2. Кластерный анализ, часть I: использование метода k-средних для сегментирования вашей клиентской базы
Я работаю в индустрии почтового маркетинга для сайта под названием MailChimp.com. Мы помогаем клиентам делать новостную рассылку для своей рекламной аудитории. Каждый раз, когда кто-нибудь называет нашу работу «почтовым вбросом», я чувствую на сердце неприятный холод.
Почему? Да потому что адреса электронной почты – больше не черные ящики, которые вы забрасываете сообщениями, будто гранатами. Нет, в почтовом маркетинге (как и в других формах онлайн-контакта, включая твиты, посты в Facebook и кампании на Pinterest) бизнес получает сведения о том, как аудитория вступает в контакт на индивидуальном уровне, с помощью отслеживания кликов, онлайн-заказов, распространения статусов в социальных сетях и т. д. Эти данные – не просто помехи. Они характеризуют вашу аудиторию. Но для непосвященного эти операции сродни премудростям греческого языка. Или эсперанто.
Как вы собираете данные об операциях с вашими клиентами (пользователями, подписчиками и т. д.) и используете ли их данные, чтобы лучше понять свою аудиторию? Когда вы имеете дело с множеством людей, трудно изучить каждого клиента в отдельности, особенно если все они по-разному связываются с вами. Даже если бы теоретически вы могли достучаться до каждого лично, на практике это вряд ли осуществимо.
Нужно взять клиентскую базу и найти золотую середину между «бомбардировкой» наобум и персонализированным маркетингом для каждого отдельного покупателя. Один из способов достичь такого баланса – использование кластеризации для сегментирования рынка ваших клиентов, чтобы вы могли обращаться к разным сегментам вашей клиентской базы с различным целевым контентом, предложениями и т. д.
Кластерный анализ – это сбор различных объектов и разделение их на группы себе подобных. Работая с этими группами – определяя, что у их членов общего, а что отличает их друг от друга – вы можете многое узнать о беспорядочном имеющемся у вас массиве данных. Это знание поможет вам принимать оптимальные решения, причем на более детальном уровне, нежели раньше.
В этом разрезе кластеризация называется разведочной добычей данных, потому что эти техники помогают «вытянуть» информацию о связях в огромных наборах данных, которые не охватишь визуально. А обнаружение связей в социальных группах полезно в любой отрасли – для рекомендаций фильмов на основе привычек целевой аудитории, для определения криминальных центров города или обоснования финансовых вложений.
Одно из моих любимых применений кластеризации – это кластеризация изображений: сваливание в кучу файлов изображений, которые «выглядят одинаково» для компьютера. К примеру, в сервисах размещения изображений типа Flickr пользователи производят кучу контента и простая навигация становится невозможной из-за большого количества фотографий. Но, используя кластерные техники, вы можете объединять похожие изображения, позволяя пользователю ориентироваться между этими группами еще до подробной сортировки.
Контролируемое или неконтролируемое машинное обучение?В разведочной добыче данных вы, по определению, не знаете раньше времени, что же за данные вы ищете. Вы – исследователь. Вы можете четко объяснить, когда двое клиентов выглядят похожими, а когда разными, но вы не знаете лучшего способа сегментировать свою клиентскую базу. Поэтому «просьба» к компьютеру сегментировать клиентскую базу за вас называется неконтролируемым машинным обучением, потому что вы ничего не контролируете – не диктуете компьютеру, как делать его работу.
В противоположность этому процессу, существует контролируемое машинное обучение, которое появляется, как правило, когда искусственный интеллект попадает на первую полосу. Если я знаю, что хочу разделить клиентов на две группы – скажем, «скорее всего купят» и «вряд ли купят» – и снабжаю компьютер историческими примерами таких покупателей, применяя все нововведения к одной из этих групп, то это контроль.
Если вместо этого я скажу: «Вот что я знаю о своих клиентах и вот как определить, разные они или одинаковые. Расскажи-ка что-нибудь интересненькое», – то это отсутствие контроля.
В данной главе рассматривается самый простой способ кластеризации под названием метод k-средних, который ведет свою историю из 50-х годов и с тех пор стал дежурным в открытии знаний из баз данных (ОЗБД) во всех отраслях и правительственных структурах.
Метод k-средних – не самый математически точный из всех методов. Он создан, в первую очередь, из соображений практичности и здравого смысла – как афроамериканская кухня. У нее нет такой шикарной родословной, как у французской, но и она зачастую угождает нашим гастрономическим капризам. Кластерный анализ с помощью k-средних, как вы вскоре убедитесь, – это отчасти математика, а отчасти – экскурс в историю (о прошлых событиях компании, если это сравнение относится к методам обучения менеджменту). Его несомненным преимуществом является интуитивная простота.
Посмотрим, как работает этот метод, на простом примере.
Девочки танцуют с девочками, парни чешут в затылке
Цель кластеризации методом k-средних – выбрать несколько точек в пространстве и превратить их в k группы (где k – любое выбранное вами число). Каждая группа определена точкой в центре вроде флага, воткнутого в Луну и сигнализирующего: «Эй, вот центр моей группы! Присоединяйтесь, если к этому флагу вы ближе, чем к остальным!» Этот центр группы (с официальным названием кластерный центроид) – то самое среднее из названия метода k-средних.
Вспомним для примера школьные танцы. Если вы сумели стереть ужас этого «развлечения» из своей памяти, я очень извиняюсь за возвращение таких болезненных воспоминаний.
Герои нашего примера – ученики средней школы Макакне, пришедшие на танцевальный вечер под романтическим названием «Бал на дне морском», – рассеяны по актовому залу, как показано на рис. 2–1. Я даже подрисовал в Photoshop паркет, чтобы было легче представить ситуацию.
А вот примеры песен, под которые эти юные лидеры свободного мира будут неуклюже танцевать (если вдруг вам захочется музыкального сопровождения, к примеру, на Spotify):
• Styx: Come Sail Away
• Everything But the Girl: Missing
• Ace of Base: All that She Wants
• Soft Cell: Tainted Love
• Montell Jordan: This is How We Do It
• Eiffel 65: Blue
Теперь кластеризация по k-средним зависит от количества кластеров, на которое вы желаете поделить присутствующих. Давайте остановимся для начала на трех кластерах (далее в этой главе мы рассмотрим вопрос выбора k). Алгоритм размещает три флажка на полу актового зала некоторым допустимым образом, как показано на рис. 2–2, где вы видите 3 начальных флажка, распределенных по полу и отмеченных черными кружками.
Конец ознакомительного фрагмента.