1920), В.Н. Сукачева (1880–1967), украинских ученых Г.М. Высоцкого (1865–1940), П.С. Погребняка (1900–1970). Основное место в развитии системных экологических исследований занимают труды немецких ученых Э. Геккеля, Р. Гессе, В. Кюнельта, американских исследователей В. Шелфорда, Р. Чепмена, Г. Кларка, английских – Ч. Элтона, А. Тенсли, швейцарского – К. Шретера, испанского – Е. Макфельдьена и др.

В ходе развития экологической науки понятие экологии претерпело существенные изменения. Сам термин был введен в 1866 г. немецким зоологом-эволюционистом Э. Геккелем (1834–1919) в книге «Всеобщая морфология организмов». Во втором томе этого обширного труда Геккель дал свое определение экологии как науки: «Под экологией мы понимаем общую науку об отношениях организмов с окружающей средой, куда мы относим в широком смысле все «условия существования». Они частично органической, частично неорганической природы; но как те, так и другие… имеют весьма большое значение для форм организмов, так как они принуждают их приспосабливаться к себе. К неорганическим условиям существования, к которым приспосабливаются все организмы, во-первых, относятся физические и химические свойства их местообитаний – климат (свет, тепло, влажность и атмосферное электричество), неорганическая пища, состав воды и почвы и т. д. В качестве органических условий существования мы рассматриваем общие отношения организма ко всем остальным организмам, с которыми он вступает в контакт и из которых большинство содействует его пользе или вредит. Каждый организм имеет среди остальных своих друзей и врагов таких, которые способствуют его существованию, и тех, что ему вредят. Организмы, которые служат пищей остальным или паразитируют в них, во всяком случае относятся к данной категории органических условий существования» (Haeckel Е., 1866. Bd. II. S. 2861).

Эта цитата отчетливо показывает, что, формулируя понятие экологии как новой науки, Геккель строил ее не на пустом месте, а на основании большого фактического материала, накопленного в биологии за время ее длительного развития.

Действительно, весь предшествующий период становления биологических знаний шло накопление не только описаний отдельных видов, но и материалов по их образу жизни, а подчас и отдельных обобщений. Еще в 1798 г. Т. Мальтус (1766–1834) описал уравнение экспоненциального роста популяции, на основе которого строил свои демографические концепции. Уравнение логистического роста предложено П. Ферхюльстом (1804–1849) в 1845 г.

Ж.Б. Ламарк (1744–1829) в «Гидрогеологии» фактически предвосхитил представление о биосфере. Французский врач В. Эдварде (1824) опубликовал книгу «Влияние физических факторов на жизнь», которая положила начало экологической и сравнительной физиологии, а Ю. Либих (1840) сформулировал знаменитый «закон минимума», не потерявший своего значения и в современной экологии.

В России профессор Московского университета К.Ф. Рулье (1814–1858) на протяжении 1841–1858 гг. дал практически полный перечень принципиальных проблем экологии, но не нашел выразительного термина для обозначения этой науки. Он первый четко определил принцип взаимоотношений организма и среды: «Ни одно органическое существо не живет само по себе; каждое вызывается к жизни и живет только постольку, поскольку находится во взаимодействии с относительно внешним для него миром. Это закон общения или двойственности жизненных начал, показывающий, что каждое живое существо получает возможность к жизни частию из себя, а частию из внешности».

Развивая этот принцип, Рулье делит взаимоотношения со средой на две категории: «явления жизни особной» и «явления жизни общей», что соответствует современным представлениям об экологических процессах на уровне организма и на уровне популяций и биоценозов. В опубликованных лекциях и отдельных статьях он поставил проблемы изменчивости, адаптации, миграций, ввел понятие «стация», рассмотрел влияние человека на природу и т. д. При этом механизмы взаимоотношений организмов со средой Рулье обсуждал с позиций, настолько близких к классическим принципам Ч. Дарвина, что его по праву можно считать предшественником Дарвина. К сожалению, Рулье умер в 1858 г., за год до выхода в свет «Происхождения видов». Труды его практически неизвестны за рубежом, но в России они имели огромное значение, послужив основой формирования мощной когорты экологов-эволюционистов, которые были его прямыми учениками (Н.А. Северцов, А.П. Богданов, С.А. Усов).

И все же начало развития экологии как самостоятельной науки следует отсчитывать от трудов Геккеля, давшего четкое определение ее содержания. Надо лишь отметить, что, говоря об «организмах», Геккель, как это было тогда принято, не имел в виду отдельных особей, а рассматривал организмы как представителей конкретных видов.

По существу, основное направление, сформулированное Геккелем, соответствует современному пониманию аутэкологии – экологии отдельных видов. В течение долгого времени основное развитие экологии шло в русле аутэкологического подхода (до 30-х гг. XX в.). На развитие этого направления большое влияние оказала теория Дарвина, показавшая необходимость изучения естественной совокупности видов растительного и животного мира, непрерывно перестраивающихся в процессе приспособления к условиям среды, что является основой процесса эволюции.

В аутэкологическом направлении начала – середины XX в. на фоне продолжающихся работ по изучению образа жизни выделяется ряд исследований, посвященных физиологическим механизмам адаптации.

В России это направление в основном сформировалось в 30-е гг. XX в. трудами ученых:

• зоолога Н.И Калабухова, пришедшего к пониманию необходимости применения физиологических методов для изучения адаптации;

• физиолога А.Д. Слонима, понявшего необходимость исследования адаптивного значения отдельных физиологических процессов. Эколого-физиологическое направление в экологии животных и растений, накопив огромный фактический материал, послужило основой появления большой серии монографий в 60–70-е гг. XX в.

Одновременно с этим в первой половине XX в. начались широкие работы по изучению надорганизменных биологических систем. Их основой послужило формирование концепции биоценозов как многовидовых сообществ живых организмов, функционально связанных друг с другом. Эта концепция в основном создана трудами К. Мёбиуса (1877), С. Форбса (1887) и др. В 1916 г. Ф. Клементс показал динамичность биоценозов и адаптивный смысл этого; А. Тинеманн (1925) предложил понятие «продукция»; Ч. Элтон (1927) опубликовал первый учебник-монографию по экологии, в котором четко выделил своеобразие биоценотических процессов, определил понятие трофической ниши и сформулировал правило экологических пирамид. В 1926 г. появилась книга В.И. Вернадского «Биосфера», в которой впервые была показана планетарная роль совокупности всех видов живых организмов – «живого вещества». В 1925–1926 гг. А. Лотка и В. Вольтерра создали математические модели роста популяций, конкурентных отношений и взаимодействия хищников и их жертв.

В 1934 г. Г.Ф. Гаузе опубликовал книгу «Борьба за существование», в которой экспериментально и с помощью математических расчетов показал принцип конкурентного исключения и исследовал взаимоотношения типа «хищник – жертва».

Начиная с 1935 г. с введением А. Тенсли понятия «экосистема», стали развиваться особенно широко экологические исследования надорганизменного уровня и практиковаться деление экологии на аутэкологию и синэкологию.

Экосистемные исследования остаются одним из основных направлений в экологии и в наше время. Уже в монографии Ч. Элтона (1927) впервые отчетливо выделено направление популяционной экологии. Практически все исследования экосистемного уровня строились на том, что межвидовые взаимоотношения в биоценозах осуществляются между популяциями конкретных видов. Таким образом, в составе экологии сформировалось популяционное направление, которое называют демэкологией.

В середине XX в. стало ясно, что популяция – это не просто сумма особей на какой-то территории, а самостоятельная биологическая (экологическая) система надорганизменного уровня, обладающая определенными функциями и механизмами авторегуляции, которые поддерживают ее самостоятельность и функциональную устойчивость. Это направление, наряду с интенсивным исследованием многовидовых систем, занимает важное место в современной экологии (Д. Кристиан, 1950, 1963; Д. Читти, 1960; Д. Кристиан, Д. Дэвис, 1970; Н.П. Наумов, 1967; И.А. Шилов, 1967, 1977; С.С. Шварц, 1969). Более того, некоторые ученые (Ф. Боденхаймер, 1958; С.С. Шварц, 1960; А. Макфедьен, 1965) полагали, что именно исследования на популяционном уровне представляют центральную проблему экологии.

Однако раскрытие роли многовидовых совокупностей живых организмов в осуществлении биогенного круговорота веществ и поддержании жизни на Земле привело к тому, что в последнее время ряд ученых экологию чаще определяют как науку о надорганизменных биологических системах или же только о многовидовых сообществах – экосистемах (Дж. Карпентер, 1962; Ю. Одум, 1963; Н.П. Наумов, 1973; Ю. Одум, 1975). Такой подход обедняет содержание экологии, особенно если учесть тесную функциональную связь организменного, популяционного и биоценотического уровней в глобальных экологических процессах (И.А. Шилов, 1981, 1985).

Большинство современных ученых рассматривают экологию как науку о закономерностях формирования, развития и устойчивого функционирования биологических систем разного ранга в их взаимоотношениях с условиями среды. При таком подходе экология включает в себя все три уровня организации биологических систем: организменный, популяционный и экосистемный.

Таким образом, в современной трактовке экология рассматривается как наука, изучающая взаимоотношения организмов и надорганизменных систем (популяции, биоценозы, экосистемы) между собой и окружающей их природной средой, а также структуру и организацию биологических систем различного уровня с учетом тех изменений, которые вносит человечество своей деятельностью.

1.2. Предмет, задачи и методы современной экологии

Собственно экология как наука сформировалась в рамках биологии. Предметом ее интересов стали взаимоотношения живых организмов между собой и с окружающей неживой природой, закономерности размещения и организации сообществ растений и животных, динамика их численности, факторы выживания и продуктивности, потоки энергии и круговороты веществ, в которых участвуют организмы.

Термин экология (от греч. oikos – дом, обитель, место обитания и logos – знание, учение) ввел в науку выдающийся немецкий зоолог Э. Геккель (1866). Он дал ряд определений экологии, одно из которых следующее: «это познание экономики природы, одновременное исследование всех взаимоотношений живого с органическими и неорганическими компонентами среды».

Выражение «экономика природы» тогда звучало лишь как образное иносказание. Но спустя сто лет появились веские основания для такого обозначения экологии. «Экономика природы» – так назвал свой курс основ общей экологии известный эколог Р. Риклефс (1979).

Обычное краткое определение экологии как науки о взаимоотношениях организмов и среды их обитания, а также другие, более пространные, определения не уточняют, включается ли в число «организмов» человек; причем не просто как биологический вид Homo sapiens (человек разумный), а как человеческое сообщество вместе со своей специфической средой обитания, со всем своим хозяйством, – как цивилизация. Если не включается, то экология остается в рамках классических представлений как часть биологии. Для человека выделяется самостоятельная социальная экология, а для связанных с деятельностью человека экологических проблем – так называемая наука об окружающей среде. В западной литературе понятия ecology (экология) и environmental science (наука об окружающей среде) различаются по смыслу.

Такое разделение оправдано, если считать, что законы, управляющие жизнью сообществ растений и животных в природе, не распространяются на человека или, по крайней мере, играют подчиненную роль по отношению к законам жизни людей, а живая природа и человеческое общество рассматриваются как две разные системы, внутренние связи в каждой из которых сильнее, существеннее, чем связи между ними.

Согласно этому подходу, взаимоотношения человека и природы строятся по правилам, которые устанавливает сам человек. Овладевая законами природы, подчиняя их своим интересам, опираясь на свой разум, социальную организацию и технологическую мощь, человек считает себя вне тех законов, которые действуют в живой природе. Возникшие проблемы окружающей среды представляются исключительно следствием неправильного ведения хозяйства, его высокой ресурсоемкости и отходности и выглядят принципиально устранимыми путем технологической реорганизации и модернизации производства. Считается, что законы природы не могут и не должны мешать экономическому росту, научно-техническому и социальному прогрессу человечества. Этот подход называют антропоцентрическим или технологическим (в крайнем проявлении – технократическим), т. е. ставящим человека, его технологии, его власть над природой в центр экологических проблем. Он характерен для многих политиков, экономистов, хозяйственников и представляется естественным для большинства инженеров.

Однако существует и другой, биоцентрический, или эксцентрический, подход к проблеме взаимоотношений человека и природы. Он основан на представлении, что человек как биологический вид в значительной мере остается под контролем главных экологических законов и в своих взаимоотношениях с природой обязан принимать ее условия. Развитие человеческого общества рассматривается как часть эволюции природы, где действуют законы экологических пределов, необратимости и отбора. Возникновение проблем окружающей человека среды обусловлено нарушением природного равновесия. Эти антропогенные, т. е. порожденные деятельностью человека, нарушения регуляторных функций биосферы не могут быть восстановлены или изменены только технологическим путем.

Прогресс человечества ограничивается экологическим императивом – безусловной зависимостью человека от состояния живой природы, требованием подчинения ее законам. Эксцентрический подход ставит эту зависимость в центр экологических проблем. В отличие от антропоцентризма эксцентризм исходит из факта объективного существования единой системы, в которой все живые организмы планеты, включая людей с их ресурсами, хозяйственной деятельностью и техникой, взаимодействуют между собой и с окружающей природной средой.

Выбор между этими двумя подходами или компромисс между ними во многом определяет стратегию дальнейшего развития человеческого общества. Есть и другие точки зрения на проблему взаимоотношений человека и природы – от полного равнодушия к ней до крайнего алармизма (от фр. alarme – тревога), но они являются лишь полярными вариантами указанных двух точек зрения. Большинство людей пока еще склонны к первой, антропоцентрической, точке зрения, так как она выглядит проще, оптимистичнее и отталкивается от предыдущего практического опыта человечества. Однако в настоящее время уже существуют очень веские аргументы в пользу эксцентризма, пренебрегать которыми нельзя.

После Геккеля в понятие экологии вносились различные смысловые оттенки, которые расширяли или сужали предмет этой области знания. Постепенно экология приобрела статус науки об организации и функционировании надорганизменных биологических систем.

И.А. Шилов (1997) определяет экологию уже как науку о закономерностях формирования, развития и устойчивого функционирования биологических систем разного ранга в их взаимоотношениях с условиями среды.

В последние десятилетия, когда угроза глобального экологического кризиса заставила рассматривать человеческую деятельность на планете с позиций законов живой природы, произошло быстрое расширение экологии. Вобрав в себя проблемы окружающей среды, экология не только использует достижения других разделов биологии, но и вторгается в смежные с ней дисциплины – в науки о Земле, физику и химию, различные инженерные отрасли, предъявляет новые требования к информатике и вычислительной технике; находит приложение за пределами естественных наук – в экономике, политике, социологии, этике. Этот процесс проникновения идей и проблем экологии в другие области знания получил название экологизации науки.

Экологизация науки отражает потребность общества в объединении науки и практики для предотвращения экологической катастрофы. Обращение разных наук к проблемам экологии и окружающей человека среды содержит постановку и решение многих практических задач. Поэтому дальше будет идти речь, прежде всего, об экологизации экономики, производства и техники. Экология превратилась из частного раздела биологии, знакомого узкому кругу специалистов, в обширный и еще окончательно не сформировавшийся комплекс фундаментальных и прикладных дисциплин, который Н.Ф. Реймерс (1992) назвал мегаэкологией, т. е. «большой экологией».

Расширение предмета экологии привело к появлению ряда новых ее определений. Все чаще она квалифицируется как система научных знаний о взаимоотношениях общества и природы.

Известный американский эколог Ю. Одум еще в 1963 г. назвал экологию наукой о строении и функциях природы в целом, а в его фундаментальной «Экологии» (1986) термин объясняется как междисциплинарная область знания об устройстве и функционировании многоуровневых систем в природе и обществе в их взаимосвязи. Это определение соответствует современному широкому пониманию экологии.

Таким образом, основным содержанием современной экологии является исследование взаимоотношений организмов друг с другом и со средой на популяционно-биоценотическом уровне и изучение жизни биологических макросистем более высокого ранга: биогеоценозов (экосистем), биосферы, их продуктивности и энергетики.

Объектами исследования экологии являются биологические макросистемы (популяция, биоценозы) и их динамика во времени и в пространстве.

Основные задачи экологии могут быть сведены к изучению динамики популяций, к учению о биоценозах и экосистемах. Структура биоценозов, на уровне формирования которых происходит освоение среды, способствует наиболее экономичному и полному использованию жизненных ресурсов. С этой точки зрения главная теоретическая и практическая задача экологии заключается в том, чтобы вскрыть законы этих процессов и научиться управлять ими в условиях неизбежной индустриализации и урбанизации нашей планеты.

В ходе изучения дисциплины студентам необходимо знать:

• принципы классификации структурно-иерархических образований в природе;

• основные законы и концепции современной экологии;

• принципы организации и функционирования основных иерархических структур современной экологии (популяция, экосистема, биосфера, техносфера, ноосфера);

• основные признаки и причины современного экологического кризиса;

• эволюционные аспекты возникновения современного экологического кризиса;

• прикладные и технологические аспекты экологии, существующие проблемы и методы их решения.

Студенты должны уметь:

• применять принципы и законы экологии к решению типовых производственных задач;

• давать оценку состояния и положения границ экосистем;

• прогнозировать изменения состояния экосистем под воздействием антропогенных факторов;

• применять полученные знания в практической оценке состояния природной среды и ее воздействия на организм человека.

В экологии используются методы исследований и понятия, применяемые в биологии, математике, физике, химии и т. д. Многие же методы исследований свойственны исключительно экологии. Например, если исследования особей (аутэкология) иногда близки исследованиям в области физиологии или биогеографии, то изучение популяций и биоценозов относится всецело к экологии.

Основные методы экологических исследований: полевые, экспериментальные исследования с использованием экосистемного подхода, изучения сообществ (синэкология), популяционного подхода (демэкология), анализ местообитаний, эволюционного и исторических подходов.

Экосистемный подход. При экосистемном подходе в центре внимания исследователя-эколога находятся поток энергии и круговорот веществ между биотическим и абиотическим компонентами экосферы. Наибольший интерес представляет установление функциональных связей живых организмов между собой и с окружающей средой. Все связи оцениваются по их воздействию на установленный объект (рис. 1.1).


Рис. 1.1. Схема экологического (экосистемного) подхода


Экосистемный подход выдвигает на первый план общность организации всех сообществ независимо от местообитания и систематического положения входящих в них организмов. Это подтверждается простым сравнением водной и наземной экосистем. При резком различии в среде обитания и образующих систему видах здесь четко просматривается сходство структуры и функциональных единиц этих двух экосистем.

В экосистемном подходе находит приложение концепция саморегуляции (гомеостаза), из которой становится ясно, что нарушение регуляторных механизмов, например в результате загрязнения среды, может привести к биологическому дисбалансу.

Изучение сообществ. При изучении сообществ исследуют растения, животных и микроорганизмы, которые обитают в различных биотических единицах, таких как лес, луг, пустошь и др. Основное внимание уделяется определению и описанию видов, изучению факторов, ограничивающих их распространение. Одним из аспектов подобных исследований является получение научных данных о сукцессиях и климаксовых сообществах, что весьма важно для решения вопросов рационального использования природных ресурсов.

Популяционный подход. В современных популяционных исследованиях используются математические модели роста, самоподдержания и уменьшения численности тех или иных видов. Построение моделей связано с такими понятиями, как рождаемость, выживаемость и смертность. Популяционный подход обеспечивает теоретическую базу для понимания вспышек численности вредителей и паразитов, имеющих значение для медицины и сельского хозяйства, дает возможность борьбы с ними применением биологических методов, например использование хищников и паразитов вредителя, позволяет оценить критическую численность вида, необходимую для его выживания. Это особенно важно при организации заповедников, ведении сельского и охотничьего хозяйства, а в теоретическом плане – при изучении вопросов эволюционной и исторической экологии.

Изучение местообитаний. В связи с удобством проведения исследований особо выделяют анализ местообитания. Он широко распространен в полевых исследованиях, так как местообитания легко поддаются классификации. Здесь изучают биотические компоненты экосистемы, основные факторы окружающей среды (эдафические, орографические и климатические), такие как почва, вода, влажность, температура, свет и ветер. Анализ местообитаний имеет тесные связи с экосистемным подходом и изучением сообществ.

Эволюционный подход. Основной материал о характере вероятных будущих трансформаций получают, изучая, как экосистемы, сообщества и популяции исторически менялись во времени. Эволюционная экология рассматривает трансформации, связанные с развитием жизни на Земле, позволяет понять основные закономерности, которые действовали в экосфере до того момента, когда важным экологическим фактором, влияющим на большинство организмов и на физическую среду, стала деятельность человека. Эволюционный подход в исследованиях позволяет реконструировать экосистемы прошлого, используя палеонтологические данные (анализ пыльцы, ископаемые остатки и т. д.) и сведения о современных экосистемах.

Исторический подход. Историческая экология изучает изменения, связанные с развитием человеческой цивилизации и технологии, их возрастающее влияние на природу, охватывая период от неолита до наших дней. Используя исторический подход, можно выявлять долговременные экологические тенденции, которые невозможно установить только путем изучения современных экосистем. Таковы, например, изменение климата, конвергентная эволюция, расселение видов растений и животных. Исторический подход дает больше новых теоретических идей в сравнении с анализом местообитаний.

В последние десятилетия XX в. успехи техники дали возможность на количественном уровне изучать большие, сложные (экологические) системы. Необходимыми инструментами для этого послужили метод меченых атомов, новые физико-химические методы (спектрометрия, колориметрия, хроматография и др.), дистанционные методы зондирования, автоматический мониторинг, математическое моделирование и т. д. Это позволило ученым разных стран, работающим с 1964 г. по общей Международной биологической программе (МБП), подсчитать максимальную биологическую продуктивность всей нашей планеты или тот природный фонд, которым располагает человечество, и максимально возможные нормы изъятия продукции для нужд растущего населения Земли. Конечной целью МБП было выявление качественного и количественного распределения и воспроизводства органического вещества в интересах использования их человеком. Итоги работы ученых по МБП поставили перед современным обществом актуальнейшую задачу предотвращения возможных нарушений биологического равновесия в масштабах всей планеты.

1.3. Структура экологии и ее связь с другими научными дисциплинами

Экология как наука сложна и многогранна. Основными разделами современной экологии являются: общая (теоретическая) экология, включающая биоэкологию, геоэкологию, экологию человека, социальную экологию, и прикладная экология.

Каждый раздел имеет свои подразделы и связи с другими частями экологии и смежными науками.

Общая экология объединяет разнообразные экологические знания на едином научном фундаменте. Ее ядром является теоретическая экология, которая устанавливает общие закономерности функционирования экологических систем. Многие природные экологические процессы происходят очень медленно и обусловлены множеством факторов. Для изучения их механизмов недостаточно одних натурных наблюдений, нужен эксперимент.

Экспериментальная экология обеспечивает методическим инструментарием различные разделы науки. Однако вследствие ограниченности возможностей эксперимента в экологии широко применяется моделирование, в частности математическое. Вместе с обработкой информации и количественным анализом фактического материала оно входит в раздел теоретической экологии, который называют математической экологией.

Биоэкология – «классическая» экология, сформировавшаяся в рамках биологии, представляет собой достаточно цельную область естествознания. Она посвящена взаимодействиям со средой надорганизменных биологических систем всех уровней. Именно в биоэкологии на основе изучения роли потоков веществ, энергии и информации в жизнедеятельности организмов формируется представление об экологии как об экономике природы.

В ней выделяются:

• экология отдельных особей как представителей определенного вида организмов – аутоэкология;

• экология генетически однородных групп организмов одного вида, имеющих общее место обитания, – популяционная экология (демэкология);

• экология многовидовых сообществ, биоценозов – синэкология;

• учение об экологических системах – биогеоценология.

Другой принцип деления относится к таксономическим группам организмов – царствам бактерий, грибов, растений, животных и к более мелким систематическим категориям: типам, классам, отрядам. Например, экология водорослей, экология насекомых, экология птиц, экология китов и т. п.

Еще один раздел составляет эволюционная экология – учение о роли экологических факторов в эволюции.

Подразделение также производится:

• по типу среды обитания – наземной (суши), почвенной, пресноводной, морской;

• принадлежности сообществ организмов к разным природно-климатическим зонам (экология тундры, тайги, степей, пустынь, гор, тропических лесов);

• типам ландшафтов (экология речных долин, морских берегов, болот, островов, коралловых рифов и т. п.). Эту совокупность приложений иногда называют географической экологией или геоэкологией.

На стыке биоэкологии и геохимии Земли, а также на основе изучения роли живых организмов в планетарной трансформации солнечной энергии и круговорота химических элементов возникло учение о биосфере – глобальной экологической системе. Современная глобалистика существенно расширила горизонты экологии и усилила ее проблемную направленность.

В сумму экологических знаний, несколько отдельно от традиционной биоэкологии, входит экология человека – комплекс дисциплин, исследующих взаимодействие человека как индивида (биологической особи) и личности (социального субъекта) с окружающей его природной и преобразованной им самим средой. Важной особенностью экологии человека является социобиологический подход – правильное уравновешивание биологических и социальных аспектов.

Социальная экология как часть экологии человека – это объединение научных отраслей, изучающих связь общественных структур (начиная с семьи и других малых общественных групп) с природной и социальной средой их окружения. К такому объединению относятся экология народонаселения – экологическая демография и экология человеческих популяций. При этом рассматривается как влияние среды на общество, так и воздействие общества на среду.

Прикладная экология – большой комплекс дисциплин, связанных с различными областями человеческой деятельности и взаимоотношений между человеческим обществом и природой. Она формирует экологические критерии экономики, исследует механизмы антропогенных воздействий на природу и окружающую человека среду, следит за ее качеством, обосновывает нормативы рационального использования природных ресурсов, осуществляет экологическую регламентацию хозяйственной деятельности, контролирует экологическое соответствие различных планов и проектов, разрабатывает технические средства охраны окружающей среды и восстановления нарушенных человеком природных систем. Выделяются следующие разделы прикладной экологии: инженерная, сельскохозяйственная, биоресурсная и промысловая, коммунальная, медицинская и др.

Инженерная экология – сравнительно новое направление экологической науки, изучающее взаимодействия техники и природы, закономерности формирования региональных и локальных природно-технических систем и способы управления ими в целях защиты природной среды и обеспечения экологической безопасности. Инженерная экология призвана обеспечить соответствие техники и технологии промышленных объектов экологическим требованиям. В ее сферу входит комплекс взаимосвязанных задач:

• регламентация экологически безопасного производственного освоения территорий, размещения и строительства хозяйственных объектов;

• оптимизация отраслевой структуры производства;

• определение допустимой техногенной нагрузки на территории, контроль и регламентация материально-энергетических потоков производства и техногенных эмиссий (т. е. испускания, выброса побочных продуктов) от различных инженерных объектов;

• экологизация производства, создание ресурсосберегающих и малоотходных технологий, экологически чистых материалов и продуктов производства;

• экологическая безопасность территориальных промышленных комплексов, производственных процессов, сооружений, машин и изделий;

• инженерно-экологическое обеспечение производства, разработка методов инженерно-экологической профилактики, восстановления и реконструкции ландшафтов.

Центральное место в сфере инженерной экологии занимает п р о м ы ш л е н н а я экология – область прикладной экологии, которая изучает воздействия промышленности на природу, окружающую человека среду, разрабатывает средства регламентации этих воздействий и защиты от них окружающей среды. С промышленной экологией тесно связаны экологические аспекты энергетики, транспорта, строительства и других отраслей экономики. Инженерной экологии приходится также иметь дело с влиянием экологических факторов и различных живых организмов на инженерные объекты.

Сельскохозяйственная экология в своей значительной части сливается с биологическими основами земледелия и животноводства (экология сельскохозяйственных животных). Экосистемный подход обогащает агробиологию принципами и средствами рациональной эксплуатации земельных ресурсов, повышения продуктивности и получения экологически чистой продукции.

Биоресурсная и промысловая экология изучает условия, при которых эксплуатация биологических ресурсов природных экосистем (лесов, континентальных водоемов, морей, океанов) не приводит к их истощению и нарушению, утрате видов, уменьшению биологического разнообразия. В задачи этой дисциплины входят также разработка методов восстановления и обогащения биоресурсов, научное обоснование интродукции и акклиматизации растений и животных, создания заповедников.

Экология поселений, урбоэкология, коммунальная экология – разделы прикладной экологии, посвященные особенностям и влияниям различных факторов искусственно преобразованной среды обитания людей в населенных пунктах, городах, жилищах.

Медицинская экология – область изучения экологических условий возникновения, распространения и развития болезней человека, в том числе острых и хронических заболеваний, обусловленных природными факторами и неблагоприятными техногенными воздействиями среды. Медицинская экология включает в качестве раздела р е к р е а ц и о н н у ю экологию, т. е. экологию отдыха и оздоровления людей, смыкающуюся с курортологией.

Таким образом, экологизации подверглись многие науки и сферы практической деятельности. В их пограничных зонах возникают новые дисциплины. Геоэкология тесно взаимодействует с биогеографией – наукой о географическом распределении живых организмов; многие разделы этих дисциплин накладываются друг на друга. Это же можно сказать и об экологии человека, с одной стороны, и социологии, антропологии, – с другой.

Еще теснее переплетаются с родственными дисциплинами ветви прикладной экологии. Ее экономические аспекты изучаются быстро развивающейся экономикой природопользования. Уже упомянута связь сельскохозяйственной экологии с агробиологией. Экология города имеет много общего с коммунальной гигиеной. Медицинская экология в большой мере опирается на токсикологию, патологию, биохимию, эпидемиологию. Большинство требований промышленной экологии совпадает с нормами безопасности и культуры производства, гигиены труда и производственной санитарии, эргономики и безопасности жизнедеятельности. Происходит интеграция знаний со взаимным обогащением наук в пограничных областях.

Размах экологизации указывает на то, что экология претендует на лидирующее положение в современной науке и способствует синтезу фундаментальных знаний о природе и обществе. По выражению Н.Ф. Реймерса (1994) экология «выросла из коротких штанишек, надетых на нее Э. Геккелем, но еще не удостоилась нового костюма» – научного признания, соответствующего ее общественной значимости. Формирование фундаментальных теоретических основ экологии находится еще в самом начале.

Приведенный выше перечень показывает, что по системной совокупности объектов экология – это одна из самых сложных синтетических наук, требующая универсальной подготовки и глубоких профессиональных знаний.

1.3.1. Аутэкология

Аутэкология (Schroter, 1896) изучает взаимоотношения представителей вида с окружающей его средой. Она, главным образом, определяет пределы устойчивости и предпочтения вида по отношению к различным экологическим факторам и исследует действие среды на морфологию, физиологию и поведение организма.

Впервые аутэкология выделена в самостоятельный раздел экологии на III Международном ботаническом конгрессе в г. Брюсселе в 1910 г.

Основными объектами аутэкологии являются вид, особь, организм, среда их обитания, а также факторы среды и их влияние на живые организмы.

1.3.1.1. Вид, особь, организм

Многообразие жизни на Земле представлено организмами различного уровня сложности.

Организм – живое тело, обладающее совокупностью свойств, отличающих его от неживой материи. Организмы представлены отдельно существующими особями. Организм как отдельная особь входит в состав вида и популяции, являясь структурной единицей популяционно-видового уровня жизни.

Особь – элементарная единица жизни, экземпляр живого, имеющий все признаки, свойственные виду, к которому он принадлежит, и, вместе с тем, отличающийся специфическими генетическими и фенотипическими особенностями.

Организмы являются одним из главных предметов изучения в биологии. Для удобства рассмотрения все организмы распределяются по разным группам и категориям, что составляет биологическую систему их классификации. Самое общее деление организмов основывается на наличии или отсутствии клеточного ядра. По числу составляющих организм клеток их делят на внесистематические категории одноклеточных и многоклеточных. Особое место между ними занимают колонии одноклеточных.

Формирование целостного многоклеточного организма – процесс, состоящий из дифференцировки структур (клеток, тканей, органов) и функций и их интеграции как в онтогенезе, так и в филогенезе. Многие организмы объединены во внутривидовые сообщества (например, семья или рабочий коллектив у людей).

Биологический вид является основной структурной единицей в системе живых организмов.

Вплоть до XVII в. исследователи опирались на представление о виде, созданное еще Аристотелем, который воспринимал виды как совокупности сходных особей. Термин «вид» (от лат. species – взгляд, образ) указывает на способ выделения этих совокупностей – по их морфологическому сходству. Такой подход к трактовке и изучению видов без особых принципиальных изменений использовался многими выдающимися биологами, включая К. Линнея.

Выделение видов в то время происходило на основе различий между особями по ограниченному числу внешних признаков. Этот метод получил название типологического подхода. Отнесение особи к тому или иному виду осуществлялось на основе сличения ее признаков с описаниями уже известных видов. Если признаки данной особи не удавалось соотнести ни с одним из существующих видовых диагнозов, то по данному экземпляру (он получал название типового) описывался новый вид. Иногда это приводило к тому, что самцы и самки одного вида описывались как разные виды.

К концу XIX в., когда разнообразие птиц и млекопитающих было достаточно полно изучено на значительной территории Земли, стали очевидны недостатки типологического подхода. Выяснилось, что животные из разных мест порой хоть и незначительно, но достаточно надежно отличаются друг от друга. В соответствии с установленными правилами им надо было присваивать статус самостоятельных видов. Число новых видов росло лавинообразно.

Дальнейшие исследования в области таксономии привели к формированию биологической концепции вида.

В XX в. с развитием генетики и синтетической теории вид стали рассматривать как группу популяций с общим уникальным генофондом, обладающую собственной системой защиты целостности своего генофонда. Таким образом, типологический подход к выделению видов сменился эволюционным: виды определяются не различием, а обособленностью. Популяциям вида, морфологически отличным друг от друга, но способным свободно скрещиваться друг с другом, придается статус подвидов. Эта система взглядов легла в основу биологической концепции вида, получившей мировое признание благодаря заслуге Э. Майра. Смена концепций вида соединила представления о морфологической обособленности и эволюционной изменяемости видов и позволила с большей объективностью подойти к задаче описания биологического разнообразия. Согласно современному определению вид – это совокупность географически и экологически близких популяций, особи которых обладают общими морфофизиологическими признаками, способны в природных условиях скрещиваться между собой, но биологически изолированы от популяций других видов.

Современная биология разработала ряд критериев, которые позволяют отличать один вид от другого.

К р и т е р и и в и д а – это разнообразные таксономические (диагностические) признаки, которые характерны для одного вида, но отсутствуют у других видов.

Комплекс признаков, по которому можно надежно отличить один вид от других видов, называется видовым радикалом (Н.И. Вавилов).

Критерии вида делят на основные (которые используются практически для всех видов) и дополнительные (которые трудно использовать для всех видов).

Основные критерии вида. 1. Морфологический критерий основан на существовании морфологических признаков, характерных для одного вида, но отсутствующих у других видов. Например, у гадюки обыкновенной ноздря находится в центре носового щитка, а у всех других гадюк (носатая, малоазиатская, степная, кавказская, гюрза) ноздря смещена к краю носового щитка.

Таким образом, близкие виды могут отличаться по малозаметным признакам. Существуют виды-двойники, настолько схожие, что использовать морфологический критерий для их разграничения очень трудно. Например, комар малярийный на самом деле представлен девятью очень сходными видами, которые различаются морфологически лишь по строению репродуктивных структур; окраске яиц (у одних видов гладко-серая, у других – с пятнами или полосами), числу и ветвистости волосков на конечностях у личинок, размерам и форме чешуек крыла.

У животных виды-двойники встречаются среди грызунов, птиц, многих низших позвоночных (рыб, амфибий, рептилий), многих членистоногих (ракообразных, клещей, бабочек, двукрылых, прямокрылых, перепончатокрылых), моллюсков, червей, кишечнополостных, губок и др.

Не существует четкого различия между обыкновенными видами (морфовидами) и видами-двойниками: просто у видов-двойников морфологические различия выражены в минимальной степени. Очевидно, образование видов-двойников подчиняется тем же закономерностям, что и видообразование в целом, а эволюционные изменения в группах видов-двойников происходят с той же скоростью, что и у морфовидов.

Виды-двойники, будучи подвергнуты тщательному исследованию, обычно обнаруживают различия в целом ряду мелких морфологических признаков (например, самцы насекомых, принадлежащие к разным видам, четко различаются по строению копулятивных органов).

Перестройка генотипа (генофонда), приводящая к взаимной репродуктивной изоляции, не обязательно сопровождается видимыми изменениями морфологии.

У животных виды-двойники чаще встречаются, если морфологические различия меньше влияют на образование брачных пар (например, если при узнавании используется обоняние или слух). Если же животные больше полагаются на зрение (большинство птиц), то виды-двойники встречаются реже. Устойчивость морфологического сходства видов-двойников обусловлена существованием определенных механизмов морфогенетического гомеостаза.

В то же время в пределах видов существуют значительные индивидуальные морфологические различия. Например, гадюка обыкновенная представлена множеством цветовых форм (черные, серые, голубоватые, зеленоватые, красноватые и другие оттенки). Однако эти признаки не могут использоваться для разграничения видов, так как они обусловлены особенностями среды обитания.

2. Географический критерий основан на том, что каждый вид занимает определенную территорию (или акваторию) – географический ареал. Например, в Европе одни виды малярийного комара (род Anopheles) населяют Средиземноморье, другие – горы Европы, Северную Европу, Южную Европу.

Однако географический критерий не всегда применим. Ареалы разных видов могут перекрываться, и тогда один вид плавно переходит в другой. В этом случае образуется цепь викарирующих видов, границы между которыми часто можно установить только путем специальных исследований (чайка серебристая, клуша западная и калифорнийская).

3. Экологический критерий основан на том, что два вида не могут занимать одну экологическую нишу, а каждый вид характеризуется своими собственными отношениями со средой обитания. У видов, характеризующихся специфическими биотическими связями (паразитических видов, переносчиков заболеваний, комменсалов, симбионтов), широко используется их приуроченность к определенному хозяину. Например, виды-двойники, ранее известные под общим названием комар малярийный, характеризуются разной пищевой базой: одни виды нападают на млекопитающих, другие – на птиц, третьи – на пресмыкающихся; одни виды переносят малярию, причем для человека опасен только один вид, а другие – не переносят.

Для животных вместо понятия экологическая ниша часто используется понятие адаптивная зона, а для растений – эдафо-фитоценотический ареал.

Адаптивная зона – это определенный тип местообитаний с характерной совокупностью специфических экологических условий, включающих тип среды обитания (водная, наземно-воздушная, почва, организм) и его частные особенности (например, в наземно-воздушной среде обитания – суммарное количество солнечной радиации, количество осадков, рельеф, циркуляция атмосферы, распределение этих факторов по сезонам и т. д.). В биогеографическом аспекте адаптивным зонам соответствуют крупнейшие подразделения биосферы – биомы, которые представляют собой совокупность живых организмов в сочетании с определенными условиями их обитания в обширных ландшафтно-географических зонах. Однако различные группы организмов по-разному используют ресурсы среды обитания, по-разному адаптируются к ним. Поэтому в пределах биома хвойно-широколиственной зоны лесов умеренного пояса можно выделить адаптивные зоны крупных стерегущих хищников (рысь), крупных догоняющих хищников (волк), мелких древеснолазающих хищников (куница), мелких наземных хищников (ласка) и т. д. Таким образом, адаптивная зона – это экологическое понятие, занимающее промежуточное положение между средой обитания и экологической нишей.

Эдафо-фитоценотический ареал – это набор биокосных (почвенных) факторов (механический состав почв, рельеф, характер увлажнения, воздействие растительности и деятельности микроорганизмов) и биотических (совокупности видов растений, которые составляют непосредственное окружение интересующего нас вида).

Однако в пределах одного вида разные особи могут занимать разные экологические ниши. Группы таких особей называются экотипами. Например, один экотип сосны обыкновенной населяет болота (сосна болотная), другой – песчаные дюны, третий – выровненные участки боровых террас, но все они относятся к одному виду.

Совокупность экотипов, образующих единую генетическую систему, т. е. способных скрещиваться между собой с образованием полноценного потомства, называется эковидом.

Дополнительные критерии вида: 1. Физиолого-биохимический критерий основан на том, что разные виды могут различаться по аминокислотному составу белков. В то же время в пределах вида существует изменчивость по структуре многих ферментов (белковый полиморфизм), а разные виды могут иметь сходные белки.

2. Цитогенетический (кариотипический) критерий основан на том, что каждый вид характеризуется определенным к а р и о т и п о м – числом и формой метафазных хромосом. Однако у разных видов могут быть очень сходные кариотипы. В то же время в пределах одного вида может наблюдаться хромосомный полиморфизм. У некоторых видов существуют хромосомные расы, например у черной крысы – 42-хромосомная (Азия, Маврикий), 40-хромосомная (Цейлон) и 38-хромосомная (Океания).

3. Физиолого-репродуктивный критерий основан на том, что особи одного вида могут скрещиваться между собой с образованием плодовитого потомства, похожего на родителей, а особи разных видов, обитающих совместно, либо не скрещиваются между собой, либо их потомство оказывается бесплодным.

Однако известно, что в природе часто распространена межвидовая гибридизация: у многих растений (например, ивы), ряда видов рыб, земноводных, птиц и млекопитающих (например, волк и собака).

В то же время в пределах одного вида могут существовать группировки, репродуктивно изолированные друг от друга. Тихоокеанские лососи (горбуша, кета и др.) живут два года и нерестятся только перед смертью. Следовательно, потомки особей, отметавших икру в 1990 г., будут размножаться только в 1992, 1994, 1996 г. («четная» раса), а потомки особей, отметавших икру в 1991 г., будут размножаться только в 1993, 1995, 1997 г. («нечетная» раса). «Четная» раса не может скрещиваться с «нечетной».

4. Этологический критерий связан с межвидовыми различиями в поведении у животных. У птиц для распознавания видов широко используется анализ песен; насекомые часто различаются по характеру издаваемых звуков; виды североамериканских светляков различаются по частоте и цвету световых вспышек и т. д.

5. Исторический критерий основан на изучении истории вида или группы видов, носит комплексный характер, поскольку включает сравнительный анализ исторических изменений условий среды и образования современного ареала вида, эволюции вида.

Следует отметить, что, несмотря на выделение основных и дополнительных критериев вида, ни один из рассмотренных критериев вида не является главным или наиболее важным.

Для четкого разделения видов необходимо их тщательное изучение по всем критериям, что особенно важно для нужд прикладной экологии.

1.3.1.2. Среда обитания видов, особей и организмов

Все разнообразие природных условий, которое встречается на Земле, называют средой жизни. На нашей планете живые организмы освоили четыре основные среды жизни: водную, наземно-воздушную, почвенную и организменную.

Считается, что первой средой жизни на Земле стала вода. Затем живые организмы освоили наземно-воздушную среду, создали и заселили почву. Организменную среду освоили паразиты и симбионты.

Живые организмы могут существовать в одной или нескольких средах жизни.

Своеобразие условий каждой среды жизни обусловило своеобразие живых организмов, свойственное разным средам. У всех организмов в процессе эволюции выработались специфические морфологические, физиологические, поведенческие и другие приспособления к обитанию в своей среде. В свою очередь, все среды жизни, обеспечивая необходимыми условиями живущие в них организмы, постоянно претерпевают существенные изменения от жизнедеятельности этих организмов (табл. 1.1).

Таблица 1.1. Сравнительная характеристика сред жизни и адаптации к ним живых организмов




Влияние среды на организмы обычно оценивают через отдельные факторы, которые называются экологическими факторами среды (подробно будут рассмотрены в гл. 2).

Водная среда. Гидросфера как водная среда жизни занимает около 71 % площади и приблизительно 1/800 часть объема земного шара. Основное количество воды (более 94 %) сосредоточено в морях и океанах.

В океане с входящими в него морями прежде всего различают две экологические области: толщу воды – пелагиаль и дно – бенталь. В зависимости от глубины бенталь делится на с у б л и т о р о л ь н у ю зону – область плавного понижения суши до глубины 200 м; б а т и а л ь н у ю – область крутого склона и а б и с с а л ь н у ю зону – океанического ложа со средней глубиной 3–6 км. Более глубокие области бентали, соответствующие впадинам океанического ложа (6–10 км), называют ультраабиссалью. Кромка берега, заливаемая во время приливов, называется литоралью. Часть берега выше уровня приливов, увлажняемая брызгами прибоя, получила название супралиторали.

Открытые воды Мирового океана также делятся на зоны по вертикали соответственно зонам бентали: типелигиаль, батипелагиаль, абиссопелагиаль (рис. 1.2).

Характерной чертой водной среды является ее подвижность, особенно в проточных, быстро текущих ручьях и реках.


Рис. 1.2. Вертикальная экологическая зональность океана (по Н.Ф. Реймерсу, 1990)


В морях и океанах наблюдаются приливы и отливы, мощные течения, штормы. В озерах вода перемещается под действием температуры и ветра.

В водной среде обитает примерно 150 000 видов животных (около 7 % от общего их количества) и 10 000 видов растений (8 %), хотя по последним данным считается, что в водной среде могут обитать порядка 2,2 млн видов живых организмов.

Толща воды, или пелагиаль (от греч. pelagоs – море), заселена пелагическими организмами, которые обладают способностью плавать или удерживаться в определенных слоях. Эти организмы подразделяются на две группы: нектон и планктон. Третью экологическую группу – бентос – образуют обитатели дна. Организмы, располагающиеся на поверхности воды, составляют особую группу – нейстон. Организмы, часть тела которых находится над поверхностью воды, а другая – в воде, получили название плейстон.

В пресноводных водоемах различают планктон, нектон и бентос.

Водные растения в зависимости от образа жизни подразделяют на две основные экологические группы: гидрофиты – растения, погруженные в воду только нижней частью и обычно укореняющиеся в грунте, и гидатофиты – растения, которые полностью погружены в воду, иногда плавающие на поверхности или имеющие плавающие листья.

В жизни водных организмов большую роль играют вертикальное перемещение и плотность воды, температурный, световой, солевой, газовый (содержание кислорода и углекислого газа) режимы, концентрация водородных ионов (рН).

Вода является более стабильной средой, в которой ее физические параметры претерпевают сравнительно незначительные колебания, поэтому водные организмы обладают по сравнению с наземными меньшей экологической пластичностью. Пресноводные растения и животные более пластичны, чем морские, так как пресная вода как среда жизни более изменчива.

Экологическая пластичность является важным регулятором расселения организмов. Доказано, что гидробионты с высокой экологической пластичностью распространены более широко (например, элодея). А рачок артемия (Artemia solina), живущий в небольших водоемах с очень соленой водой, является типичным представителем водной фауны с узкой экологической пластичностью.

Экологическая пластичность также зависит от возраста и фазы развития организма. Например, морской брюхоногий моллюск Littorina во взрослом состоянии при отливах ежедневно длительное время обходится без воды, однако его личинки ведут исключительно планктонный образ жизни и не переносят высыхания.

У организмов водной среды выработались специфические анатомические, морфофизиологические и поведенческие адаптации к обитанию в ней.

Наземно-воздушная среда. В ходе эволюции наземно-воздушная среда была освоена позднее, чем водная, хотя в настоящее время в ней обитает значительная часть живых организмов, в том числе и человек. До настоящего времени не известно точное количество видов, обитающих в этой среде.

Особенностью наземно-воздушной среды жизни является то, что организмы в ней окружены газообразной средой, характеризующейся низкими влажностью, плотностью и давлением, высоким содержанием кислорода.

В наземно-воздушной среде действующие экологические факторы имеют ряд характерных особенностей: более высокую интенсивность света в сравнении с другими средами, значительные колебания температуры, изменение влажности в зависимости от географического положения, сезона и времени суток.

В процессе эволюции у живых организмов наземно-воздушной среды выработались характерные анатомо-морфологические, физиологические, поведенческие и другие адаптации. Например, появились органы, которые обеспечивают непосредственное усвоение атмосферного кислорода в процессе дыхания (легкие и трахеи животных, устьица растений). Получили сильное развитие скелетные образования (скелет животных, механические и опорные ткани растений), которые поддерживают тело в условиях незначительной плотности среды. Выработались приспособления для защиты от неблагоприятных факторов, такие как периодичность и ритмика жизненных циклов, сложное строение покровов, механизмы терморегуляции и др. Сформировалась тесная связь с почвой (конечности животных, корни растений), выработалась подвижность животных в поисках пищи, появились летающие животные, переносимые воздушными течениями семена, плоды и пыльца растений.

Почвенная среда. Почва (эдасфера, педосфера) – это верхняя оболочка суши, которая сформировалась в исторически обозримое время с появлением сухопутной жизни на планете. Впервые на вопрос о происхождении почвы ответил М.В. Ломоносов («О слоях земли»): «…почва произошла от согнития животных и растительных тел … долготою времени…». Великий русский ученый В.В. Докучаев (1899) впервые назвал почву самостоятельным природным телом и доказал, что почва есть «…такое же самостоятельное естественно-историческое тело, как любое растение, любое животное, любой минерал … оно есть результат, функция совокупной, взаимной деятельности климата данной местности, ее растительных и животных организмов, рельефа и возраста страны…, наконец, подпочвы, т. е. грунтовых материнских горных пород. … Все эти агенты-почвообразователи, в сущности, совершенно равнозначные величины и принимают равноправное участие в образовании нормальной почвы…».

В современной трактовке принято следующее определение почвы – это все поверхностные слои горных пород, переработанные и измененные совместным воздействием климата (свет, тепло, воздух, вода), растительных и животных организмов.

Основными структурными элементами почвы являются: минеральная основа, органическое вещество, воздух и вода.

М и н е р а л ь н а я о с н о в а (скелет), составляющая 50–60 % всей почвы, – это неорганическое вещество, образовавшееся в результате разрушения подстилающей горной (материнской, почвообразующей) породы за счет ее выветривания. Размеры скелетных частиц могут варьироваться от валунов и камней до мельчайших песчинок и илистых частиц.

Скелетный материал обычно произвольно разделяют на мелкий грунт (частицы менее 2 мм) и более крупные фрагменты. Частицы меньше 1 мкм в диаметре называют коллоидными.

Механические и химические свойства почвы в основном определяются теми веществами, которые относятся к мелкому грунту.

Физико-химические свойства почв обусловлены составом почвообразующих пород. От соотношения в почве глины и песка, размеров фрагментов зависят проницаемость и пористость почвы, обеспечивающие циркуляцию как воды, так и воздуха. В умеренном климате идеально, если почва образована равными количествами глины и песка, т. е. представляет суглинок. В этом случае почвам не грозит ни переувлажнение, ни пересыхание. И то и другое одинаково губительно как для растений, так для и животных.

О р г а н и ч е с к о е в е щ е с т в о составляет до 10 % почвы и образуется из отмершей биомассы (опад листьев, ветвей и корней, валежные стволы, отмершие травы, организмы погибших животных), переработанной в почвенный гумус микроорганизмами, некоторыми группами животных и растений.

Каждому типу почв соответствует определенный животный мир и определенная растительность. Совокупность живущих в почве организмов называют эдафоном.

Для растений имеет значение наличие достаточного количества питательных веществ в почве, влажность, кислотность (соленость), структура почвы. Эти факторы определяют видовое разнообразие и плотность распределения растительного сообщества на поверхности и верхних горизонтах почвы.

Для животных важны такие характеристики, как структура, влажность, температура почвы.

Организменная среда. Организменная среда обитания – среда, образуемая самими живыми организмами, в которых обитают другие организмы; обладает следующими особенностями:

• отсутствие света и атмосферного воздуха;

• практически постоянная температура;

• высокая влажность;

• обилие питательных веществ;

• агрессивная реакция организма – хозяина. Специфические особенности организменной среды обитания определили типы взаимоотношений организмов и обусловили особенности анатомических, морфофизиологических, поведенческих адаптаций.

Более подробно эти особенности будут рассмотрены далее в гл. 2.

1.3.2. Демэкология, или популяционная экология

Демэкология (от греч. dēmos – народ + экология), экология популяций – раздел общей экологии, изучающий динамику численности популяций, внутрипопуляционные группировки и их взаимоотношения, а также условия, при которых формируются популяции. Демэкология описывает колебания численности различных видов под воздействием экологических факторов и устанавливает их причины, рассматривает особь не изолированно, а в составе группы таких же особей, занимающих определенную территорию и относящихся к одному виду.

1.3.2.1. Популяция

Термин «популяция» был введен в экологию в 1903 г. датским ученым В. Иогансеном для обозначения «естественной смеси особей одного и того же вида, неоднородной в генетическом отношении». Он впервые применил комплекс генетических и статистических методов для изучения структуры популяции самооплодотворяющихся (самоопыляющихся) организмов. Объектом исследования стали популяции самоопылителей, которые можно было легко разложить на группы потомков отдельных самоопыляющихся растений, т. е. произвести выделение чистых линий. Анализу подверглась масса семян фасоли Phaseolus vulgaris. В настоящее время известно, что масса семян определяется полигенно и в сильной степени подвержена влиянию факторов внешней среды.

Иогансен провел взвешивание семян одного сорта фасоли и построил вариационный ряд по этому показателю. Масса варьировала в пределах от 150 до 750 мг. В дальнейшем семена массой 250–350 и 550–650 мг были высеяны отдельно. С каждого выросшего растения семена были вновь взвешены. Тяжелые (550–650 мг) и легкие (250–350 мг) семена, выбранные из сорта, представляющего популяцию, дали растения, семена которых отличались по массе: средняя масса семян растений, выросших из тяжелых семян, составила 518,7 мг, а из легких – 443,4 мг. Этим было показано, что сорт – популяция фасоли – состоит из генетически различных растений, каждое из которых может стать родоначальником чистой линии. На протяжении 6–7 поколений Иогансен отбирал тяжелые и легкие семена с каждого растения в отдельности. Ни в одной линии не произошло сдвига массы семян. Изменчивость размеров семян внутри чистой линии была ненаследственной, или модификационной.

Таким образом, Иогансен генетически неоднородные (гетерогенные) популяции противопоставлял однородным чистым линиям (или клонам), в которых невозможен отбор вследствие отсутствия выбора.

Вскоре подобные исследования были выполнены и для перекрестно-оплодотворяющихся организмов (работы Д. Джонса и Е. Иста с табаком).

Английский математик Г. Харди (1908) сформулировал понятия панмиксии (свободного скрещивания) и создал математическую модель для описания генетической структуры панмиктической популяции, т. е. популяции свободно скрещивающихся раздельнополых организмов. Немецкий врач-антропогенетик В. Вайнберг (1908) независимо от Харди создал сходную модель панмиктической популяции.

Учение о неоднородности популяций развил российский генетик С.С. Четвериков. Его работой «О некоторых аспектах эволюционного процесса с точки зрения современной генетики» (1926) было положено начало современной эволюционной и популяционной генетики. В 1928 г. А.С. Серебровский создает учение о генофонде.

В течение 1920–1950-х гг. в англоязычных странах формируется понятие идеальной популяции, и на основании этого понятия интенсивно развивается математическая генетика (С. Райт, Р. Фишер, Д. Холдейн и др.).

В нашей стране учение о популяциях развивалось в работах И.И. Шмальгаузена (популяция рассматривалась как элементарная единица эволюционного процесса), А.Н. Колмогорова (анализировались случайные процессы в популяциях) и других ученых. Однако в большинстве случаев популяция рассматривалась с общебиологической точки зрения (например, как форма существования вида – С.С. Шварц).

Лишь в 1960–1970 гг., благодаря работам Н.В. Тимофеева-Ресовского и его сотрудников формируется синтетический подход к определению популяции как эколого-генетической системы.

В настоящее время существует три основных подхода к определению понятия «популяция»: экологический, генетический и синтетический.

Экологический подход. С точки зрения экологии, популяцией является совокупность особей одного вида в пределах одного биоценоза (фитоценоза), т. е. целостная внутривидовая группировка, которой соответствует минимальная реализованная экологическая ниша. Такую группу особей иначе называют экологической или локальной популяцией, а также (для растений) ценотической популяцией или ценопопуляцией.

Р. Дажо (1975) трактует понятие «популяция» как «…совокупность особей одного вида, живущих на территории, границы которой обычно совпадают с границами биоценоза, включающего данный вид».

Ю. Одум (1971, 1975) определяет популяцию как «…группу особей одного вида (или иные группы, в которых организмы могут обмениваться генетической информацией), занимающую определенное пространство…».

Таким образом, популяция представляет собой множество особей, объединенных в пространственно-временном и экологическом отношении.

Генетический подход. С точки зрения генетики, популяция – это генетическая система, обладающая исторически сложившейся генетической структурой. Основные положения популяционной генетики возникли на основании изучения природных и модельных популяций высших раздельнополых животных (моллюсков, насекомых, позвоночных), которые воспроизводят себя с помощью нормального полового размножения – амфимиксиса, или объединения женских и мужских гамет.

В таких случаях группировка особей, способных скрещиваться между собой и производить полноценное (т. е. жизнеспособное и плодовитое) потомство, называется генетической или менделевской популяцией. В свою очередь, потомки, достигшие половозрелости, также должны скрещиваться между собой и производить полноценное потомство, т. е. популяция должна существовать длительное число поколений.

Таким образом, популяция представляет собой множество особей, объединенных достаточно высокой степенью родства. В рамках генетического подхода выделяется представление об идеальной популяции.

Идеальная популяция – это абстрактное понятие, которое широко используется в моделировании микроэволюционных процессов. При описании систем скрещивания в идеальной популяции применяют понятие панмиксии – случайного свободного скрещивания, при котором вероятность встречи гамет не зависит ни от генотипа, ни от возраста скрещивающихся особей. Если исключить половой отбор, то к панмиктической популяции применима концепция гаметного резервуара, согласно которой в популяции в период размножения формируется гаметный резервуар (генный пул), включающий банк женских гамет и банк мужских гамет. Если члены популяции равноудалены друг от друга, то встреча гамет и формирование зигот происходят случайным образом.

Реальные популяции в большей или меньшей степени отличаются от идеальной. Одним из наиболее существенных отличий является множество способов воспроизведения. По способу воспроизведения различают следующие типы популяций:

амфимиктические – основным способом размножения является нормальное половое воспроизведение;

амфимиктические панмиктические – при формировании брачных пар наблюдается панмиксия (свободное скрещивание);

амфимиктические инбредные – при формировании брачных пар наблюдается близкородственное скрещивание (инбридинг, инцухт, инцест); крайним случаем близкородственного скрещивания является самооплодотворение;

апомиктические – наблюдаются различные отклонения от нормального полового процесса (апомиксис, партеногенез, гиногенез, андрогенез);

клональные – при отсутствии полового процесса и размножении только вегетативным путем или с помощью спор бесполого размножения (например, конидий); частным случаем клонирования является полиэмбриония – развитие нескольких зародышей из одной зиготы;

комбинированные – например, клонально-амфимиктические при метагенезе у кишечнополостных (чередовании бесполого и полового размножения) и гетерогонии (чередовании партеногенетического и амфимиктического поколений у червей, некоторых членистоногих и низших хордовых).

Синтетический подход. В этом случае популяция рассматривается как эколого-генетическое единство признаков и свойств. Основоположники такого подхода Н.В. ТимофеевРесовский, А.В. Яблоков (1973) дают следующее определение популяции: «… это минимальная самовоспроизводящаяся группа особей одного вида, на протяжении эволюционно длительного времени населяющая определенное пространство, образующая самостоятельную генетическую систему и формирующая собственную генетическую нишу». Это определение хорошо характеризует особенности синтетического подхода.

Наиболее полным и всеобъемлющим общепринятым определением популяции является в настоящее время следующее: популяция – совокупность особей одного вида, населяющих в течение неопределенно длительного периода времени определенное пространство, внутри которой осуществляется свободное скрещивание особей (панмиксия) и которая достаточно изолирована тем или иным способом от других популяций того же вида.

В некоторых случаях при изучении популяции уместно использовать понятие формы популяционного ранга.

Формой популяционного ранга (ФПР) или группой популяционного ранга (ГПР) называют группу особей, несколько меньшую или несколько большую, чем собственно популяция. К ФПР (ГПР) меньшим, чем собственно популяция, относятся внутрипопуляционные и внепопуляционные группировки особей одного вида, которые хотя бы частично способны к самовоспроизведению. В то же время, эти группировки недостаточно изолированы от других подобных группировок, не образуют устойчивые генетические системы и не формируют собственные экологические ниши.

К ФПР большим, чем собственно популяции, относятся популяционные системы, состоящие из нескольких популяций, связанных между собой в пространственно-генетическом и (или) историческом (микроэволюционном) отношении.

Для обозначения внутрипопуляционных группировок используют различные термины: панмиктические единицы, соседства, демы и др.

Отдельно выделяют псевдопопуляции – внутривидовые группировки, неустойчивые во времени и, как правило, не оставляющие после себя потомства. Группировки популяционного ранга, внутрипопуляционные группировки и псевдопопуляции могут быть частью истинных популяций, или на их основе формируются в дальнейшем истинные популяции. Примеры таких группировок: поле пшеницы, березовая роща, колония грызунов, муравейник, население административного района (например, вороны г. Минска).

Таким образом, популяции – это надорганизменные биологические системы, которые обладают рядом свойств, не присущих отдельно взятой особи или просто группе особей. Популяция как любая сложная система характеризуется динамикой, структурой и системными (групповыми) свойствами-характеристиками.

Основные характеристики популяции. Различают статические характеристики популяции (численность, плотность, популяционный ареал) и динамические (рождаемость, смертность, относительный и абсолютный прирост численности).

Основными показателями структуры популяций является численность, распределение организмов в пространстве (популяционный ареал) и соотношение разнокачественных особей. В связи с размерами ареала популяций может значительно изменяться и численность особей в популяциях.

Популяционный ареал – территория (акватория), на которой распространена данная популяция.

П р о с т р а н с т в е н н ы й а р е а л, занимаемый популяцией, может быть неодинаковым как для разных видов, так и в пределах одного вида. Величина ареала популяции в большей мере зависит от степени подвижности особей, или радиусов индивидуальной (репродуктивной) активности. Если такой радиус невелик, то величина популяционного ареала также невелика, и наоборот. Для животных характерен еще и трофический ареал, который может не совпадать с репродуктивным. Например, белый аист Ciconia ciconia летом обитает в Европе, а зимует в Африке, т. е. обладает огромным по протяженности трофическим ареалом, так как и на месте обитания, и во время перелетов он питается по всей территории. Однако каждая пара птиц возвращается обычно в район своего старого гнезда, а популяции аистов хотя и смешиваются на местах зимовок, но во время размножения занимают достаточно небольшую территорию. Этот пример также наглядно показывает, насколько бывает трудно определить популяционный ареал и причины, его формирующие.

У растений радиус репродуктивной активности определяется расстоянием, на которое могут распространяться вегетативные части, семена или пыльца, способные дать жизнь новым особям вида.

В зависимости от размеров пространственного ареала выделяют три основных типа популяций: элементарные, экологические и географические.

Элементарная популяция (микропопуляция) – элементарная группировка особей со сходными возрастами, морфологическими, физиологическими и поведенческими показателями, приуроченные к микробиотопу (Н.В. Лебедев, 1976).

В состав их обычно входят генетически однородные особи. Количество элементарных популяций, на которые распадается вид, зависит от разнородности условий среды обитания: чем они однообразнее, тем меньше элементарных популяций, и наоборот. Между элементарными популяциями всегда имеются некоторые отличия, проявляющиеся в генетическом своеобразии, фенологических особенностях, способности к накоплению питательных веществ, интенсивности обмена, характере поведения, т. е. каждая элементарная популяция морфофизиологически и этологически (поведенчески) специфична. Различия между ними, прежде всего, определяются их генетическим своеобразием и средой обитания. Однако нередко смешение особей элементарных популяций, происходящее в природе, стирает границы между ними.

Экологическая популяция формируется как совокупность элементарных популяций. В основном это внутривидовые группировки, слабо изолированные от других экологических популяций вида, поэтому обмен генетической информацией между ними происходит сравнительно часто, но реже, чем между элементарными популяциями. Экологическая популяция имеет свои особые черты, отличающие ее в чем-то от другой соседней популяции. Белки (Sciurus vulgaris) заселяют различные типы леса, поэтому могут быть четко выделены «сосновые», «еловые», «пихтовые», «елово-пихтовые» и другие их экологические популяции.

Выявление свойств отдельных экологических популяций является важной задачей в познании свойств вида и определении его роли в том или ином популяционном ареале.

Географическая популяция охватывает группу особей, населяющих территорию с географически однородными условиями существования. Такой тип популяции занимает сравнительно большой популяционный ареал, достаточно разграничен и относительно изолирован. Различаются плодовитостью, размерами особей, рядом экологических, физиологических, поведенческих и других особенностей. Для географической популяции возможен генетический обмен, хотя он происходит реже, чем в популяциях других типов. При перекрестном скрещивании особи каждой популяции приобретают общий морфологический тип, но несколько отличающийся от соседней географической популяции, с которой регулярного контакта нет.

Популяционный ареал может уменьшаться или увеличиваться, что связано с изменением условий среды и условий существования популяции. При освобождении экологической ниши одной популяцией она неизбежно и достаточно быстро занимается другими популяциями организмов разного уровня организации.

Искусственная интродукция популяции какого-то вида организмов обычно приводит к изменению популяционного ареала аборигенных популяций, вплоть до их полного исчезновения. Это очень важно иметь в виду при создании и развитии агробиоценозов, селитебных территорий, иных искусственных объектов.

Особи в популяции могут иметь различные типы пространственного распределения, выражающие их реакции на различные факторы, такие как наличие доступной добычи (пищи), благоприятные физические условия, конкурентные реакции и др. Выделяют следующие типы пространственного распределения особей в популяции – равномерное, случайное, регулярное и пятнистое (групповое).

Равномерное распределение особей в популяции встречается в природе достаточно редко. Чаще всего оно связано с острой конкуренцией между отдельными видами, в результате которой один вид в силу ряда причин занимает практически все экологические ниши или с искусственно созданными человеком условиями (поля сельскохозяйственных растений, выпас скота и др.).

Случайное распределение встречается только в однородной среде и у видов, не имеющих склонности к агрегации. Например, распределение рыжего мукоеда Laemophloeus testaceus F. в мешке с мукой совершенно случайно, однако по мере увеличения численности его популяции распределение принимает равномерный или пятнистый характер. То же самое можно сказать о большинстве видов организмов в начальной стадии освоения ими того или иного пространства.

Распределение пятнами или группами – наиболее часто встречающийся тип пространственного распределения. Оно связано, прежде всего, с небольшими, но очень важными для организмов изменениями в окружающей среде или поведении. По Ю. Одуму (1986) групповое распределение обеспечивает популяции более высокую устойчивость по отношению к неблагоприятным условиям по сравнению с отдельной особью.

Знание типа распределения организмов имеет большое значение при оценке плотности популяции методом выборки (в случае группового размещения площадь выборки должна быть большая).

Возьмем n выборок. Среднее число особей в каждой выборке обозначим через m и получим рассеяние или дисперсию S2 по формуле




где х – фактическое число особей вида на каждой площадке. При равномерном распределении дисперсия S2 равна нулю,

так как число особей в каждой выборке постоянно и равно среднему. При случайном распределении среднее m и дисперсия S2 равны. При групповом распределении рассеяние S2 выше среднего и разница между ними тем больше, чем сильнее тенденция животных к образованию скоплений (Р. Дажо, 1975).

Численность популяции – это общее количество особей на данной территории или в данном объеме. Зависит от соотношения интенсивности размножения (плодовитости) и смертности. В период размножения происходит рост популяции. Смертность же, наоборот, приводит к сокращению ее численности.

Рождаемость – это способность популяции к увеличению числа особей за определенный период времени. Показатель характеризует частоту появления новых особей в популяции. Рождаемость определяют как число особей (яиц, семян и т. д.) – ΔN, родившихся (отложенных, продуцированных) в популяции за некоторый промежуток времени Δt. Различают рождаемость абсолютную и удельную.

А б с о л ю т н а я (о б щ а я) рождаемость – это число новых особей (ΔNn), появившихся за единицу времени (Δt).

Для того чтобы удобнее было сравнивать между собой популяции разной численности, величину ΔNn / NΔt обычно относят к общему числу особей N в начале промежутка времени Δt. Полученную величину ΔNn / NΔt называют у д е л ь н о й рождаемостью.

Поскольку в течение исследуемого промежутка Δt величина рождаемости может меняться, этот промежуток стараются сделать по возможности короче, т. е. при Δt→0 выражение ΔNn / NΔt примет вид

aNn/ Ndt = b,

где d – знак дифференциала.

Полученную величину b называют также м г н о в е н н о й удельной рождаемостью. Размерность ее – «единица времени–1».

Единица времени, выбранная для оценки рождаемости в той или иной популяции, изменяется в зависимости от интенсивности размножения исследуемых организмов. Для растущей в оптимальных лабораторных условиях популяции бактерий такой единицей может быть час, для популяции планктонных водорослей – сутки, для многих насекомых – неделя или месяц, а для крупных млекопитающих – год.

Рождаемость может быть величиной положительной или равной нулю. В живых организмах заложена огромная возможность к размножению. Основная задача живого – это оставить максимальное количество потомства, что подтверждается правилом максимальной рождаемости (воспроизводства): в популяции имеется тенденция к образованию теоретически максимально возможного количества новых особей. Максимальная рождаемость является константной величиной для любой популяции.

Однако это правило может быть реализовано только в идеальных условиях при отсутствии лимитирующих экологических факторов, а размножение ограничено лишь физиологическими особенностями вида. Например, один одуванчик менее чем за 10 лет способен заселить своими потомками земной шар, если все семена прорастут, тогда как многие бактерии делятся каждые 20 мин. При таком темпе одна клетка за 36 ч может дать потомство, которое покроет сплошным слоем всю поверхность планеты. Но в реальных условиях никогда этого не происходит. Обычно действует механизм экологической, или реализуемой, рождаемости, зависящий от специфических условий среды. Поэтому максимальная рождаемость – это предел скорости увеличения числа особей в популяции.

Максимальная рождаемость как динамическая характеристика популяции важна тем, что с ней как с константной величиной можно сравнивать иные наблюдаемые величины рождаемости в тех случаях, когда известны условия среды, при которых она определяется. Наиболее корректно определение максимальной рождаемости не только при отсутствии лимитирующих экологических факторов среды, но и при оптимальных размерах популяции.

Рождаемость непосредственно связана с плодовитостью.

Плодовитость – эволюционно сложившаяся способность живых организмов компенсировать естественную смертность размножением, или скорость, с которой особь продуцирует потомков.

Характер плодовитости зависит от скорости полового созревания особей, числа генераций в течение сезона, количества в популяции самок и самцов. Если вид размножается с большой скоростью и чутко реагирует на изменения условий среды, то численность популяций его быстро и существенно изменяется.

Репродукционные возможности популяции в значительной степени определяются ее возрастной и половой структурой.

В жизни большинства организмов различают три периода: предрепродукционный (до половой зрелости), репродукционный (половая зрелость) и пострепродукционный. Относительная продолжительность их у разных видов варьируется в широких пределах, но у большинства высокоорганизованных существ обычно первый период самый длинный.

С целью описания и изучения возрастной структуры популяции используют построение пирамиды возрастов. Существует три типа пирамид:

• пирамида с широким основанием, что говорит о высоком проценте молодняка, характерная для популяции с быстрым ростом;

• со средним основанием для популяции с умеренным процентом молодняка;

• пирамида с узким основанием и численным преобладанием старых особей над молодняком, характерная для сокращающихся, угасающих популяций.

На рис. 1.3 представлены типы возрастных пирамид с их характерными особенностями.


Рис. 1.3. Возрастные пирамиды и их типы (на примере населения бывшего СССР (1970) и Кении (1969): 1 – массовое размножение; 2 – стабильная популяция; 3 – сокращающаяся популяция (по Н.Ф. Реймерсу, 1990)


В 1925 г. А. Лоткой было сформулировано правило стабильности возрастной структуры популяции: любая естественная популяция стремится к стабильной возрастной структуре, четкому количественному распределению особей по возрастам. Это правило является следствием правила максимальной рождаемости (плодовитости, воспроизводства) популяции. Если это стабильное состояние из-за временного притока или оттока особей в другую популяцию по тем или иным причинам нарушается, то после восстановления прежних условий существования возрастная структура популяции будет стремиться достигнуть прежнего состояния. Наибольший успех к распространению будет иметь та популяция, которая представлена всеми возрастными группами в оптимальном их соотношении.

Правило Лотки в большей степени справедливо для высших организмов с развитой возрастной структурой популяции и не имеет свойств универсальности, однако в более широком, биосистемном, смысле оно признается универсальным.

При наличии у данного вида организмов половой дифференциации правило стабильности возрастной структуры популяции необходимо дополнять правилом стабильности соотношения полов.

Половая дифференциация (бисексуальность) играет огромную роль в поддержании генетической разнокачественности особей популяции, что, в свою очередь, обеспечивает устойчивость популяции, т. е. ее способность адекватно реагировать на изменения окружающей среды. Половая структура бисексуальной популяции определяется количеством самок и самцов в ней.

Принято выделять следующие соотношения полов в популяции: первичное соотношение полов определяется генетическими механизмами, т. е. равномерностью распределения половых хромосом; вторичное соотношение полов – это соотношение полов на момент рождения; третичное соотношение полов – это соотношение полов среди взрослых (репродуктивных) особей.

Для определения половой структуры популяции существенную роль играет половой индекс.

Половой индекс (Is) – это отношение общего числа половозрелых самок (n♀ ж) к общей численности популяции (N):

Is= n … / N.

В совокупности эти два рассмотренных правила составляют правило стабильности половозрастной структуры популяции.

Таким образом, плодовитость является константой, определяемой расчетным путем, например умножением среднего числа гнезд, которые способна построить самка птицы за год, на такое же число яиц, которые она может отложить в наиболее благоприятную часть сезона года.

Смертность – величина, противоположная рождаемости, может быть определена как число особей ΔNm, погибших за время Δt. Так же как и при оценке рождаемости, смертность обычно относят к общему числу особей в популяции N, а промежуток Δt стараются брать по возможности короче.

М г н о в е н н а я удельная смертность d выражается формулой

d = dNm/ Ndt.

Размерность мгновенной удельной смертности такая же, как рождаемости. Традиционно величина смертности в экологической и демографической литературе обозначается буквой d (от англ. death-rate). При этом не следует путать d (смертность) с d (знаком дифференциала в выражениях типа dN/dt).

Численность и плотность популяции зависит, наряду с рождаемостью, и от смертности.

Смертность популяции – это количество особей, погибших за определенный период. Различают абсолютную (общую) и удельную смертность.

А б с о л ю т н а я (о б щ а я) смертность – это число особей (ΔNm), погибших в единицу времени (Δt).

У д е л ь н а я смертность (d) выражается отношением абсолютной смертности к численности популяции:




Абсолютная и удельная смертность характеризуют скорость убывания численности популяции вследствие гибели особей от хищников, болезней, старости и т. д.

Экологическая (реализованная) смертность – гибель особей в данных условиях среды. Эта величина не постоянная, она изменяется в зависимости от условий среды и состояния популяции. Полная картина смертности описывается статистическими таблицами выживаемости.

Смертность является величиной положительной или равной нулю, но последнее бывает крайне редко и только в течение короткого времени.

Различают три типа смертности:

• первый – характеризуется одинаковой смертностью во всех возрастах. Выражается экспоненциальной кривой (убывающей геометрической прогрессии). Данный тип смертности встречается редко и только у популяций, которые постоянно находятся в оптимальных условиях (человек, некоторые млекопитающие, дрозофилы и другие лабораторные животные и растения);

• второй – характеризуется повышенной гибелью особей на ранних стадиях развития и свойственен большинству растений и животных. Максимальная гибель животных происходит в личиночной фазе или в молодом возрасте, у многих растений – в стадии произрастания семян и всходов. У насекомых до взрослых особей доживает 0,3–0,5 % отложенных яиц, у многих рыб – 1–2 % количества выметанной икры;

• третий – отличается повышенной гибелью взрослых, в первую очередь старых особей. Распространен у насекомых, личинки которых обитают в почве, воде, древесине, а также в других местах с благоприятными условиями защиты, тогда как взрослые особи подвергаются постоянным воздействиям неблагоприятных факторов среды.

В связи с этим в экологии широко распространено графическое построение кривых выживания (рис. 1.4).

Располагая по оси абсцисс продолжительность жизни в процентах от общей продолжительности жизни, можно сравнивать кривые выживания организмов, продолжительность жизни которых имеет значительные различия. На основании таких кривых определяют периоды, в течение которых тот или иной вид особенно уязвим.

Если действие причин, вследствие которых изменяются рождаемость или смертность, приходится на наиболее уязвимую фазу, то их влияние на последующее развитие (рост численности, плотность, плодовитость и т. д.) будет максимальным. Это позволяет, например, регулировать численность насекомых-вредителей или грызунов в зернохранилищах.


Рис. 1.4. Различные типы кривых выживания (по Р. Дажо, 1975)


Смертность подвержена более резким колебаниям и больше зависит от факторов окружающей среды, чем рождаемость, она играет главную роль в регулировании численности популяции.

Численность популяции является видоспецифическим признаком.

В любой природной системе поддерживается та численность особей в популяциях обитающих здесь животных и растений, которая в наибольшей степени отвечает интересам воспроизводства популяций.

Основное уравнение динамики численности популяции выглядит следующим образом:

r = b – d,

где r – скорость наблюдаемого изменения численности, или коэффициент прироста изолированной популяции; b – коэффициент рождаемости; d – коэффициент смертности.

В соответствии с этим уравнением рост популяции описывается экспоненциальной кривой. Это говорит о том, что оно справедливо для идеальной популяции, имеющей неограниченные пищевые ресурсы, не подвергающейся никаким внешним воздействиям среды и распространяющейся на неограниченной территории.

Понятно, что в реальных условиях эти требования не могут быть выполнены. Поэтому в 1845 г. французский математик Ферхюльст высказал гипотезу, что рост популяции человека описывает логистическая (S-образная) кривая, а в 1925 г. Р. Пирл (R. Pearl) применил эту кривую к росту любой популяции, располагающей ограниченным, но восполняемым во времени запасом пищи.

Уравнение логистической кривой выглядит следующим образом:

dN /dt = rN (K – N /K ),

где dN/dt – коэффициент роста; r – коэффициент прироста; N – численность популяции; K – максимальное число особей, способное жить в рассматриваемой среде; K – N/K – корректирующий фактор, выражающий сопротивление среды росту популяции. Отсюда

N = K (1 + ea–rt),

где а – константа, равная r/K.

Асимптота координаты K, к которой приближается кривая, соответствует пределу численности, или максимальной биотической нагруженности рассматриваемой среды (рис. 1.5).

Обычно при изучении той или иной популяции очень трудно определить ее абсолютную численность, т. е. провести количественный учет всех особей данной популяции в ареале ее обитания. Поэтому в демэкологии большей частью оперируют таким понятием, как плотность популяции.

Плотность популяции определяется количеством особей или биомассой на единицу площади либо объема (например, количество деревьев на 1 га, количество цианобактерий рода воронихия Woronichinia в 1 м3 воды).

Различают с р е д н ю ю плотность, т. е. численность или биомассу на единицу всего пространства, и у д е л ь н у ю, или э к о л о г и ч е с к у ю, плотность – численность или биомассу на единицу обитаемого пространства, доступной площади объема, которые фактически могут быть заняты популяцией.


Рис. 1.5. Теоретические кривые роста популяции. Пространство, заключенное между кривой биотического потенциала Чепмана и логистической кривой Ферхюльста, соответствует сопротивлению среды (по Р. Дажо, 1974)


Плотность популяции отличается изменчивостью и зависит от ее численности. При возрастании численности не наблюдается увеличение плотности лишь в том случае, когда возможно распределение популяции за счет расширения ее популяционного ареала.

Из всего вышесказанного закономерности роста, развития и затухания популяции выглядят следующим образом:

• если рождаемость в популяции превышает смертность, то популяция, как правило, будет расти;

• с увеличением плотности скорость роста популяции постепенно снижается до нуля. При нулевом росте популяция стабильна, т. е. размеры ее не меняются. Отдельные организмы при этом могут расти и размножаться. Нулевая скорость роста означает лишь то, что скорость размножения, если оно происходит, уравновешена смертностью. Данная картина характерна для ряда одноклеточных и многоклеточных организмов, например для клеток водорослей в культуральной жидкости, для фитопланктона озер и океанов весной, для насекомых (мучные хрущаки, а также клещи, интродуцированные в новое местообитание с обильными запасами пищи, где нет хищников);

• миграция, или расселение, также как и внезапное снижение скорости размножения, способствует уменьшению численности популяции. Расселение может быть связано с определенной стадией жизненного цикла, изменениями условий среды, появлением лимитирующих факторов. Рассматривая вопрос об оптимальных размерах популяции в данной среде, необходимо учитывать кормовую продуктивность среды. Чем выше поддерживающая емкость, тем больше максимальный размер популяции, который может существовать неопределенно долгое время в данном местообитании. Дальнейшему росту популяции будут препятствовать один или несколько лимитирующих факторов. Это зависит, прежде всего, от доступности ресурсов для данного вида.

Таким образом, скорость роста популяции в естественных местообитаниях будет зависеть от климатических изменений, снабжения пищей и того, ограничено ли размножение определенным временем года и рядом других факторов.

Популяции, существующие в условиях ограниченных ресурсов, нередко хорошо подчиняются правилам логистического роста.

Численность естественной популяции может колебаться в значительных пределах.

В связи с тем что любая популяция обладает строго определенной генетической, фенотипической, половозрастной и другой структурой, она не может состоять из меньшего числа индивидов, чем необходимо для обеспечения стабильной реализации этой структуры и устойчивости популяции к факторам внешней среды. В этом и состоит принцип минимального размера популяций. Минимальная численность популяций, обеспечивающая существование вида, является специфической для разных видов.

Также относительно численности популяции, сопоставляя соотношение законов максимума биогенной энергии и давления среды, Одум (1975) формулирует правило популяционного максимума, которое звучит следующим образом: популяции эволюционируют так, что регуляция их плотности осуществляется на значительно более низкой по сравнению с верхней асимптотой емкости местообитания, достигаемой лишь в том случае, если полностью используются ресурсы энергии и пространства. При росте плотности популяции снижается обеспеченность пищей. У многих животных от потребления пищи прямо зависит плодовитость: при увеличении плотности популяции плодовитость падает, и это предотвращает дальнейший рост численности.

Правило популяционного максимума конкретизирует два обобщения. Первое из них известно как теория X.Г. Андреварты – Л.К. Бирча (1954), или теория лимитов популяционной численности: численность естественных популяций ограничена истощением пищевых ресурсов и условий размножения, недоступностью этих ресурсов и слишком коротким периодом ускорения роста популяции. Второе обобщение дополняет первое и носит название теории биоценотической регуляции численности популяции К. Фридерикса (1927): регуляция численности популяции есть результат комплекса воздействий абиотической и биотической среды в местообитании вида.

Совокупность всех факторов, способствующих увеличению численности популяции, называется биотическим потенциалом. Несмотря на то, что у разных видов составляющие биотического потенциала неодинаковы, имеется общее свойство: у всех видов он достаточно высок для стремительного увеличения численности при благоприятных условиях среды.

Рост популяции может быть столь быстрым, что приведет к популяционному взрыву. Однако следует отметить, что повышение плотности популяций сверх оптимальной оказывает на них неблагоприятное воздействие, так как при этом иссякает кормовая база, сокращается жизненное пространство, появляются эпизоотии и т. д.

Колебания численности популяции – изменение численности популяции во времени под влиянием абиотических факторов, а также в процессах иммиграции или эмиграции.

Иммиграция – активное вселение особей популяции на другую территорию.

Эмиграция – массовое выселение с занимаемой территории особей, когда плотность популяции превышает емкость среды. Различают непериодические (редко наблюдаемые) и периодические колебания численности.

Н е п е р и о д и ч е с к и е колебания численности (осцилляции) обычно носят непредвиденный характер, и причины, их вызывающие, до сих пор неясны. Р. Дажо приводит такой пример: в 1946 г. во Франции в лесу Фонтенбло жужелица Nomius pygmaeus имела среднюю численность, а жужелица Agonum quadripunctatum – очень высокую, тогда как в 1934 и 1935 гг. было выявлено всего по одной особи первого вида и несколько экземпляров второго. Причем, такая их численность держалась до 1946 г., позже ни тот ни другой вид в этом месте не встречался. Или другой пример: с 1966 г. в Тихом океане, особенно в районе Большого Барьерного рифа к северо-востоку от Австралии, началось массовое развитие морской звезды Acanthaster planci. Если до этого времени она встречалась крайне редко, то за 10 лет ее плотность увеличилась до 1 особи на 1 м2 и продолжала расти. Эта морская звезда питается полипами, составляющими живую часть коралла. Менее чем за 3 года эта морская звезда полностью уничтожила почти 40 км кораллового рифа у острова Гуам. Встал вопрос об угрозе всему Большому Барьерному рифу, что привело бы к экологической катастрофе не только в районе его нахождения, но и в других регионах планеты. Однако, через 10 лет численность морской звезды неожиданно упала до первоначальной – единичные особи на многие метры дна. Причем до настоящего времени так и не выяснено, по каким причинам происходят такие колебания численности популяций.

П е р и о д и ч е с к и е колебания численности (флуктуации) являются естественными для популяции. Они бывают нескольких видов: колебания численности с определенным периодом времени (циклические) и сезонные.

На резкие периодические колебания численности популяций впервые обратил внимание С.С. Четвериков, который назвал их волнами жизни или популяционными волнами.

Волны жизни – закономерно повторяющиеся подъемы и спады численности природных популяций. Различают большие и малые волны. Первые могут достигать необычайного размаха даже у достаточно крупных животных, если они способны быстро размножаться. Например, численность зайца-беляка в Якутии в некоторые годы стремительно возрастает от 1000 до 2500 раз. У мелких плодовитых видов (насекомые, водоросли, водные беспозвоночные и др.) эта амплитуда несравненно больше – до 10 000 и более раз. Волны жизни являются поставщиком эволюционного материала, но весьма опасны для выживания малочисленных популяций.

Для большинства популяций характерно цикличное изменение численности. Например, у зайца-беляка и рыси период колебания численности равен 9,6 года, причем максимальная численность зайца обычно по сравнению с рысью сдвинута на 1–2 года. Это вполне объяснимо: рысь питается зайцами и поэтому ее популяция испытывает соответствующие колебания численности доступной пищи. С другой стороны, рождаемость и выживаемость рысей существенно ниже, чем у зайца-беляка. Для полярной совы, песца и лемминга, живущих в тундре, характерны цикличные изменения со средним периодом 4 года. Полярная сова и песец в основном питаются леммингами. У атлантического канадского лосося наблюдается максимум численности через 9–10 лет. Максимум численности клеста в Финляндии наблюдается приблизительно каждые 3 года, что приурочено к максимальному урожаю еловых шишек, семенами которых он питается.

Трудно сказать, какими конкретно причинами вызываются такие цикличные изменения численности популяций. Ряд авторов связывает их с циклами солнечной активности, большинство же описывают как существующее явление.

Пока известна одна достоверная причина колебания численности ряда популяций. У берегов Перу проходит теплое течение Эль-Ниньо. Приблизительно 1 раз в 7 лет его теплые воды вытесняют с поверхности холодные, температура воды быстро поднимается на 5 °C и выше и изменяется соленость. В связи с этим происходит массовая гибель планктона, вода насыщается продуктами распада, снижается количество растворенного кислорода, который идет на окисление избыточного количества органического вещества. В результате этих процессов гибнет рыба, морские птицы, оставшись без пищи, вынуждены эмигрировать в другие районы. Часть естественных популяций исчезает практически полностью, другие находятся в сильно угнетенном состоянии. Но через 1–2 года после ухода Эль-Ниньо, численность популяций, их видовой состав восстанавливаются практически в полном объеме.

Сезонные колебания численности характерны для большинства водных и наземных организмов. Эти колебания, прежде всего, связаны с абиотическими факторами, такими как температура, влажность, освещенность, о чем будет сказано ниже.

Известен еще один вид изменения численности популяции – резкий подъем численности популяций, оказавшихся в новом местообитании. Наличие свободных экологических ниш обеспечивает очень быстрое расселение попадающих в них видов. Несколько кроликов, завезенных переселенцами в Австралию, в связи с отсутствием там хищников, через 3 года образовали многомиллионную популяцию, функционирование и развитие которой уничтожили ряд аборигенных экосистем и значительно изменили биогеоценоз.

И.И. Шмальгаузен выделил четыре фазы изменения численности популяций и дал им оценку с точки зрения значимости для эволюционного процесса. Он считал популяцию основной единицей микроэволюции.

Первая фаза – рост численности в благоприятных условиях. Для нее характерно увеличение индивидуальной изменчивости (накопление и комбинирование мутаций) в связи с ослаблением действия естественного отбора.

Вторая фаза – относительная стабилизация, сопровождающаяся усилением конкуренции, а также прямой борьбой за существование. В этот период происходит эффективный отбор наиболее благоприятных комбинаций мутаций и сокращается изменчивость.

Третья фаза – более или менее резкое сокращение численности под давлением элиминирующих факторов среды, что связано с дальнейшим сокращением изменчивости и зачастую со случайным сохранением некоторых благоприятных комбинаций мутаций.

Четвертая фаза – популяционная волна, связанная с быстрым распространением выживших особей и дальнейшим накоплением новых мутаций, обеспечивающих рост популяции в новых условиях среды.

Знание этих закономерностей важно не только для фундаментальной науки, но, прежде всего, для прикладной экологии, так как позволяет эффективно регулировать численность популяций за счет естественных механизмов.

Все имеющиеся в настоящее время данные позволяют предположить, что механизмы регуляции численности популяций базируются на сложной взаимосвязи изменений генотипической и экологической структур природных популяций (С. Шварц).

С точки зрения познания закономерностей динамики численности популяций важны следующие выводы эволюционной экологии:

• популяции способны поддерживать свою численность в состоянии динамического равновесия, несмотря на постоянные изменения факторов окружающей среды за счет адаптивных гомеостатических реакций отдельных особей в популяции, динамику экологической структуры популяции и изменение ее генетического состава;

• колебания качества популяции – такое же обязательное свойство, как и колебание численности популяции;

• непременным условием поддержания жизнеспособности популяции в имеющихся условиях среды является высокая степень ее генетической разнородности, которая обеспечивается такими экологическими механизмами, как различный образ жизни разных внутрипопуляционных групп организмов, строгие закономерности формирования пар, разная скорость созревания самцов и самок, разное соотношение полов в разных возрастных группах и др.

Все эти выводы очень важны для прикладной экологии при разработке мер защиты окружающей среды от воздействия негативных факторов, оценки влияния хозяйственной деятельности на биосферу, а также биотехнологии, генной инженерии.

По Шварцу экологические механизмы эволюционного процесса проявляются в трех важнейших формах:

• возрастной отбор, основанный на изменении возрастной структуры популяции;

• неизбирательная элиминация, или изменение численности;

• изменение пространственной структуры популяции.

Резкие изменения численности – это важнейший фактор преобразования популяций, причем, вопреки общепризнанным представлениям классической экологии, неизбирательная элиминация оказывает на экологическую структуру популяции строго избирательное действие, преобразуя ее в определенных направлениях, соответствующих изменениям среды. Резкие колебания численности популяции, как и возрастной отбор, содействуют быстрой мобилизации биологических резервов популяции и являются обычно одним из факторов ее адаптивной эволюции.

В связи с этим необходимо отдавать себе отчет в том, что изменяя численность той или иной популяции или внедряя несвойственные данному биому популяции, получая и вселяя генномодифицированные популяции, мы вмешиваемся в сложнейшие механизмы эволюционного процесса, что может быть куда опаснее глобального экологического кризиса.

1.4. Эволюция популяции

В эволюционном процессе популяция выступает как экологическое, морфофизиологическое и генетическое единство. Общепризнано, что именно популяция является элементарной эволюционной единицей. Ни одно изменение отдельной особи не может привести к эволюционным процессам вида. Необходимо, чтобы индивидуальные и дискретно возникающие изменения стали присущи группе организмов и подверглись тем или иным эволюционным факторам. Это проявляется только в рамках популяции как длительно существующей, организованной группе особей, которая неделима без утраты ее целостности и других свойств и обладает собственной эволюционной судьбой. Особь в популяции – объект действия главного эволюционного фактора – отбора. Вид – качественный этап эволюционного процесса.

Эволюция популяции обеспечивается внутривидовыми и межвидовыми отношениями, в результате которых формируются экологические стратегии популяций.

1.4.1. Внутривидовые отношения в популяции

Особи в популяции постоянно взаимодействуют между собой. Удовлетворение потребностей в питании и распределении кормовых угодий, выбор места для постройки гнезда или укрытий, спаривание, выращивание потомства, охрана занимаемой территории, расселение и все иные действия осуществляются только в результате постоянного взаимодействия особей, входящих в популяцию, что и обеспечивает ее существование.

Эти связи складывались в процессе эволюции по мере образования и развития вида как целостной системы. Поэтому все особи, входящие в популяцию, обладают общностью происхождения, рядом общих черт, а также многочисленными специфическими приспособлениями к совместной жизни (рис. 1.6).


Рис. 1.6. Связи особей в популяции (на примере млекопитающих)


Все закрепившиеся в ходе эволюции приспособления иначе называются адаптациями.

Адаптация – это процесс приспособления организма, популяции или сообщества к определенным условиям внешней среды за счет появления тех или иных конкретных морфофизиологических и иных признаков. Поэтому эволюцию можно рассматривать как процесс возникновения адаптаций, или адаптогенез.

Адаптации обеспечивают выживание и размножение организмов в конкретной среде, сохраняют целостность популяции, позволяя ей, при необходимости, за счет изменчивости и отбора приспособиться к изменившимся условиям среды.

При формировании адаптаций происходит превращение случайного (элементарного адаптационного явления) в необходимое для процветания популяции и вида формирование признаков и свойств. Таким образом, адаптации появляются только после того, как возникает специализированный признак у популяции (вида) к элементам среды. Достигается это при выделении отбором элементарного адаптационного явления (появление селективно ценного генотипа) и закреплении его в стойком изменении генотипического состава популяции. Именно в этом случае конкретные полезные отклонения отдельных особей превращаются в норму для популяции в целом.

Следует учесть, что приспособления (адаптации) не возникают одномоментно, а складываются в процессе многоступенчатого отбора удачных вариантов из множества изменившихся особей в ряде поколений. Так происходит процесс эволюции популяций.

Адаптации классифицируют по происхождению, принадлежности к разным средам, масштабу. В табл. 1.2 приведена классификация адаптаций.


Таблица 1.2. Классификация адаптаций (по Н.В. Тимофееву-Ресовскому и др., 1969)




По принадлежности к факторам среды адаптации бывают весьма различными. В соответствии с уровнями организации живого (см. п. 1.3.1) биотическая среда подразделяется на генотипическую, онтогенетическую, популяционно-видовую и биоценотическую. Специфические свойства выделенных сред отличаются и специфическими адаптациями.

Генотипическая среда характеризуется целостностью генотипа особи и взаимодействием между собой. Целостность генотипа определяет особенности домирования генов и развитие коадаптаций – гармонических эпистатических взаимодействий генов, собранных вместе естественным отбором.

Онтогенетической среде свойственны адаптации на уровне отдельной особи. Они непосредственно связаны с онтогенезом – упорядоченными во времени и пространстве процессами реализации наследственной информации, наследственным осуществлением морфогенеза. Здесь также повсеместно встречаются коадаптации (взаимные приспособления), в основе которых лежат корелляции, которые и регулируют онтогенетические дифференцировки. На этом уровне в основном формируются комплексные адаптации физиолого-биохимического характера.

Популяционно-видовая среда формируется взаимодействием особей в пределах популяции и вида в целом. Ей соответствуют надорганизменные, популяционно-видовые адаптации, такие как половой процесс, гетерозиготность, резерв наследственной изменчивости, определенность, плотность и т. д. В популяционно-видовой среде сформировались специальные внутривидовые адаптации (приспособления), которые названы С.Н. Северцовым в 1935 г. конгруэнциями.

Конгруэнции – это взаимоприспособления особей, возникающие в результате внутривидовых отношений. Они выражаются в соответствии строения и функции органов матери и детеныша, аппаратов размножения самцов и самок, в наличии приспособлений для отыскания особей противоположного пола; приспособлений, обеспечивающих расселение или объединение в стаи (к миграциям или на зиму), разнообразные «сигналы» (запахи, цвет, голос, поведение и др.), все, что привлекает или отвлекает особей, предупреждает их о занятой территории и иные, т. е. охватывают как морфофизиологические, так и этологические (поведенческие) признаки.

Данные приспособления могут носить характер индивидуальных или групповых контактов и формируют характер внутривидовых отношений. Как известно, они могут по-разному осуществляться на разных стадиях развития организмов, меняться в течение жизни особи, в разные сезоны года, а также в связи с изменениями условий обитания.

Взаимоотношения между членами популяции зависят, прежде всего, от формы существования особей видов, составляющих популяцию. Формы же существования особей в популяции чрезвычайно различны. Основными являются одиночный, семейный и групповой образ жизни.

Одиночный образ жизни характерен для многих видов насекомых, водных животных, червей. Особи популяции обособлены и независимы друг от друга обычно на каких-то определенных стадиях жизненного цикла. Полностью одиночное существование организмов в природе практически не встречается. Причиной этого является невозможность осуществления большинством живых организмов основных жизненных функций – размножения и выживания в период неблагоприятных условий среды (зимовка, засуха и др.).

Нередко виды с одиночным образом жизни образуют временные скопления особей в период, предшествующий размножению (в местах зимовок и т. д.). Например, бабочки-крапивницы поздней осенью в большом количестве собираются на чердаках, божьи коровки и жужелицы – возле пней и комлей деревьев в сухой подстилке, щуки и сомы – в зимовальных ямах на дне водоема. Вместе с тем подобные скопления не сопровождаются установлением тесных связей между отдельными животными. Каждое из них сохраняет относительную независимость от остальных.

Семейный образ жизни характерен для многих видов птиц и животных. Усложнение отношений внутри популяций происходит по двум направлениям: усилению связи между половыми партнерами и возникновению контактов между родительским и дочерними поколениями. На этой основе в популяциях формируются семьи, разнообразные по составу и длительности существования.

Родительские пары могут создаваться на короткий или длительный срок, а у некоторых видов – на всю жизнь взрослых особей. Например, многие птицы (тетерева, глухари и др.) не образуют устойчивых семейных пар; у ряда воробьиных самка и самец держатся вместе в течение всего периода гнездования; на долгие годы сохраняют семейные пары лебеди, журавли, голуби.

Создание семей и выбор партнеров у животных сопровождается особым брачным поведением, нередко большой сложности, – танцы, ухаживания и др.

Эти поведенческие реакции у многих насекомых, птиц и млекопитающих нередко предотвращают агрессию и оборону особей противоположного пола, приводят к синхронизации полового созревания, стимулируют готовность к спариванию, что имеет большое значение для размножения, к которому самец и самка должны быть готовы в одно и то же время. Они связаны с рядом генотипических и онтогенетических адаптаций.

Однако в период выбора половых партнеров в популяциях неизбежно усиливаются конкурентные отношения. У многих животных возникают драки самцов, ритуальные демонстрации и другие типы специализированного поведения, которые направлены на устранение конкурентов.

Несмотря на частую ожесточенность, эти столкновения редко приводят к тяжелым травмам соперников, в основном они направлены на изгнание одного из них с территории нахождения самки. Чаще всего используются ритуалы угрозы и демонстрации силы. Эти поведенческие адаптации также выработались в результате эволюции популяции с целью сохранения генетического материала и стабильной численности популяции, так как поверженный соперник не погибает, а имеет возможность реализовать свой генетический потенциал с другим партнером.

Следовательно, период, предшествующий размножению в популяциях животных, характеризуется активным поиском и резким усилением контактов между особями.

Семейный образ жизни укрепляет связи между родителями, между родителями и их потомством в форме заботы о последних. Простейшим видом такой связи является, например, забота одного из родителей об отложенных яйцах (охрана кладки, инкубация, дополнительное аэрирование и т. д.) или забота друг о друге в период высиживания птенцов, беременности. В охране и выкармливании потомства в семьях с устойчивым образованием пар принимают участие обычно как самец, так и самка.

В зависимости от того, кто из родителей берет на себя уход за потомством, различают семьи отцовского, материнского и семейного типов.

Дальнейшее усложнение поведенческих связей в популяциях приводит к формированию группового образа жизни (колонии, стаи, стада).

Колония – группа постоянно или временно совместно живущих организмов одного вида, каждый из которых способен к самостоятельной жизни, но эволюционно приспособился к проживанию в тесном соседстве, из которого он извлекает какую-либо выгоду. Колонии свойственны бактериям, многим низшим и высшим растениям, животным разного уровня организации.

Колонии по сложности взаимосвязей между особями чрезвычайно разнообразны:

• простые территориальные скопления одиночных форм (морские желуди, мидии, ряд бактерий, низших грибов);

• поселения животных на определенной территории, где некоторые общие функции их жизни выполняются сообща. Это увеличивает вероятность выживания отдельных особей. Такими общими функциями колонии чаще всего становятся защита от врагов и предупредительная сигнализация.

Наиболее сложные формы колонии существуют у общественных насекомых, таких как муравьи, термиты, пчелы. Они возникают на основе сильно разрастающейся семьи, в которой насекомые выполняют сообща большинство основных функций: размножения, защиты, обеспечения кормом себя и потомства, расширения колонии и т. д. Причем здесь существует обязательное разделение труда и специализация отдельных особей и возрастных групп на выполнение определенных операций. Члены колонии действуют на основе постоянного обмена информацией друг с другом.

По мере усложнения колониального объединения поведение, а нередко физиология и строение отдельной особи все больше и больше подчиняются интересам всей колонии, причем это эволюционно закреплено на генетическом и онтогенетическом уровнях.

Стая – временные объединения животных, которые проявляют биологически полезную организованность действий. Образование стаи облегчает выполнение каких-либо функций в жизни вида: добычу пищи, защиту от врагов, миграцию. Стайность наиболее широко распространена среди рыб, птиц, ряда млекопитающих. Она является одной из форм социальной организации популяции. В стаях сильно развиты подражательные реакции и ориентация на соседей. Существование стаи эволюционно закреплено адаптациями морфофизиологического и генотипического характера.

Для координации действий в стае существуют эволюционно закрепленные способы поведения:

• эквипотенциальные – без выраженного доминирования отдельных членов. Они известны у рыб, мелких птиц, перелетной саранчи, других насекомых;

• стаи с лидерами, в которых особи ориентируются на поведение одной или нескольких, как правило наиболее опытных и сильных, особей. Они распространены у крупных птиц и млекопитающих.

В стаях млекопитающих очень важна роль вожаков и специфичны отношения между отдельными особями, что сближает данные групповые образования со стадами.

Стадо – более длительные и постоянные объединения животных, проживающих на одной территории, по сравнению со стаями. Здесь осуществляются все основные функции жизни вида: добывание корма, защита от хищников, миграции, размножение, воспитание молодняка и т. д.

Существует несколько вариантов организации стада:

• группы с временным или относительно постоянным лидером. Лидером является член стада, на котором концентрируется внимание других членов, а они своим поведением определяют направление перемещения, места кормления, реакцию на хищника и т. д. В этом случае деятельность лидера не направлена непосредственно на подчинение других членов. Лидером становится наиболее опытный член стада. Стадо действует как единое целое, подражая лидеру;

• семейные или возрастные группы с внутренними, более дружелюбными и тесными контактами, чем с членами других аналогичных групп и стада в целом. Независимо от общего лидерства в стаде во внутривидовых группировках могут складываться отношения в форме администрирования – подчинения.

Наиболее сложной является поведенческая организация стад с вожаками и иерархическим соподчинением особей. В отличие от лидеров вожаки характеризуются поведением, направленным непосредственно на активное руководство стадом: специальными сигналами, угрозами и прямыми нападениями, т. е. формируются отношения типа доминирование – подчинение. В таком стаде выражена строгая иерархия особей. Как правило, над слабыми доминируют сильные и опытные, с устойчивым типом нервной системы. Это проявляется в праве на самку, преимуществе при поедании пищи, передвижении в группе и др. В стаде ранг каждой особи определяется многими причинами: возрастом, физической силой, опытом и наследственными качествами животного.

Формы доминирования – подчинения весьма различны у разных видов. Наиболее часто встречаются следующие:

• линейная иерархия, или деспотия, при которой в ряду рангов А – В – С особи, принадлежащие к определенному рангу, подчинены предыдущим, но главенствуют над последующими. В таком ряду последние животные – самые бесправные в группе. Животные низшего ранга ведут себя покорно перед всеми остальными, подходят к пище в последнюю очередь. Они изгоняются с лучших мест отдыха, не подпускаются к самкам и т. д.;

• иерархическое соподчинение по типу «треугольника»: А нападает на В, В – на С, а С подчиняет себе А. Данное соотношение может сохраняться в группе довольно долго.

Ранг животного в группе первоначально определяется столкновениями между особями в виде прямой борьбы или ритуальных угроз. После установления ранга всех членов группы прямые столкновения между ними прекращаются и порядок поддерживается сигнальным или ритуальным поведением.

Иерархически организованному стаду свойствен закономерный порядок перемещения, определенная организация при защите, расположении на местах отдыха и т. д.

Биологический смысл иерархической системы доминирования – подчинения заключается в создании согласованного поведения группы, выгодного для всех ее членов. После определения иерархического статуса животные не тратят лишней энергии на индивидуальные конфликты, а в целом группа получает преимущества, подчиняясь наиболее сильным и опытным индивидуумам. Это имеет большое значение для выращивания молодняка, обеспечения защиты от хищников, предупреждения об опасности, миграциях и т. д.

Жизнь в группе любого уровня отражается на протекании многих физиологических процессов в организме животного через нервную и гормональную системы. Наблюдается тесное общение особей посредством запахов, звуков, специфики поведения. Благодаря сложной системе сигнализации у особей и их взаимному обмену информацией возрастает эффективность функционирования группы, направленная на удовлетворение важных жизненных потребностей всех ее членов.

Оптимизация физиологических процессов, ведущая к повышению жизнеспособности при совместном существовании получила название эффект группы.

Эффект группы проявляется как психофизиологическая реакция отдельной особи на присутствие других особей своего вида, а также в ускорении темпов роста животных, повышении плодовитости и средней продолжительности жизни индивидуума, более быстром образовании условных рефлексов и др. Животные в группе обычно способны поддерживать оптимальную температуру (например, в гнездах, ульях). Вне группы у многих животных не реализуется плодовитость.

Одним из элементов эффекта группы служит фазовая изменчивость. Она была впервые обнаружена Б.П. Уваровым в 1921 г. у саранчовых, а позднее – и у жесткокрылых, чешуекрылых и других насекомых. У саранчовых четко различают две формы особей: одиночную и стадную.

Оказалось, что появление этих форм напрямую связано с плотностью популяции саранчи и служит механизмом регуляции ее численности.

Взаимная стимуляция особей при высокой плотности группы вызывает формирование стадной формы, которая характеризуется снижением плодовитости, сокращением смертности в ранних возрастах, увеличением скорости развития и повышением активности.

Вспышки численности грызунов также прекращаются большей частью из-за таких эффектов скученности, как повышенная агрессивность вплоть до каннибализма вследствие усиленной секреции адреналина или вялости, связанной с понижением сахара в крови, из-за нехватки пищи.

Таким образом, положительный эффект группы проявляется до некоторого оптимального уровня плотности популяции. Когда животных становится слишком много, это грозит для всех недостатком ресурсов среды. В этом случае вступают в действие другие механизмы, которые приводят к снижению численности особей в группе путем ее деления, рассредоточения или падения рождаемости. К таким механизмам относятся внутривидовые агрессия, паразитизм и конкуренция.

Внутривидовая агрессия – это форма связей, характеризующаяся истреблением особей своего вида.

Среди внутривидовых связей агрессия выполняет ряд важнейших биологических функций, а именно:

• территориальности, т. е. распределения пространства обитания;

• полового отбора, так как наиболее сильный и выносливый самец, побеждая более слабого соперника, получает возможность оставить потомство с более прогрессивным генофондом;

• родительской охраны потомства, что способствует более высокой выживаемости молодых особей с прогрессивным генофондом;

• иерархии, которая обеспечивает большую устойчивость популяции за счет выживания наиболее важных для ее развития особей;

• партнерства, предполагающая скоординированные и организованные проявления агрессии (групповая охота, изгнание по тем или иным причинам сородичей и пр.);

• питания (преимущество более высокой в иерархическом отношении особи при получении пищи). Более того, при угрозе предельного уменьшения численности популяции вследствие сокращения пищевых ресурсов или чрезвычайного увеличения численности популяции по ряду причин особи более старших возрастов обычно поедают особей более младших или наиболее ослабленных (насекомые, грызуны, рыбы и др.).

Внутривидовая агрессия проявляется на всех фазах онтогенеза животных: начиная от оплодотворения сперматозоидами яйцеклетки млекопитающих (в том числе и человека), личиночными и молодыми особями, взрослыми организмами. Внутривидовая агрессия обычно способствует поддержанию численности популяции, ее плотности на занимаемой территории и обеспечивает высокую жизненность сохранившихся особей. Считается, что основными формами внутривидовой агрессии является конкурентная и территориальная агрессия. Крайней формой внутривидовой агрессии является каннибализм, или пожирание особей своего вида.

Конкурентная агрессия – соперничество между особями одного вида. Соперничество может осуществляться за пищу, полового партнера, жизненное пространство, место для размножения и укрытия и пр.

Территориальная агрессия – действия животных, наблюдаемые во время конфликтов между особями одного вида и выражающиеся во взаимных угрозах, нападении, изгнании, бегстве противника.

Внутривидовой паразитизм – использование особями одного вида друг друга для удовлетворения своих основных жизненных функций. Он существует в форме экто (наружного) и эндопаразитизма (внутреннего).

Внутривидовой паразитизм обычно возникал в условиях бедности кормов, при очень низкой плотности популяции как приспособление к сохранению численности популяции, так как встреча самцов и самок в таких условиях происходит довольно редко. Переход к паразитированию у этих видов обычно осуществляется во время личиночных стадий, когда только что выведшиеся мальки и личинки еще держатся одной общей стайкой. При сравнительно высокой плотности молодых особей в таких условиях встречаемость самца и самки происходит часто. Этот и целый ряд других видовых особенностей позволяют виду обеспечить свое воспроизведение и длительное существование в борьбе с другими видами.

Внутривидовая конкуренция (за пищу, полового партнера, жизненное пространство, место для размножения и др.) увеличивается как с ростом плотности популяции, так и с увеличением степени специализации вида. Чаще всего конкуренция начинается за пищу, когда в результате размножения при еще достаточном запасе пищи плотность популяции повышается. Недостаточное питание может приводить нередко к снижению плодовитости, пока уменьшение популяции не позволит виду снова размножиться.

У растений также известна внутривидовая конкуренция, которая нередко проявляется в виде пассивной борьбы. Пассивная борьба приводит к появлению особых адаптивных черт в строении, обеспечивающих им выгодное размещение своих органов. Это особенно четко было продемонстрировано В.Н. Сукачевым (1945) в опытах при загущенных посевах. Было показано, что не только надземные части растений разместились на разной высоте, но и их корни распределились на разной глубине.

1.4.2. Межвидовые отношения популяций

Успешное существование популяции обеспечивается не только специфическими внутривидовыми, но и межвидовыми отношениями популяций разных видов.

Между популяциями можно выделить следующие типы основных взаимодействий (Ю. Одум, 1986):

нейтрализм – ассоциация двух популяций никоим образом не сказывается ни на одной из них;

взаимное конкурентное подавление – обе популяции активно подавляют друг друга;

конкуренция из-за ресурсов – каждая популяция неблагоприятно влияет на другую в условиях ограниченных пищевых ресурсов;

аменсализм – одна популяция подавляет другую, но сама не испытывает отрицательного влияния;

паразитизм – одна популяция использует другую для роста и развития с отрицательным эффектом для другой;

хищничество – одна популяция неблагоприятно воздействует на другую в результате прямого нападения, но и зависит от другой;

комменсализм – одна популяция извлекает пользу для себя, не принося вреда другой;

протокооперация – обе популяции получают преимущества от объединения, но их связь непостоянна;

мутуализм, симбиоз – связь популяций благоприятна для роста и выживания обеих, причем в естественных условиях ни одна из них не может существовать без другой (табл. 1.3).


Таблица 1.3. Анализ взаимодействия популяций двух видов (Ю. Одум, 1986)




Окончание табл. 1.3




П р и м е ч а н и е. «0» – существенное взаимодействие между популяциями отсутствует; «+» – благоприятное действие на рост, выживание или другие характеристики популяции; «—» – ингибирующее действие на рост или другие характеристики популяции.


Как видно из табл. 1.3, типы взаимоотношений 2–4 можно классифицировать как отрицательные взаимодействия, 7–9 – положительные, 5 и 6 попадают под обе эти категории.

Следует отметить, что отрицательные взаимодействия не являются синонимом вредных. Они снижают скорость роста популяции, подвергающейся воздействию, но с точки зрения выживания популяции на протяжении длительного времени или ее эволюции, этот эффект не обязательно вреден.

Наоборот, отрицательные взаимодействия в ряде случаев могут ускорять естественный отбор, приводя к возникновению и закреплению качественно новой, прогрессивной адаптации. Например, хищники и паразиты часто весьма полезны для сохранения популяций, не имеющих механизмов саморегуляции численности, так как сокращая численность такой популяции, они предотвращают перенаселение, следствием которого могло бы быть ее самоуничтожение.

К наиболее значимым отрицательным взаимодействиям относятся конкуренция, хищничество и паразитизм.

Межвидовая конкуренция – это любое взаимодействие между двумя или более популяциями различных видов, которое отрицательно сказывается на их росте и выживании.

Конкурентное взаимоотношение может касаться занимаемого и перспективного пространства (популяционного ареала), пищи и необходимых биогенных веществ, продуктов экскреции (маркеры территории, привлечения особей другого пола и пр.), зависимости от прессинга хищников, устойчивости к факторам среды.

Межвидовая конкуренция независимо от того, что лежит в ее основе, может привести либо к взаимному приспособлению двух видов к потребностям друг друга, либо к тому, что один вид будет вынужден переселиться в другое место, перейти к использованию неконкурентноспособной пищи или исчезнуть.

Выделяют следующие типы межвидовых конкурентных отношений:

несовершенная конкуренция, при которой межвидовые взаимодействия слабее внутривидовых. Межвидовая конкуренция служит в определенной мере лимитирующим фактором, однако не приводит к полной элиминации одного из видов;

совершенная конкуренция, при которой с увеличением численности одного из видов другой медленно, но неуклонно вытесняется из занимаемой им ниши или элиминирует;

сверхсовершенная конкуренция, при которой подавляющее влияние одного вида выражено очень сильно и проявляется немедленно.

Необходимо отметить, что близкородственные организмы, ведущие сходный образ жизни, обычно не обитают в одних и тех же местах. Если они и живут в одном месте, то потребляют разную пищу, активны в разное время суток или обладают еще какими-либо различиями, благодаря которым каждый из них занимает соответствующую экологическую нишу.

Экологическая ниша – место вида в природе, включающее не только положение вида в пространстве, но и его функциональную роль в сообществе, положение относительно абиотических условий существования.

Понятие экологической ниши относится не только к физическому пространству, занимаемому организмом, но также к его месту в сообществе, определяемому, в частности, источником энергии и периодом активности.

Если организмы занимают разные экологические ниши, то обычно они не вступают в конкурентные отношения. Вместе с тем, в каждой экосистеме имеются виды, которые претендуют на одну и ту же нишу или ее элементы (пищу, укрытие и др.). В таком случае конкуренция неизбежна. В связи с этим эволюционно сложилось, что виды со сходными требованиями к среде не могут длительно сосуществовать совместно в одной экологической нише. Это так называемое правило конкурентного исключения Гаузе, которое трактуется следующим образом: если два вида со сходными требованиями к среде (питание, поведение, места размножения и т. п.) вступают в конкурентные отношения, то один из них должен погибнуть либо изменить свой образ жизни и занять новую экологическую нишу. Организм (вид) может менять экологическую нишу на протяжении всей жизни. Наиболее яркий пример в этом отношении – насекомые. Экологическая ниша личинок майского жука связана с почвенной средой, а взрослого насекомого – с наземной.

Межвидовая конкуренция приводит к сужению экологической ниши, не дает проявиться ее потенциям. Внутривидовая конкуренция, напротив, способствует расширению экологической ниши, так как в связи с возрастанием численности вида необходимо начать использовать дополнительные корма, осваивать новые местообитания, вступать в новые биоценотические связи. Расширяется популяционный ареал.

Каждая популяция занимает свою экологическую нишу, множество которых формирует сообщество (биоценоз, экосистему). В природном сформировавшемся сообществе обычно все ниши заняты. В такие сообщества вероятность внедрения новых видов (популяций) крайне мала. Все ниши обычно освоены теми организмами, которые характерны для данного региона. Но если организм (вид) заносится извне случайно или преднамеренно, то он может найти для себя свободную нишу, на которую не было ранее претендентов. В этом случае неизбежна вспышка численности вида-пришельца, поскольку он попадает в крайне благоприятные условия, где достаточно пищевых ресурсов, пространства, отсутствуют естественные враги (хищники, паразиты или другие организмы, для которых он служит пищевым ресурсом). Поэтому, прежде чем решать вопрос о вселении того или иного вида в аборигенную среду, следует провести анализ его конкурентной способности по отношению к аборигенным видам и создать модель его роста и развития.

Хищничество – умерщвление организмов одного вида организмами другого вида с целью использования их в пищу. Является одной из основных форм межпопуляционных связей в биоценозе.

Хотя хищничество и паразитизм относятся к отрицательным формам межвидовых отношений, это не значит, что при их отсутствии популяции разных видов были бы в лучшем состоянии. Как уже говорилось выше, хищники и паразиты имеют важное значение для поддержания определенной плотности и численности популяции. Известно, что максимальный лавинообразный рост численности отмечается именно в тех случаях, когда вид интродуцируется на новую территорию, где имеются нетронутые ресурсы и отсутствуют отрицательные взаимодействия в форме хищничества.

Волны флуктаций хищника и жертвы следуют друг за другом с постоянным сдвигом по фазе, а в среднем численность как хищника, так и жертвы остается постоянной. Однако, если популяция жертвы обитает в среде, не предоставляющей надежных укрытий или убежищ для размножения, хищник рано или поздно уничтожает популяцию жертвы и после этого неизбежно вымирает сам.

В. Вольтерра (1931), изучая отношения хищник – жертва, вывел следующие три закона:

закон периодического цикла – процесс уничтожения жертвы хищником нередко приводит к периодическим колебаниям численности популяций обоих видов, зависящим только от скорости роста популяций хищника и жертвы и от исходного соотношения их численности;

закон сохранения средних величин – средняя численность популяции для каждого вида постоянна, независимо от начального уровня, при условии, что специфические скорости увеличения численности популяций, а также эффективность хищничества постоянны;

закон нарушения средних величин – при сокращении популяций обоих видов пропорционально их численности средняя численность популяции жертвы растет, а популяции хищников – падает.

Паразитизм – форма взаимоотношений разных организмов, один из которых является паразитом, а другой – хозяином.

Паразит – живой организм, живущий на или внутри другого организма и питающийся за счет живой субстанции хозяина.

По месту обитания выделяют эктопаразитов, живущих на теле хозяина, и эндопаразитов, обитающих внутри тела хозяина.

По требованиям к условиям существования различают паразитов облигатных (постоянных), которые не способны жить и размножаться вне тела своего хозяина, и факультативных (временных) – способных жить и размножаться самостоятельно, независимо от вида хозяина, но связанных с ним в определенной фазе развития.

Характерной особенностью паразитов является редукция у них некоторых органов (пищеварительной системы, органов чувств, конечностей у животных; корней, стебля, листьев или даже всех вегетативных органов у растений) или, наоборот, усложнение других (половой системы, органов прикрепления). С развитием паразитических свойств возрастает специализация паразита, сужается круг его хозяев.

В условиях Беларуси на многих видах травянистых растений и кустарниках паразитирует повилика европейская; на корнях древесных и кустарниковых пород (ольхи, лещины, клена, липы и др.) – Петров крест; на многих сельскохозяйственных культурах (подсолнечнике, конопле, табаке и др.) – заразиха.

Полупаразиты растений способны к самостоятельному фотосинтезу, однако растворы минеральных солей они берут из ксилемного сока растения-хозяина (омела белая).

Среди многообразных форм паразитических отношений есть и такие, при которых гибель хозяина – обязательное следствие пребывания в нем паразита. Речь идет о паразитоидах – организмах, ведущих паразитический образ жизни только на стадии личинки (многие насекомые). Гибель хозяина обусловлена малым запасом в нем пищи, которой едва хватает на развитие нескольких личинок паразитоидов.

Экологическая роль хищничества, паразитизма и других вариантов пищевых связей в сообществах сводится к тому, что, последовательно питаясь друг другом, живые организмы создают условия для общего круговорота веществ, при этом происходит взаимная регуляция численности видов. На такой взаимозависимости основаны методы биологической борьбы с вредителями сельскохозяйственных культур.

Отрицательные воздействия популяций друг на друга со временем становятся менее заметными, если экосистема достаточно стабильна и ее пространственная структура обеспечивает возможность взаимного приспособления этих популяций. Вырабатывается своеобразный экологический гомеостаз, при котором каждая из популяций подавляется другой в такой степени, что становится возможным их сосуществование при более стабильном равновесии. Более того, при длительном контакте паразита и хищника с хозяином и жертвой влияние на последних весьма умеренно, нейтрально или благоприятно для популяции.

Однако чаще всего взаимная адаптация в новых ассоциациях не возникает, отрицательная реакция в той или иной форме становится необратимой и одна из популяций исчезает. Именно новые паразиты и хищники оказывают наиболее сильное повреждающие действие на популяции хозяев и жертв.

Большинство эпидемий, эпизоотий и эпитофий как раз и вызываются внезапным или быстрым вселением организма с потенциально высокой скоростью роста в экосистему, в которой механизмы регуляции численности этого организма отсутствуют или малоэффективны, а также резкими или очень сильными изменениями окружающей среды, приводящими к нарушению способности системы к саморегуляции.

С экологической точки зрения хищничество и паразитизм очень близки. Однако между их крайними формами имеются существенные различия. С одной стороны, паразитические или патогенные организмы всегда обладают более высоким биотическим потенциалом по сравнению с хищниками. Их строение, обмен веществ, выбор хозяина и жизненные циклы часто более специализированы, что связано со спецификой их среды обитания и проблемой перехода от одного хозяина к другому. Например, волк одинаково успешно съест зайца или овцу, а свиной солитер может существовать только в пищеварительной системе свиньи. С другой стороны, высокая специализация паразитов позволяет использовать их в борьбе с другими вредными для хозяйственной деятельности человека организмами, например насекомыми. Тогда как использование крупных неспециализированных хищников с этой же целью обычно приносит обратный результат. Например, мангусты, которых завезли на острова Карибского моря для уничтожения крыс на полях сахарного тростника, переключились на более легкую добычу (гнездящихся на земле птиц) и резко снизили их численность, тогда как численность крыс осталась практически неизменной.

Взаимодействия двух популяций, оказывающие положительное действие и на одну и на другую, также обычны в природе и имеют важное значение.

Наиболее простой тип положительных взаимодействий – комменсализм. Он свойственен, в частности, взаимоотношениям между прикрепленными организмами и подвижными. Классический пример комменсализма – актинидия, живущая на раковине краба-отшельника. Также у морских животных известны 13 видов рыб-комменсалов, моллюски, многощетинковые черви, полихеты и крабы, которые живут в норках крупных морских червей и роющих креветок. Эти комменсалы питаются остатками пищи или экскрементами хозяина, который не испытывает особых преимуществ от их присутствия. Некоторые комменсалы в качестве хозяина используют один определенный вид, другие могут использовать разные виды организмов.

Однако чистый комменсализм – явление достаточно редкое. Чаще всего оба организма получают какие-либо преимущества от объединения или иного взаимодействия друг с другом. В этом случае имеет место протокооперация. Естественным развитием протокооперации является мутуализм – форма совместного существования организмов, при которой партнеры или один из них не могут (не может) существовать друг без друга. Классическими примерами мутуалистических взаимоотношений являются сожительство клубеньковых бактерий рода ризобиум с корнями бобовых растений, микориза грибов и лишайников. Есть примеры мутуализма и среди животных. В пищеварительном тракте термитов, тараканов, жвачных животных живут бактерии, инфузории и одноклеточные жгутиковые, которые помогают организму-хозяину переваривать растительную пищу, вырабатывая целлюлозолитические ферменты. Без них эти животные усваивать поглощаемую целлюлозу просто не способны.

Такие взаимоотношения обычно развиваются между весьма несхожими организмами с сильно различающимися потребностями, так как в противном случае неизбежно развились бы конкурентные отношения.

При возникновении симбиотических отношений один организм становится полностью зависим от другого в отношении пищи, а существование последнего зависит от обмена веществ и других важных жизненных функций первого. Жизненный цикл симбионтов точно скоординирован с жизнедеятельностью хозяина.

Также известны примеры симбиотической связи, осуществляющейся вне тела другого организма. Например, тропические муравьи-листорезы разводят в своих гнездах целые грибные плантации. Муравьи удобряют, растят и собирают урожай грибов, в свою очередь грибы базидиомицеты способствуют скорейшему разложению листовой подстилки в гнезде, служащей пищей для муравьев, т. е. в этом случае происходит эктосимбиотическое взаимодействие двух организмов. Но более важно то, что с точки зрения биохимического аспекта этих взаимоотношений здесь произошло объединение углеродного и азотного обмена двух организмов. Гриб является поставщиком ферментов, служащих для разрушения клетчатки, которые отсутствуют у муравьев. В экскрементах муравьев содержатся протеолитические фермы, отсутствующие у гриба, и муравьи являются поставщиками ферментного аппарата для разрушения растительного белка.

Таким образом, межвидовые отношения также эволюционно направлены на поддержание определенного равновесного состояния популяции, что в свою очередь обеспечивает устойчивость сообщества (экосистемы, биоценоза).

1.4.3. Экологические стратегии популяций

Все свойства особей в популяции в конечном счете направлены на повышение вероятности выживания и оставление потомства. Среди всех приспособлений и особенностей популяции можно выделить комплекс основных признаков, который называется экологической стратегией или стратегией выживания.

Экологическая стратегия – это общая характеристика роста и размножения данного вида, включающая темп роста особей, период достижения ими половой зрелости, периодичность размножения, предельный возраст, плодовитость и др.

Экологические стратегии весьма разнообразны, между ними существует множество переходов. Однако все многообразие экологических стратегий заключено между двумя типами эволюционного отбора, которые обозначаются константами логистического уравнения популяционной динамики Ферхюльста:

r-стратегия определяется отбором, направленным, прежде всего, на повышение скорости роста популяции и, следовательно, таких ее качеств, как высокая плодовитость, ранняя половозрелость, короткий жизненный цикл, способность быстро распространяться в пространстве и пережить неблагоприятное время в покоящейся стадии. К r-видам относятся бактерии, все однолетние сорные растения, многолетние пионерные виды (иван-чай, многие злаки, полыни, эфемерные растения, ивы, береза белая и каменная, осина, лиственница), которые первыми появляются на нарушенных землях и захватывают свободные экологические ниши. Эти виды очень быстро осваивают новые места обитания, но обычно также скоро – в течение жизни одного-двух поколений – сменяются К-видами;

К-стратегия направлена на повышение выживаемости в условиях уже стабилизировавшейся численности. Это отбор на конкурентоспособность, повышение защищенности от хищников и паразитов, повышение вероятности выживаемости каждого потомка, на развитие более совершенных механизмов внутривидовой численности (А.М. Гиляров, 1990).

Основные признаки К-видов – это низкая плодовитость, значительная продолжительность жизни, крупные размеры особей и семян, мощная корневая система, высокая конкурентоспособность, устойчивость к условиям среды на занимаемой территории, высокая специализации образа жизни. Скорость размножения К-видов с приближением к предельной плотности популяции падает, но может быстро увеличиваться при низкой плотности; существует забота о потомках. К-виды часто становятся доминантными в биоценозе. К ним относятся все хищники, человек, реликтовые насекомые (реликтовый усач, жук-олень, жужелицы и др.), одиночная фаза саранчи, почти все деревья и кустарники.

Следует иметь в виду, что одну и ту же среду обитания разные популяции могут использовать по-разному, поэтому в одном и том же ареале могут сосуществовать виды с r- и К-стратегиями. Ни один из видов не подвержен только одному виду стратегии.

В целом же r- и К-стратегии объясняют связь между разнокачественными характеристиками популяции и условиями среды.

В нестабильной или непредсказуемой окружающей среде преобладает r-стратегия, так как в этом случае основную роль играет способность к быстрому размножению и распространению, а адаптационные механизмы, позволяющие конкурировать с другими организмами из-за быстро изменяющихся условий существования, не столь важны.

Если среда более-менее стабильна, в ней преобладают К-виды, так как в этом случае важна способность успешно конкурировать с другими организмами в условиях ограниченных ресурсов (табл. 1.4).

Таблица 1.4. Сравнительный анализ
r- и
К-стратегий




Каждый организм испытывает на себе комбинацию r- и К-стратегий (r- и К-отбора), но все-таки все оставляемые отбором особи должны обладать такой плодовитостью и способностью выжить при наличии конкуренции и пресса хищников, чтобы сохранилась определенная численность популяции для ее существования.

Конкуренция r- и К-стратегий позволяет ранжировать виды по величинам r и К в любой группе организмов, а следовательно, разрабатывать практические механизмы управления численностью, плодовитостью, ростом расселения популяций.

1.5. Синэкология сообществ

Синэкология – раздел экологии, исследующий взаимоотношения популяций, сообществ и экосистем со средой.

Основными объектами изучения синэкологии являются биотические сообщества, которые описываются такими основными понятиями, как биотоп, биоценоз (экосистема), биомасса и продукция.

Концепция сообщества относится к числу наиболее важных понятий в экологической теории и практике. С теоретической точки зрения это понятие определяет факт образования различными организмами системы. Биотическое сообщество может достаточно часто менять свой внешний вид (летний цветущий и тот же осенний скошенный луг, весенний и зимний сад). Однако любое сообщество в обязательном порядке обладает четкими структурой и функциями, которые являются уникальными атрибутами именно данной группы организмов. С точки зрения прикладной экологии концепция сообщества имеет первостепенное значение при разработке природоохранных мероприятий, мероприятий по управлению окружающей средой. Знание законов функционирования биотических сообществ позволяет более эффективно и безопасно для окружающей среды воздействовать на сообщество организмов при минимальном отрицательном воздействии на отдельные виды: если необходимо контролировать какой-либо отдельный вид, то гораздо дешевле и экологически безопаснее модифицировать в ту или иную сторону все сообщество, чем воздействовать на отдельный вид. Например, в 1980-е гг. в Китае с целью сохранения урожая зерновых культур были уничтожены практически все популяции воробьев. Буквально на следующий сезон урожай этих же зерновых культур погиб от вредителей и болезней, кроме того пострадали сады, парки, леса, резко снизилась численность хищных птиц, увеличилось количество зерноядных птиц и грызунов.

В современном понимании биотическое сообщество – это любая совокупность популяций, населяющая определенную территорию или биотоп, функционирующая как единое целое благодаря взаимосвязанным метаболическим процессам. Биотическое сообщество обычно в общепринятой научной трактовке является синонимом биоценоза.

Сообщества обладают функциональным единством с характерной для данного биоценоза структурой трофических связей и энергетического обмена, имеют определенное композиционное единство, что обеспечивает возможность сосуществования определенных видов. Однако виды могут в значительной степени замещать друг друга во времени и пространстве, поэтому функционально сходные сообщества имеют различный видовой состав, что является их характерной чертой.

Биотические сообщества представляют собой живую часть экосистемы. Термин «биотическое сообщество» следует понимать широко и применять для обозначения естественных группировок различного размера – от биоты крошечного лежащего камня до биоты океана или тайги.

Выделяют основные сообщества, характеризующиеся большими размерами и завершенностью организации, что обеспечивает им относительную независимость. К ним относятся биотическое сообщество океана, джунглей, тайги, горной цепи и пр. Они нуждаются только в притоке извне солнечной энергии и достаточно устойчивы по отношению к изменениям в соседних сообществах. Мелкие сообщества весьма зависимы от изменений в соседних сообществах.

Структура и видовое разнообразие в сообществах. Биотоп – естественное, относительно однородное жизненное пространство определенного биоценоза. Формируется соответствующими абиотическими факторами среды, обеспечивая комфортное существование популяциям тех или иных организмов.

Биоценоз – биологическая система, представляющая собой совокупность популяций различных видов растений, животных и микроорганизмов, населяющих определенный биотоп. Совокупность растений, входящих в биоценоз, называют фитоценозом, а совокупность животных – зооценозом.

Биотоп + биоценоз = экосистема (биогеоценоз).

Иными словами биоценоз вместе с биотопом образуют диалектическое единство экосистемы (биогеоценоза). Биоценоз наряду с биотопом (экотопом) является фундаментальной единицей экосистемы.

Биогеоценоз – совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, почвы и гидрологических условий, растительности, животного мира и мира микроорганизмов), имеющая свою, особую специфику взаимодействий этих слагающих ее компонентов и определенный тип обмена веществом и энергией их между собой и другими явлениями природы, представляющая собой внутренне противоречивое диалектическое единство, находящееся в постоянном движении и развитии (по В.Н. Сукачеву).

Экосистема – это любое сообщество живых существ и их среда обитания, объединенные в единое функциональное целое, возникающее на основе взаимозависимости и причинно-следственных связей, существующих между отдельными экологическими компонентами (по Н.Ф. Реймерсу).

Часто термин «экосистема» заменяется и понимается как «биогеоценоз». Однако в современном понимании биогеоценоз является элементарным рангом экосистемы. Совокупность биогеоценозов земного шара образует биогеоценотический покров планеты, или биосферу (эти вопросы более подробно будут рассмотрены в гл. 2 и 3).

1.5.1. Структура и видовой состав биотического сообщества

При изучении структуры и видового состава биотических сообществ (биоценоза) выясняется, что они определяются прежде всего сочетанием растений и животных с разными способами жизни.

Сообщество состоит из многих видов, которым присущи разные типы популяционных флуктуаций и взаимоотношений друг с другом.

Различные варианты внутренней организации функционирующих (живых) сообществ создают структурное разнообразие каждого сообщества, к которому относится:

• характер стратификации (вертикальная ярусность);

• зональности (горизонтальное распределение);

• активности (периодичности);

• пищевых связей (сетевая структура пищевых связей);

• размножения (связи потомков с родителями, клоны живых организмов);

• групповых отношений;

• совместной деятельности, определяемый конкуренцией, антибиозом и т. д.;

• характер стохистических связей, зависящий от случайных воздействий.

1.5.1.1. Структура сообщества

Различают пространственную, трофическую и экологическую структуру биоценоза.

Пространственная структура биоценоза характеризуется вертикальным или горизонтальным распределением живых организмов.

Заселение организмами того или иного биотопа определяется его требованиями к экологическим факторам, прежде всего, особенностями атмосферы, почвы, вод. В ходе длительного эволюционного развития, приспосабливаясь к определенным абиотическим и биотическим условиям, живые организмы так разместились в биоценозе, что практически не мешают друг другу, их распределение носит ярусный характер.

Ярусность – это вертикальное расслоение биоценозов на равновысокие структурные части. Особенно четко она выражена в растительных сообществах (фитоценозах). Фитоценоз приобретает ярусный характер при наличии в нем растений, которые различаются по высоте. Растения, особенно их органы питания (листья, окончания корней), располагаясь на разной высоте или глубине, легко уживаются в сообществе, что способствует увеличению числа организмов на единицу площади, ослаблению конкуренции между ними, более полному и разностороннему использованию условий среды.

Ярусы определяют структуру и сложение фитоценоза. При малой ярусности растительное сообщество называют простым, при большой – сложным. Растения каждого яруса и обусловленный ими микроклимат создают определенную среду для специфических животных, что приводит к возникновению группировок растений и животных – популяций тесно связанных между собой организмов.

Таким образом, ярусы в биоценозе различаются не только высотой, но и составом организмов, их экологией и той ролью, которую они играют в жизни всего сообщества. В одном сообществе одни и те же виды в силу возрастных различий особей или частичного угнетения могут находиться в определенный период в разных ярусах. Например, всходы деревьев, пока они маленькие, располагаются в нижних ярусах леса. По мере роста при благоприятных условиях они займут свое место в верхнем ярусе.

В растительных сообществах животные также приурочены преимущественно к определенному ярусу. Однако следует отметить, что большинство животных могут перемещаться из одного яруса в другой.

В биоценозе вертикальное распределение организмов обусловливает и определенную структуру в горизонтальном направлении. Расчлененность в горизонтальном направлении получила название мозаичности. Она свойственна практически всем фитоценозам.

Обусловлена мозаичность такими причинами, как неоднородность микрорельефа почв, средообразующим влиянием растений, их биологическими особенностями.

Считается, что распределение организмов в пространстве и их взаимодействие с внешней средой определяют структурный тип сообщества.

Трофическая структура биоценоза образуется из совокупности трофических связей и потребностей организмов его образующих.

Экологическая структура биоценоза слагается из экологических групп организмов, связанных прежде всего сходным типом питания. Макроскопическая характеристика биоценоза определяется его экологической, видовой и пространственной структурами, которая дает возможность определить свойства того или иного биоценоза, выяснить его устойчивость в пространстве и во времени, а также предвидеть последствия изменений, вызванных влиянием антропогенных и иных факторов.

Важнейшим признаком структурной характеристики биоценозов является наличие границ сообществ. Границы сообщества редко бывают четкими. Как правило, биоценозы постепенно переходят один в другой, при этом образуются обширные пограничные, или переходные, зоны, отличающиеся особыми условиями, иными, чем в соседствующих биоценозах. Здесь как бы переплетаются типичные условия соседствующих биоценозов. В переходной зоне произрастают растения, характерные для обоих биоценозов. Обилие более разнообразной по видовому составу растительности привлекает сюда и большее количество видов животных, поэтому пограничная зона обычно более богата жизнью, чем каждый из смежных биоценозов. Пограничная зона нередко представляет собой особое местообитание со своими особыми специализированными видами. Переходную зону называют экотоном.

Экотон – зона напряжения, переходная полоса между физиономически отличными сообществами. Флора и фауна экотонов существенно богаче и в видовом и в численном отношении соседних биоценозов, так как в них в той или иной степени происходит смешение и сгущение видов. В этом состоит проявление краевого эффекта: на стыках биоценозов увеличивается число видов и особей в них.

1.5.1.2. Видовой состав сообщества

Каждый конкретный биоценоз характеризуется строго определенным видовым составом. Везде, где условия абиотической среды приближаются к оптимальным для жизни, возникают богатые видами сообщества, например тропические леса, коралловые рифы, долины рек в аридных районах и др. Видовой состав биоценозов зависит как от длительности их существования, так и истории каждого биоценоза. Молодые, формирующиеся сообщества обычно имеют меньший набор видов, чем давно сложившиеся, зрелые. Биоценозы, созданные человеком (огороды, сады, поля и т. д.), обычно беднее видами по сравнению со сходными с ними природными системами (лесными, луговыми, степными). Однако даже самые обедненные биоценозы включают несколько десятков видов организмов, которые принадлежат к разным систематическим и экологическим группам. При этом одни виды биоценоза могут быть представлены многочисленными популяциями, а другие – малочисленными. Отсюда следует, что в любом биоценозе можно выделить один или несколько видов, определяющих его облик. Такие виды называют характерными, и они определяют видовое название типа биоценоза. Однако подобные случаи достаточно редки. Лишь немногие виды обладают абсолютной связью с одним биоценозом. Обычно они могут встречаться и в других биоценозах, но в ограниченном количестве.

Существует ряд понятий, которые характеризуют как отдельные виды в биоценозе, так и биоценоз в целом.

Обилие – число особей на единицу площади или объема биоценоза. Этот показатель может изменяться во времени (сезонные, годичные и случайные колебания численности) и в пространстве (переход от одного биоценоза к другому). Принято выделять пять степеней обилия видов в биоценозе в баллах:

• 0 – полное отсутствие;

• 1 – встречаются редко и рассеянно;

• 2 – встречаются не редко;

• 3 – встречаются обильно;

• 4 – встречаются очень обильно.

Частота – отношение числа особей одного вида к общей численности видов в биоценозе, выраженное в процентах.

Постоянство (с, %) – степень присутствия вида в биоценозе:

c = (p × 100) : P,

где р – число выборок, содержащих изучаемый вид; Р – общее число взятых выборок.

В зависимости от значения с различают следующие категории видов в биоценозе:

постоянные – встречаются более чем в 50 % выборок;

добавочные – в 25–50 % выборок;

случайные – менее чем в 25 % выборок.

Верность – степень привязанности вида к биоценозу. Этот показатель не поддается количественной оценке и определяется прежде всего степенью комфорности условий в биоценозе для каждого конкретного вида. Различают следующие категории видов:

характерные (эуценные) – свойственные исключительно одному биоценозу или, что случается гораздо чаще, представлены в нем более обильно, чем в других биоценозах. Они обладают низкой экологической валентностью;

преферентные – встречающиеся в нескольких смежных биоценозах, но предпочитающие один из них;

чуждые (ксеноценные) – случайно попавшие в силу каких-либо причин в сообщество, к которому они не принадлежат;

убиквисты (индифферентные) – виды, способные существовать с равным успехом в нескольких биоценозах. Они обладают крайне высокой экологической валентностью.

Обычно характерных видов в биоценозе намного меньше, чем преферентных или чуждых, но их численность намного превосходит последние.

Доминирование – способность некоторых видов занимать главенствующее положение и оказывать преобладающее влияние на среду обитания других видов в биоценозе. Такие виды называются экологическими доминантами.

Степень доминирования того или иного вида в биоценозе выражается показателем доминирования с, который отражает значение каждого вида для сообщества в целом:

c = Σ(ni/ N)2,

где ni– оценка значительности каждого вида (число особей, биомасса, продукция и т. п.); N – общая оценка значительности.

Доминантные виды господствуют в сообществе и составляют видовое ядро любого биоценоза. Они определяют его облик, поддерживают главные связи, в наибольшей мере влияют на физические свойства местообитания. Доминантные виды на своем трофическом уровне обладают наибольшей продуктивностью.

Однако не все доминантные виды одинаково влияют на биоценоз. Среди них выделяются те, которые своей жизнедеятельностью в наибольшей степени создают среду для всего сообщества и без которых существование большинства других видов в нем невозможно. Это виды-эдификаторы. Удаление вида-эдификатора из биоценоза обычно вызывает изменение физической среды, в первую очередь микроклимата биотопа.

Виды-эдификаторы встречаются практически в любом биоценозе. В некоторых случаях эдификаторами являются и животные. На территориях, занятых колониями сурков, именно их роющая деятельность определяет большей частью характер ландшафта, микроклимат и условия произрастания растений.

Виды, живущие за счет доминантов, получили название предоминантов. К примеру, в сосновом лесу таковыми являются кормящиеся на дереве насекомые, белки, мышевидные грызуны.

В состав биоценоза кроме относительно небольшого числа видов-доминантов входит, как правило, значительное количество малочисленных и даже редких форм. Между численностью видов-доминантов и общим видовым составом сообщества имеется определенная связь. Со снижением числа видов обычно обилие отдельных форм резко повышается, ослабевают биоценотические связи, наиболее конкурентоспособные виды получают возможность беспрепятственно размножаться. Чем специфичнее условия среды, тем беднее видовой состав сообщества и выше численность отдельных видов.

Таким образом, все виды, слагающие биоценоз, в определенной степени связаны с доминирующими видами и видами-эдификаторами. Внутри биоценоза формируются в той или иной степени тесные группировки, комплексы популяций, которые зависят от растений-эдификаторов или от других элементов биоценоза, создаются своеобразные структурные единицы биоценоза – консорции. В роли центрального вида в консорции обычно выступает эдификатор – основной вид, который определяет особенности биоценоза. Популяции остальных видов консорции образуют ее ядро, за счет которого существуют виды, разрушающие органическое вещество, создаваемое автотрофами. Популяции автотрофного растения, например березы, на базе которого формируется консорция, называют детерминантом, а виды, объединенные вокруг него, – консортами.

Разнообразие – видовое богатство биоценоза. Этот показатель представляет собой цифровое выражение первого биоценотического принципа Тинеманна: при благоприятных условиях в биоценозе наблюдается большее количество видов, каждый из которых представлен небольшим числом особей. Показатель разнообразия при этом высокий. При неблагоприятных условиях среды видов немного, но все они имеют высокую численность. В этом случае показатель разнообразия низкий.

Различают понятия «видовое богатство» и «видовое разнообразие» биоценозов.

Видовое богатство – это общий набор видов сообщества, который выражается списками представителей разных групп организмов.

Видовое разнообразие – это показатель, отражающий не только качественный состав биоценоза, но и количественные взаимоотношения видов.

Видовое разнообразие слагается из двух компонентов:

• видового богатства, которое характеризуется общим числом имеющихся видов:




• видовой выравненности, основанной на относительном обилии или другом показателе значимости вида и положении его в структуре доминирования.

Как известно, видовое разнообразие увеличивается при возрастании размеров территории и при продвижении от высоких широт к экватору, т. е. при существовании в комфортных условиях среды. В сообществах же, подвергающихся стрессовым воздействиям, видовое разнообразие невелико. Кроме того, оно может снижаться в результате конкуренции в старых сообществах, существующих в стабильной физической среде.

Существует два типа видового разнообразия:

структурное;

генетическое, т. е. поддержание генотипических гетерозиготности (присутствие в хромосоме доминантных и рецессивных признаков), полиморфизма и другой изменчивости, которая вызвана адаптационной необходимостью в природных популяциях.

Для изучения видового разнообразия принято строить кривую относительного доминирования – разнообразия, введенную в рассмотрение Р. Уиттекером (1965) (рис. 1.7). На кривой по оси x (абсцисс) откладывается ранжированная последовательность номеров видов i от наиболее значимого до наименее значимого, а по оси y (ординат) – величина показателя зависимости piсоответствующего вида, обычно в логарифмическом масштабе.

Выделяют три основных типа поведения кривой относительного доминирования, соответствующих различным типам взаимодействий между видами в сообществе.

Кривая 1 отвечает ситуации, когда члены сообщества находятся в сильной зависимости от некоторого ресурса, распределенного вдоль одномерного континуума, причем имеет место случайное, но без пересечений распределение частных ниш видов вдоль координатной оси данного ресурса (модель разломанного стержня Р. Мак-Артура). Показатель значимости в этом случае ведет себя в соответствии с формулой




Рис. 1.7. Кривые относительного доминирования – разнообразия


Подобный тип рангового распределения наиболее часто встречается в немногочисленных по числу видов группировках таксономически близких животных в четко ограниченных однородных биоценозах (например, группировка птиц, гнездящихся на ограниченном участке леса). Также это справедливо для высших животных с активной конкуренцией, устойчивой численностью и высокой продолжительностью жизни.

Кривая 2, представляющая собой прямую, изображает случай так называемого геометрического распределения и соответствует следующей схеме относительного доминирования: первый вид занимает половину доступного пространства существующих экологических ниш, второй – половину оставшегося пространства (25 % исходного) и т. д. В более общем случае существует фиксированное число с (0 ≤ с ≥ 1):




откуда видно, что величина piкак функция ранга i изображается на полулогарифмической шкале прямой линией с угловым коэффициентом log (1 – c).

Геометрическое распределение относительного доминирования обнаруживается в группировках, состоящих из небольшого числа видов, которые находятся в жесткой конкуренции за ограниченные ресурсы, нередко в суровых условиях внешней среды.

Получаемую круто падающую прямую 2 можно рассматривать в качестве альтернативы для относительно пологой кривой 1, соответствующей распределению Мак-Артура.

Эти две кривые представляют крайние случаи истории биоценоза. Обычно же распределение видов в природе имеет вид промежуточной S-образной кривой 3, что указывает на более сложный характер дифференциации и перекрывания ниш.

Распределение, изображаемое кривой 3, называется логнормальным. Это связано с тем, что гистограмма распределения логарифмов log piпо октавам (диапазонам значений pi, отличающихся на границах в 2 раза) приближается по форме к нормальному распределению (рис. 1.8).

Значения nj(число точек, попавших в данную октаву j) для различных октав с номерами j = …, –2, –1, 0, 1, 2,… (где 0 – октава с наибольшим числом точек) могут быть аппроксимированы выражением




где σ – мера рассеяния относительно модального класса j = 0, которая для большинства анализируемых видовых группировок находится в пределах 1 ≤ σ ≤ 5.

Логнормальное распределение относительного доминирования характерно для сообществ с высокой видовой насыщенностью, в условиях, когда успех того или иного вида определяется большим числом относительно независимых и однородных по силе влияния факторов. В этом случае экологические ниши многомерны и перекрываются.


Рис. 1.8. Логнормальное распределение относительного доминирования видов


В общем случае расположения видов по степени значимости кривая доминирования не только точно отражает богатство и относительное обилие видов как компонентов видового разнообразия, но и объясняет, каким образом подразделяется пространство экологических ниш. Чем выше кривая и чем более она пологая, тем больше при данном числе видов общее их разнообразие. Чем круче идет кривая, тем меньше общее разнообразие и сильнее доминирование одного или нескольких видов. В стрессовых ситуациях независимо от того, вызваны ли они естественными причинами или антропогенным воздействием, кривая становится более крутой. Таким образом, кривую доминирования можно использовать для оценки влияния большинства нарушений среды существования на видовую структуру биоценоза.

Кроме видового богатства и типа рангового распределения для характеристики сообществ используется так называемый показатель разнообразия, который количественно отражает не только общее число видов, но и особенности количественного состава сообществ. К наиболее часто употребляемым относят:

показатель разнообразия по Симпсону




показатель разнообразия по Шеннону

H = – Σ(pi/ p)log2 (pi/ p),

где рi– численность (биомасса и т. п.) каждого i-го вида; р – общая численность (биомасса и т. п.) всех видов в сообществе;

показатель выравненности Пиелу

E = H / Hmax,

где Н – реальное, а Нmax – максимально возможное при данном числе видов значение коэффициента Шеннона. Последнее достигается при равенстве численности (биомассы и т. п.) всех видов в сообществе и рассчитывается согласно

Hmax = log2n.

Оба показателя разнообразия Симпсона и Шеннона обладают свойством принимать максимальное значение при равенстве долей всех видов в сообществе.

В случае, когда доля какого-нибудь одного вида, например i-го, стремится к 1, а всех остальных – к 0, оба показателя также стремятся к 0.

Из двух обобщенных индексов показатель Симпсона придает обычным видам больший вес, поскольку при возведении в квадрат малых значений piполучаются очень малые величины. Индекс Шеннона придает больший вес редким видам. Так как он заимствован из теории информации и представляет собой формализацию, которая широко используется при оценке сложности и содержания информации в любых типах систем и лучше всего подходит для целей сравнения в тех случаях, когда не интересуют компоненты разнообразия по отдельности.

При построении Одумом гистограммы для показателя разнообразия Симпсона для разных биоценозов выяснилось, что полученная гистограмма оказалась бимодальной: выделилась одна большая группа биоценозов с низким разнообразием (0,05–0,2) и другая большая группа со сравнительно высоким разнообразием (0,7–0,85). Во всей выборке не оказалось биоценоза с примерно равными значениями показателей относительного доминирования (p1 = … = pn= 1/n), когда индекс разнообразия приближается к своему максимальному значению, т. е. к 1.

В группу с низким биотическим разнообразием попали:

• биоценозы, находящиеся в состоянии стресса под действием внешних сил, поступления вещества или энергии, такие как загрязненные реки или заливы, агробиоценозы или лесные плантации;

• биоценозы, постоянно получающие большие количества высококачественной энергии или полезных веществ.

Биоценозов со средним (около 0,5) разнообразием оказалось сравнительно мало.

Группы с высоким видовым разнообразием свойственны преимущественно естественным биоценозам, не получающим извне концентрированной энергии или биогенных материалов и живущим только за счет солнца, например таким как степи, леса и большие озера.

Эти данные свидетельствуют о том, что видовое богатство и разнообразие биоценозов формируется в результате приспособления к мощности, качественному и количественному составу поступающего энергетического потока.

Стратегия природы как раз и состоит в максимальном увеличении разнообразия, но только до пределов, пока это не приводит к снижению эффективности использования ресурсов биоценоза. Следовательно, существует некоторый оптимум разнообразия, определяемый эффективностью биоценоза. При больших внешних энергетических субсидиях биоценоз – это эффективная, простая, но специализированная структура с низким видовым разнообразием, способная использовать эти благоприятные условия более эффективно, чем большая, но менее специализированная совокупность видов.

В условиях ограниченного энергетического притока более выгодным для поддержания стационарного состояния биоценоза представляется высокий уровень разнообразия: порядка 0,7–0,8. В этом случае достигается бо́льшая надежность использования поступающей энергии благодаря наличию многих альтернативных путей.

Таким образом, биологическое разнообразие определяет устойчивость биоценоза и длительность его существования во времени и пространстве. Изменение биологического разнообразия под действием тех или иных причин вызывает адекватное изменение самого биоценоза и переход его в иное качество.

Основными методами сохранения биологического разнообразия являются:

• создание системы охраняемых районов или районов, в которых необходимо принимать специальные меры для сохранения биологического разнообразия;

• регулирование и рациональное использование биологических ресурсов, имеющих важное значение для целей сохранения биологического разнообразия в охраняемых районах или за их пределами;

• содействие защите экосистем, естественных мест обитания и сохранение жизнеспособных популяций видов в естественных условиях;

• организация экологически обоснованного и устойчивого развития территорий в районах, прилегающих к охраняемым районам, в целях содействия охране этих районов;

• обеспечение мер по реабилитации и восстановлению деградировавших экосистем и содействие восстановлению находящихся в опасности видов, в частности, посредством разработки и осуществления планов и других стратегий рационального их использования;

• установление и (или) поддержка средств регулирования, контроля или ограничения риска, связанного с использованием и высвобождением живых измененных организмов, являющихся результатом биотехнологии, которые могут иметь вредные экологические последствия, способные оказать воздействие на сохранение и устойчивое использование биологического разнообразия, с учетом также опасности для здоровья человека;

• предотвращение интродукции чужеродных видов, которые могут угрожать экосистемам, местам обитания или видам, контролировать или уничтожать такие чужеродные виды;

• создание условий, необходимых для обеспечения совместимости существующих способов использования растительного и животного мира с сохранением его биологического разнообразия;

• разработка или осуществление необходимых законодательных норм и других регулирующих положений для защиты и охраны находящихся в опасности видов и популяций.

К наиболее эффективным формам защиты природных экосистем следует отнести государственную систему особо охраняемых природных территорий (ООПТ).

Особо охраняемые природные территории – участки суши или водной поверхности, которые в силу своего природоохранного и иного назначения полностью или частично изъяты из хозяйственного пользования и для которых установлен особый режим охраны.

К таким территориям можно отнести: государственные природные заповедники, в том числе и биосферные, национальные парки, природные парки, государственные природные заказники, памятники природы, дендрологические парки и ботанические сады.

Охрана и использование ООПТ осуществляется на основании Закона Республики Беларусь «Об особо охраняемых природных территориях».

В стране для сохранения биоразнообразия существует сеть ООПТ, имеющих международное значение. К ним относятся восемь рамсарских территорий (республиканские заказники «Ольманские болота», «Средняя Припять», «Званец», «Споровский», «Освейский», «Котра», «Ельня», «Простырь»), на которых осуществляется изучение и охрана болот; трансграничные ООПТ (заказники «Прибужское Полесье» и «Котра») и биосферные резерваты.

Благодаря созданию всех этих ООПТ в стране сохраняются уникальные ландшафты и населяющие их виды животных и растений. Всего в Беларуси взято под охрану 2358 мест обитания и произрастания 355 редких видов животных и растений.

В стране ведется реестр ООПТ. Основной целью этих документов является формирование Национальной экологической сети. При этом ООПТ рассматриваются в качестве ее основных элементов. Разработана также первая автоматизированная база данных ООПТ республиканского значения на основе цифровой карты в масштабе 1:200 000 с использованием ГИС-технологий (географическая информационная система).

1.6. Принципы теории систем в экологии

В основе современной экологии лежит понятие системы. Экологическая система – главный предмет экологии.

Существуют некоторые общие принципы, позволяющие составить единый алгоритм для изучения технических, биологических, социальных, любых иных систем, объединенные в общую теорию систем.

В XX в. понятие системы становится одним из ключевых философско-методологических и специально-научных понятий. Основоположником общей теории систем является Людвиг фон Берталанфи (1969).

Согласно общей теории систем под системой понимается некая мыслимая или реальная совокупность частей (элементов) со связями (взаимодействиями) между ними.

Существует ряд общих характерных черт любой системы.

1. Свойства системы невозможно понять лишь на основании свойств ее частей. Решающее значение имеет именно связь или взаимодействие между частями системы. По отдельным деталям машины трудно судить о ее действии и назначении. Изучая по отдельности некоторые формы грибов и водорослей, нельзя предсказать существование их симбиоза в виде лишайника. Независимое рассмотрение законов человеческого общества и законов биоэкологии не позволяет судить о характере взаимоотношений человека и живой природы. Степень несводимости свойств системы к свойствам отдельных элементов, из которых она состоит, определяет эмерджентность (от англ. emergence – возникновение, появление нового) системы.

2. Каждая система имеет определенную структуру. Она не может состоять из абсолютно идентичных элементов; для любой системы справедлив принцип необходимого разнообразия элементов. Нижний предел разнообразия – наличие не менее двух элементов, верхний – бесконечность. Разнообразие зависит от числа разных элементов, составляющих систему, и может быть измерено. В экологии оно обычно оценивается по показателю К. Шеннона (о нем шла речь ранее).

3. Всякая система состоит из двух частей – самой системы и ее среды. При этом сила связей элементов внутри системы больше, чем с элементами среды. По характеру связей, в частности по типу обмена веществом и (или) энергией со средой, выделяют системы:

изолированные – невозможен никакой обмен;

замкнутые – невозможен обмен веществом, но обмен энергией возможен;

открытые – возможен обмен и веществом, и энергией. Системы, между внутренними элементами которых и элементами среды осуществляются переносы вещества, энергии и информации, носят название динамических систем. Любая живая система (от вируса до биосферы) представляет собой открытую динамическую систему.

4. Преобладание внутренних взаимодействий в динамической системе над внешними определяет ее устойчивость, или способность противостоять изменениям. В технике известно, что если внешние силы, действующие на какой-либо механизм, оказываются больше сил механической связи между частями этого механизма, он неизбежно разрушается. Аналогично внешнее воздействие на биологическую систему, превосходящее силу ее внутренних связей и способность к адаптации, приводит к необратимым изменениям и гибели системы. Устойчивость динамической системы обеспечивается непрерывно выполняемой ею внешней циклической работой.

5. Действие системы во времени называют поведением системы. Изменение поведения под влиянием внешних условий называют реакцией системы, а более или менее стойкие изменения реакций системы – приспособлением (адаптацией). Адаптивные изменения структуры и связей системы во времени рассматривают как ее развитие, или эволюцию. Возникновение и существование всех материальных систем обусловлено их эволюцией. Самоподдерживающиеся динамические системы эволюционируют в сторону усложнения организации и возникновения системной иерархии – образования подсистем в структуре системы. При этом наблюдается определенная последовательность становления эмерджентных свойств (качеств) системы – устойчивости, управляемости и самоорганизации. Эволюция состоит из последовательного закрепления такой адаптации, при которой поток энергии через систему и ее потенциальная эффективность увеличиваются.

6. С возрастанием иерархического уровня системы возрастает и сложность ее структуры и поведения. Сложность системы определяется числом п связей между ее элементами:

Hn= lgn.

Обычно системы, имеющие до тысячи связей (0 < Hn< 3), относятся к простым; до миллиона связей (3 < Hn< 6) – сложным; свыше миллиона (Hn> 6) – очень сложным. Все известные природные биосистемы обычно очень сложны, в то время, как искусственные – простые или сложные.

Другой критерий сложности связан с характером поведения системы. Если система способна к выбору альтернатив поведения (в том числе и в результате случайного изменения), то такая решающая система считается сложной. Следствием увеличения сложности систем в ходе их эволюции является ускорение эволюции, все более быстрое прохождение ее стадий, равноценных по качественным сдвигам.

7. Важной особенностью эволюции сложных систем является неравномерность, отсутствие монотонности. Периоды постепенного накопления незначительных изменений иногда прерываются резкими качественными скачками, существенно меняющими свойства системы. Обычно они связаны с так называемыми точками бифуркации – раздвоением, расщеплением прежнего пути эволюции. От выбора того или иного направления развития в точке бифуркации очень многое зависит, вплоть до появления и процветания нового мира веществ, организмов, социумов или, наоборот, гибели системы. Даже для решающих систем результат выбора часто непредсказуем, а сам выбор в точке бифуркации может быть обусловлен случайной причиной.

8. Любая реальная система представляется в виде некоторого материального подобия или знакового образа, называемого, соответственно, аналоговой или знаковой моделью системы. Моделирование неизбежно сопровождается некоторым упрощением и формализацией взаимосвязей в системе. Эта формализация может быть осуществлена в виде логических (причинно-следственных) и (или) математических (функциональных) отношений.

В основе современной биологической картины мира лежит представление о том, что мир живого – это мегасистема высокоорганизованных систем. Биологическая система имеет свои характерные черты и особенности, которые присущи только живому. Известно, что любая система состоит из совокупности элементов (компонентов) и связей между ними (структуры), которые объединяют данную совокупность элементов в единое целое. Биологическим системам свойственны свои специфические элементы и особенные типы связей между ними. Элементы и компоненты биологических систем выражают дискретную составляющую живого.

Биологические системы предельно индивидуализированы. Среди живых систем нет двух одинаковых особей, популяций, видов и др. Это способствует их адаптации к внешней среде. Вместе с тем любая сложная организация немыслима без целостности.

Целостность системы означает несводимость свойств системы к сумме свойств ее элементов. Она порождается структурой системы, типом связей между ее элементами. Биологические системы отличаются высоким уровнем целостности.

Живые системы – открытые системы, постоянно обменивающиеся веществом, энергией и информацией со средой. Обмен веществом, энергией и информацией происходит и между частями системы (подсистемами). Для живых систем характерны отрицательная энтропия (увеличение упорядоченности), способность к самоорганизации.

Динамические процессы в биологических системах, их самоорганизация, устойчивость и переходы из стационарного состояния в нестационарное обеспечиваются различными механизмами саморегуляции.

Саморегуляция – это внутреннее свойство биологических систем автоматически поддерживать на некотором необходимом уровне параметры протекающих в них процессов (физиологических, биохимических и др.).

Биологические системы организованы иерархически и представлены большим количеством уровней структурно-функциональной организации. На каждом уровне складываются свои специфические механизмы саморегуляции, основанные, как правило, на принципе обратной связи (отрицательной или положительной), когда отклонение некоторого параметра от необходимого уровня приводит к активизации функций, которые ликвидируют дисбаланс, возвращая данный параметр к нужному уровню. В случае отрицательной обратной связи знак изменения противоположен знаку первоначального отклонения, а при положительной обратной связи знак изменения совпадает со знаком отклонения; при этом система выходит из одного стационарного состояния и переходит в другое. Любая биологическая система способна пребывать в различных стационарных состояниях. Это позволяет ей, с одной стороны, функционировать в определенных отношениях независимо от среды, а с другой – адаптироваться к среде при соответствующих условиях.

Кроме стационарных, биологические системы имеют и автоколебательные состояния, когда значения параметров изменяются во времени с определенной амплитудой. Такие состояния являются основой периодических биологических процессов, ритмов, часов и др.

Системно-структурные уровни организации многообразных форм живого вещества достаточно многочисленны: молекулярный, субклеточный, клеточный, органотканевый, организменный, видовой, популяционный, биоценотический, биогеоценотический и биосферный. Могут быть определены и другие уровни. Но во всем многообразии уровней выделяются некоторые основные.

Критерием выделения основных уровней выступают специфические дискретные структуры и фундаментальные биологические взаимодействия. На основании этих критериев достаточно четко выделяются следующие уровни организации живого: молекулярно-генетический, организменный, популяционно-видовой, биогеоценотический и биосферный.

Контрольные вопросы и задания

1. Охарактеризуйте исторические этапы становления экологии как науки.

2. Каковы цели, задачи и методы экологии?

3. Дайте полную характеристику термина «экология» в его историческом развитии.

4. Какова структура и содержание современной экологии?

5. Что такое популяция?

6. Назовите и дайте характеристику основных критериев популяции.

7. Что такое экосистема?

8. Каковы основные свойства экосистемы?

9. Дайте характеристику понятий «биоценоз» и «биогеоценоз».

10. Как применяются принципы теории систем в экологии?